


Buy.   Rent.   Access.

Access student data fi les and other study 
tools on cengagebrain.com.

For detailed instructions visit 
http://solutions.cengage.com/ctdownloads/ 

Store your Data Files on a USB drive for maximum effi ciency in 
organizing and working with the fi les.

Macintosh users should use a program to expand WinZip or PKZip archives. 
Ask your instructor or lab coordinator for assistance. 

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



PROGRAMMING LOGIC

AND DESIGN

COMPREHENSIVE VERSION

JOYCE FARRELL

E I G H T H E D I T I O N

Australia Brazil Japan Korea Mexico Singapore Spain United Kingdom United States

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



       This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed 
content does not materially affect the overall learning experience. The publisher reserves the right 
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate 
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for 
materials in your areas of interest.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Logic and Design,
Comprehensive version,
Eighth Edition
Joyce Farrell

Senior Product Manager: Jim Gish

Senior Content Developer: Alyssa Pratt

Development Editor: Dan Seiter

Content Project Manager:
Jennifer Feltri-George

Product Assistant: Gillian Daniels

Senior Market Development Manager:
Eric La Scola

Marketing Manager: Gretchen Swann

Art Director: Cheryl Pearl, GEX
Publishing Services

Text Designer: GEX Publishing Services

Cover Designer: GEX Publishing Services

Image Credit: © Kasia/Shutterstock.com

Manufacturing Planner: Julio Esperas

Copyeditor: Michael Beckett

Proofreader: Lisa Weidenfeld

Indexer: Alexandra Nickerson

Compositor: Integra

© 2015 Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored or used in any form or by any means—
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act—without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, www.cengage.com/support.

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions.

Further permissions questions can be e-mailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2013956197

ISBN-13: 978-1-285-77671-2

Cengage Learning
200 First Stamford Place, 4th Floor
Stamford, CT 06902
USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

Purchase any of our products at your local college store or at our preferred
online store: www.cengagebrain.com

Some of the product names and company names used in this book have been
used for identification purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Microsoft product screenshots used with permission from Microsoft Corporation.

Unless otherwise credited, all art and tables © 2015 Cengage Learning, produced
by Integra.

Cengage Learning reserves the right to revise this publication and make changes
from time to time in its content without notice.

Printed in the United States of America

1 2 3 4 5 6 7 17 16 15 14 13

WCN: 02-200-203

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Brief Contents

Preface . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 An Overview of Computers and Programming . . 1
CHAPTER 2 Elements of High-Quality Programs . . . . . . 38
CHAPTER 3 Understanding Structure . . . . . . . . . . . 87
CHAPTER 4 Making Decisions . . . . . . . . . . . . . 125
CHAPTER 5 Looping . . . . . . . . . . . . . . . . . 177
CHAPTER 6 Arrays . . . . . . . . . . . . . . . . . . 226
CHAPTER 7 File Handling and Applications . . . . . . . 274
CHAPTER 8 Advanced Data Handling Concepts . . . . . 321
CHAPTER 9 Advanced Modularization Techniques . . . . 371
CHAPTER 10 Object-Oriented Programming . . . . . . . 427
CHAPTER 11 More Object-Oriented Programming

Concepts . . . . . . . . . . . . . . . . . 471
CHAPTER 12 Event-Driven GUI Programming,

Mult ithreading, and Animation . . . . . . . 514
CHAPTER 13 System Modeling with the UML . . . . . . . 547
CHAPTER 14 Using Relat ional Databases . . . . . . . . 579
APPENDIX A Understanding Numbering Systems

and Computer Codes . . . . . . . . . . . . 625

APPENDIX B Solving Diff icult Structuring Problems . . . . 633

APPENDIX C Creating Print Charts . . . . . . . . . . . 642

APPENDIX D Two Variations on the Basic Structures—
case and do-while . . . . . . . . .644

Glossary . . . . . . . . . . . . . . . . . 651

Index . . . . . . . . . . . . . . . . . . . 667

iii

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents

Preface . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 An Overview of Computers and Programming . . 1

Understanding Computer Systems . . . . . . . . . . . . . . . . 2
Understanding Simple Program Logic . . . . . . . . . . . . . . 5
Understanding the Program Development Cycle . . . . . . . . . . 7
Using Pseudocode Statements and Flowchart Symbols . . . . . . 14
Using a Sentinel Value to End a Program . . . . . . . . . . . . 20
Understanding Programming and User Environments . . . . . . . 23
Understanding the Evolution of Programming Models . . . . . . . 26
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 28
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . . 28
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 2 Elements of High-Quality Programs . . . . . . 38

Declaring and Using Variables and Constants . . . . . . . . . . 39
Performing Arithmetic Operations . . . . . . . . . . . . . . . 47
Understanding the Advantages of Modularization . . . . . . . . . 51
Modularizing a Program . . . . . . . . . . . . . . . . . . . 54
Creating Hierarchy Charts . . . . . . . . . . . . . . . . . . 64
Features of Good Program Design . . . . . . . . . . . . . . . 66
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 75
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . . 76
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 79

CHAPTER 3 Understanding Structure . . . . . . . . . . . 87

The Disadvantages of Unstructured Spaghetti Code . . . . . . . 88
Understanding the Three Basic Structures . . . . . . . . . . . 90
Using a Priming Input to Structure a Program . . . . . . . . . . 99
Understanding the Reasons for Structure . . . . . . . . . . . .106
Recognizing Structure . . . . . . . . . . . . . . . . . . . .107
Structuring and Modularizing Unstructured Logic . . . . . . . . .110
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .116
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .116
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .117

iv

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 4 Making Decisions . . . . . . . . . . . . . 125

Boolean Expressions and the Selection Structure . . . . . . . .126
Using Relational Comparison Operators . . . . . . . . . . . .131
Understanding AND Logic . . . . . . . . . . . . . . . . . .135
Understanding OR Logic . . . . . . . . . . . . . . . . . . .145
Understanding NOT Logic . . . . . . . . . . . . . . . . . .156
Making Selections within Ranges . . . . . . . . . . . . . . .157
Understanding Precedence When Combining AND and OR

Operators . . . . . . . . . . . . . . . . . . . . . . . .163
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .166
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .167
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .168

CHAPTER 5 Looping . . . . . . . . . . . . . . . . . 177

Understanding the Advantages of Looping . . . . . . . . . . .178
Using a Loop Control Variable . . . . . . . . . . . . . . . . .180
Nested Loops . . . . . . . . . . . . . . . . . . . . . . .186
Avoiding Common Loop Mistakes . . . . . . . . . . . . . . .192
Using a for Loop . . . . . . . . . . . . . . . . . . . . . .201
Common Loop Applications . . . . . . . . . . . . . . . . . .203
Comparing Selections and Loops . . . . . . . . . . . . . . .213
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .217
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .217
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .218

CHAPTER 6 Arrays . . . . . . . . . . . . . . . . . . 226

Storing Data in Arrays . . . . . . . . . . . . . . . . . . . .227
How an Array Can Replace Nested Decisions . . . . . . . . . .230
Using Constants with Arrays . . . . . . . . . . . . . . . . .239
Searching an Array for an Exact Match . . . . . . . . . . . . .241
Using Parallel Arrays . . . . . . . . . . . . . . . . . . . . .246
Searching an Array for a Range Match . . . . . . . . . . . . .253
Remaining within Array Bounds . . . . . . . . . . . . . . . .257
Using a for Loop to Process an Array . . . . . . . . . . . . .261
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .262
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .263
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .263

v

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 7 File Handling and Applications . . . . . . . 274

Understanding Computer Files . . . . . . . . . . . . . . . .275
Understanding the Data Hierarchy . . . . . . . . . . . . . . .277
Performing File Operations . . . . . . . . . . . . . . . . . .279
Understanding Control Break Logic . . . . . . . . . . . . . .286
Merging Sequential Files . . . . . . . . . . . . . . . . . . .292
Master and Transaction File Processing . . . . . . . . . . . .301
Random Access Files . . . . . . . . . . . . . . . . . . . .310
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .311
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .312
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .314

CHAPTER 8 Advanced Data Handling Concepts . . . . . 321

Understanding the Need for Sorting Data . . . . . . . . . . . .322
Using the Bubble Sort Algorithm . . . . . . . . . . . . . . . .323
Sorting Multifield Records . . . . . . . . . . . . . . . . . .342
Using the Insertion Sort Algorithm . . . . . . . . . . . . . . .345
Using Multidimensional Arrays . . . . . . . . . . . . . . . . .349
Using Indexed Files and Linked Lists . . . . . . . . . . . . . .356
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .361
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .362
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .363

CHAPTER 9 Advanced Modularization Techniques . . . . 371

The Parts of a Method . . . . . . . . . . . . . . . . . . . .372
Using Methods with no Parameters . . . . . . . . . . . . . .373
Creating Methods that Require Parameters . . . . . . . . . . .376
Creating Methods that Return a Value . . . . . . . . . . . . .384
Passing an Array to a Method . . . . . . . . . . . . . . . . .391
Overloading Methods . . . . . . . . . . . . . . . . . . . .398
Using Predefined Methods . . . . . . . . . . . . . . . . . .405
Method Design Issues: Implementation Hiding,

Cohesion, and Coupling . . . . . . . . . . . . . . . . . .407
Understanding Recursion . . . . . . . . . . . . . . . . . . .410
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .415
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .416
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .418

vi

C O N T E N T S

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 10 Object-Oriented Programming . . . . . . . 427

Principles of Object-Oriented Programming . . . . . . . . . . .428
Defining Classes and Creating Class Diagrams . . . . . . . . .435
Understanding Public and Private Access . . . . . . . . . . . .444
Organizing Classes . . . . . . . . . . . . . . . . . . . . .448
Understanding Instance Methods . . . . . . . . . . . . . . .449
Understanding Static Methods . . . . . . . . . . . . . . . .454
Using Objects . . . . . . . . . . . . . . . . . . . . . . . .456
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .462
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .463
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .465

CHAPTER 11 More Object-Oriented Programming
Concepts . . . . . . . . . . . . . . . . . 471

Understanding Constructors . . . . . . . . . . . . . . . . .472
Understanding Destructors . . . . . . . . . . . . . . . . . .479
Understanding Composition . . . . . . . . . . . . . . . . . .481
Understanding Inheritance . . . . . . . . . . . . . . . . . .482
An Example of Using Predefined Classes:

Creating GUI Objects . . . . . . . . . . . . . . . . . . .494
Understanding Exception Handling . . . . . . . . . . . . . . .495
Reviewing the Advantages of Object-Oriented

Programming . . . . . . . . . . . . . . . . . . . . . . .501
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .502
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .503
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .504

CHAPTER 12 Event-Driven GUI Programming,
Mult ithreading, and Animation . . . . . . . 514

Understanding Event-Driven Programming . . . . . . . . . . . .515
User-Initiated Actions and GUI Components . . . . . . . . . . .518
Designing Graphical User Interfaces . . . . . . . . . . . . . .521
Developing an Event-Driven Application . . . . . . . . . . . . .524
Understanding Threads and Multithreading . . . . . . . . . . .532
Creating Animation . . . . . . . . . . . . . . . . . . . . .535
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .538
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .539
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .540

vii

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 13 System Modeling with the UML . . . . . . . 547

Understanding System Modeling . . . . . . . . . . . . . . . .548
What is the UML? . . . . . . . . . . . . . . . . . . . . . .549
Using UML Use Case Diagrams . . . . . . . . . . . . . . . .551
Using UML Class and Object Diagrams . . . . . . . . . . . . .557
Using Other UML Diagrams . . . . . . . . . . . . . . . . . .561
Deciding When to Use the UML and Which UML

Diagrams to Use . . . . . . . . . . . . . . . . . . . . .569
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .571
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .572
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .573

CHAPTER 14 Using Relat ional Databases . . . . . . . . 579

Understanding Relational Database Fundamentals . . . . . . . .580
Creating Databases and Table Descriptions . . . . . . . . . . .582
Identifying Primary Keys . . . . . . . . . . . . . . . . . . .584
Understanding Database Structure Notation . . . . . . . . . . .587
Working with Records within Tables . . . . . . . . . . . . . .588
Creating Queries . . . . . . . . . . . . . . . . . . . . . .589
Understanding Relationships Between Tables . . . . . . . . . .592
Recognizing Poor Table Design . . . . . . . . . . . . . . . .598
Understanding Anomalies, Normal Forms, and Normalization . . .600
Database Performance and Security Issues . . . . . . . . . . .609
Chapter Summary . . . . . . . . . . . . . . . . . . . . . .611
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . .613
Exercises . . . . . . . . . . . . . . . . . . . . . . . . .616

APPENDIX A Understanding Numbering Systems
and Computer Codes . . . . . . . . . . . . 625

APPENDIX B Solving Diff icult Structuring Problems . . . . 633

APPENDIX C Creating Print Charts . . . . . . . . . . . . 642

APPENDIX D Two Variations on the Basic Structures—
case and do-while . . . . . . . . . . . . 644

Glossary . . . . . . . . . . . . . . . . . . 651

Index . . . . . . . . . . . . . . . . . . . . 667

viii

C O N T E N T S

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface

Programming Logic and Design, Comprehensive, Eighth Edition provides the beginning
programmer with a guide to developing structured program logic. This textbook assumes no
programming language experience. The writing is nontechnical and emphasizes good
programming practices. The examples are business examples; they do not assume
mathematical background beyond high school business math. Additionally, the examples
illustrate one or two major points; they do not contain so many features that students become
lost following irrelevant and extraneous details.

The examples in this book have been created to provide students with a sound background in
logic, no matter what programming languages they eventually use to write programs. This
book can be used in a stand-alone logic course that students take as a prerequisite to a
programming course, or as a companion book to an introductory programming text using
any programming language.

Organization and Coverage
Programming Logic and Design, Comprehensive, Eighth Edition introduces students to
programming concepts and enforces good style and logical thinking. General
programming concepts are introduced in Chapter 1. Chapter 2 discusses using data and
introduces two important concepts: modularization and creating high-quality programs.
It is important to emphasize these topics early so that students start thinking in a
modular way and concentrate on making their programs efficient, robust, easy to read,
and easy to maintain.

Chapter 3 covers the key concepts of structure, including what structure is, how to recognize
it, and most importantly, the advantages to writing structured programs. This chapter’s
content is unique among programming texts. The early overview of structure presented here
gives students a solid foundation in thinking in a structured way.

Chapters 4, 5, and 6 explore the intricacies of decision making, looping, and array
manipulation. Chapter 7 provides details of file handling so students can create programs that
process a significant amount of data.

In Chapters 8 and 9, students learn more advanced techniques in array manipulation and
modularization. Chapters 10 and 11 provide a thorough yet accessible introduction to
concepts and terminology used in object-oriented programming. Students learn about
classes, objects, instance and static class members, constructors, destructors, inheritance, and
the advantages of object-oriented thinking.

ix

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 12 explores additional object-oriented programming issues: event-driven GUI
programming, multithreading, and animation. Chapter 13 discusses system design issues and
details the features of the Unified Modeling Language. Chapter 14 is a thorough introduction
to important database concepts that business programmers should understand.

Four appendices instruct students in working with numbering systems, large unstructured
programs, print charts, and post-test loops and case structures.

Programming Logic and Design combines text explanation with flowcharts and pseudocode
examples to provide students with alternative means of expressing structured logic.
Numerous detailed, full-program exercises at the end of each chapter illustrate the concepts
explained within the chapter, and reinforce understanding and retention of the material
presented.

Programming Logic and Design distinguishes itself from other programming logic books in
the following ways:

It is written and designed to be non-language specific. The logic used in this book can be
applied to any programming language.

The examples are everyday business examples; no special knowledge of mathematics,
accounting, or other disciplines is assumed.

The concept of structure is covered earlier than in many other texts. Students are
exposed to structure naturally, so they will automatically create properly designed
programs.

Text explanation is interspersed with both flowcharts and pseudocode so students can
become comfortable with these logic development tools and understand their
interrelationship. Screen shots of running programs also are included, providing students
with a clear and concrete image of the programs’ execution.

Complex programs are built through the use of complete business examples. Students see
how an application is constructed from start to finish instead of studying only segments of
programs.

x

P R E F A C E Organization and Coverage

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Features
This text focuses on helping students become better programmers and
understand the big picture in program development through a variety of
key features. In addition to chapter Objectives, Summaries, and Key Terms,
these useful features will help students regardless of their learning style.

THE DON’T DO IT ICON illustrates 
how NOT to do something—for 
example, having a dead code 
path in a program. This icon 
provides a visual jolt to the student, 

are NOT to be emulated and making 
students more careful to recognize 
problems in existing code.

and illustrations provide

learning experience.
the reader with a visual 

FLOWCHARTS, figures, 

xi

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE mini quizzes 
appear after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are
true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in
the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

VIDEO LESSONS help 
explain important chapter 
concepts. Videos are part 
of the text’s enhanced 
CourseMate site.

NOTES provide 
additional information—
for example, another 
location in the book that 
expands on a topic, or a 
common error to watch 
out for.

xii

F E A T U R E S

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assessment

REVIEW QUESTIONS test 
student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.

PROGRAMMING EXERCISES provide
opportunities to practice concepts. These
exercises increase in difficulty and allow
students to explore logical programming
concepts. Each exercise can be
completed using flowcharts, pseudocode,
or both. In addition, instructors can assign
the exercises as programming problems
to be coded and executed in a particular
programming language. 

xiii

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



PERFORMING MAINTENANCE
exercises ask students to modify
working logic based on new
requested specifications. This
activity mirrors real-world tasks
that students are likely to
encounter in their first programming
jobs.

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.
Students can download these exercises
at www.cengagebrain.com and through
the CourseMate available for this text.
These files are also available to
instructors at sso.cengage.com.

ESSAY QUESTIONS present 
personal and ethical issues that 
programmers must consider. These 
questions can be used for written 
assignments or as a starting point 
for classroom discussion.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

xiv

A S S E S S M E N T

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Other Features of the Text
This edition of the text includes many features to help students become better programmers
and understand the big picture in program development.

Clear explanations. The language and explanations in this book have been refined over
eight editions, providing the clearest possible explanations of difficult concepts.

Emphasis on structure. More than its competitors, this book emphasizes structure.
Chapter 3 provides an early picture of the major concepts of structured programming.

Emphasis on modularity. From the second chapter, students are encouraged to write
code in concise, easily manageable, and reusable modules. Instructors have found that
modularization should be encouraged early to instill good habits and a clearer
understanding of structure.

Objectives. Each chapter begins with a list of objectives so the student knows the topics
that will be presented in the chapter. In addition to providing a quick reference to topics
covered, this feature provides a useful study aid.

Chapter summaries. Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter.

Key terms. Each chapter lists key terms and their definitions; the list appears in the order
the terms are encountered in the chapter. A glossary at the end of the book lists all the key
terms in alphabetical order, along with working definitions.

CourseMate
The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, review flashcards, watch
videos, and take practice quizzes online. CourseMate goes beyond the book to deliver what
you need! Learn more at www.cengage.com/coursemate.

The Programming Logic and Design CourseMate includes:

Video Lessons. Designed and narrated by the author, videos in each chapter explain and
enrich important concepts.

Two Truths & A Lie, Debugging Exercises, and Performing Maintenance. Complete
popular exercises from the text online.

An interactive eBook. Highlighting and note-taking, flashcards, quizzing, study games,
and more.

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.cengagebrain.com.

Instructor Resources
The following teaching tools are available to the instructor for download through our
Instructor Companion Site at sso.cengage.com.

xv

Instructor Resources

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Electronic Instructor’s Manual. The Instructor’s Manual follows the text chapter by
chapter to assist in planning and organizing an effective, engaging course. The manual
includes learning objectives, chapter overviews, lecture notes, ideas for classroom
activities, and abundant additional resources. A sample course syllabus is also available.

PowerPoint Presentations. This text provides PowerPoint slides to accompany each
chapter. Slides are included to guide classroom presentation, to make available to
students for chapter review, or to print as classroom handouts.

Solutions. Solutions to review questions and exercises are provided to assist with grading.

Test Bank®. Cengage Learning Testing Powered by Cognero is a flexible, online system
that allows you to:

author, edit, and manage test bank content from multiple Cengage Learning solutions

create multiple test versions in an instant

deliver tests from your LMS, your classroom, or anywhere you want

Additional Options
Visual Logic™ software. Visual Logic is a simple but powerful tool for teaching
programming logic and design without traditional high-level programming language
syntax. Visual Logic also interprets and executes flowcharts, providing students with
immediate and accurate feedback.

PAL (Programs to Accompany) Guides. Together with Programming Logic and Design,
these brief books, or PAL Guides, provide an excellent opportunity to learn the
fundamentals of programming while gaining exposure to a programming language. PAL
guides are available for C++, Java, and Visual Basic; please contact your sales rep for more
information on how to add the PAL guides to your course.

Acknowledgments
I would like to thank all of the people who helped to make this book a reality, especially
Dan Seiter, Development Editor; Alyssa Pratt, Senior Content Developer; Jim Gish, Senior
Product Manager; and Jennifer Feltri-George, Content Project Manager. I am grateful to be able
to work with so many fine people who are dedicated to producing quality instructional
materials.

I am indebted to the many reviewers who provided helpful and insightful comments during the
development of this book, including Gail Gehrig, Florida State College at Jacksonville; Yvonne
Leonard, Coastal Carolina Community College; and Meri Winchester, McHenry County College.

Thanks, too, to my husband, Geoff, and our daughters, Andrea and Audrey, for their support.
This book, as were all its previous editions, is dedicated to them.

–Joyce Farrell

xvi

P R E F A C E

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 1
An Overview
of Computers
and Programming

In this chapter, you will learn about:

Computer systems

Simple program logic

The steps involved in the program development cycle

Pseudocode statements and flowchart symbols

Using a sentinel value to end a program

Programming and user environments

The evolution of programming models

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Computer Systems
A computer system is a combination of all the components required to process and store
data using a computer. Every computer system is composed of multiple pieces of hardware
and software.

Hardware is the equipment, or the physical devices, associated with a computer. For
example, keyboards, mice, speakers, and printers are all hardware. The devices are
manufactured differently for computers of varying sizes—for example, large mainframes,
laptops, and very small devices embedded into products such as telephones, cars, and
thermostats. However, the types of operations performed by different-sized computers
are very similar. When you think of a computer, you often think of its physical
components first, but for a computer to be useful, it needs more than devices; a computer
needs to be given instructions. Just as your stereo equipment does not do much until you
provide music, computer hardware needs instructions that control how and when data
items are input, how they are processed, and the form in which they are output or stored.

Software is computer instructions that tell the hardware what to do. Software is
programs, which are instruction sets written by programmers. You can buy prewritten
programs that are stored on a disk or that you download from the Web. For example,
businesses use word-processing and accounting programs, and casual computer users
enjoy programs that play music and games. Alternatively, you can write your own
programs. When you write software instructions, you are programming. This book
focuses on the programming process.

Software can be classified into two broad types:

Application software comprises all the programs you apply to a task, such as word-
processing programs, spreadsheets, payroll and inventory programs, and games. When
you hear people say they have “downloaded an app onto a mobile device,” they are simply
using an abbreviation of application.

System software comprises the programs that you use to manage your computer,
including operating systems such as Windows, Linux, or UNIX for larger computers and
Google Android and Apple iOS for smartphones.

This book focuses on the logic used to write application software programs, although many of
the concepts apply to both types of software.

Together, computer hardware and software accomplish three major operations in most programs:

Input—Data items enter the computer system and are placed in memory, where they can
be processed. Hardware devices that perform input operations include keyboards and
mice. Data items include all the text, numbers, and other raw material that are entered
into and processed by a computer. In business, many of the data items used are facts and
figures about such entities as products, customers, and personnel. However, data can also
include items such as images, sounds, and a user’s mouse or finger-swiping movements.

Processing—Processing data items may involve organizing or sorting them, checking
them for accuracy, or performing calculations with them. The hardware component that
performs these types of tasks is the central processing unit, or CPU. Some devices, such as

2

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



tablets and smartphones, usually contain multiple processors. Writing programs that
efficiently use several CPUs requires special techniques.

Output—After data items have been processed, the resulting information usually is sent to
a printer, monitor, or some other output device so people can view, interpret, and use the
results. Programming professionals often use the term data for input items, but use
the term information for data that has been processed and output. Sometimes you place
output on storage devices, such as your hard drive, flash media, or a cloud-based device.
(The cloud refers to devices at remote locations accessed through the Internet.) People
cannot read data directly from these storage devices, but the devices hold information for
later retrieval. When you send output to a storage device, sometimes it is used later as
input for another program.

You write computer instructions in a computer programming language such as Visual Basic,
C#, C++, or Java. Just as some people speak English and others speak Japanese, programmers
write programs in different languages. Some programmers work exclusively in one language,
whereas others know several and use the one that is best suited to the task at hand.

The instructions you write using a programming language are called program code; when
you write instructions, you are coding the program.

Every programming language has rules governing its word usage and punctuation. These
rules are called the language’s syntax. Mistakes in a language’s usage are syntax errors. If you
ask, “How the geet too store do I?” in English, most people can figure out what you probably
mean, even though you have not used proper English syntax—you have mixed up the word
order, misspelled a word, and used an incorrect word. However, computers are not nearly as
smart as most people; in this case, you might as well have asked the computer, “Xpu mxv ort
dod nmcad bf B?” Unless the syntax is perfect, the computer cannot interpret the
programming language instruction at all.

When you write a program, you usually type its instructions using a keyboard. When you type
program instructions, they are stored in computer memory, which is a computer’s
temporary, internal storage. Random access memory, or RAM, is a form of internal, volatile
memory. Programs that are currently running and data items that are currently being used
are stored in RAM for quick access. Internal storage is volatile—its contents are lost when the
computer is turned off or loses power. Usually, you want to be able to retrieve and perhaps
modify the stored instructions later, so you also store them on a permanent storage device,
such as a disk. Permanent storage devices are nonvolatile—that is, their contents are
persistent and are retained even when power is lost. If you have had a power loss while
working on a computer, but were able to recover your work when power was restored, it’s not
because the work was still in RAM. Your system has been configured to automatically save
your work at regular intervals on a nonvolatile storage device—often your hard drive.

After a computer program is typed using programming language statements and stored in
memory, it must be translated to machine language that represents the millions of on/off
circuits within the computer. Your programming language statements are called source
code, and the translated machine language statements are object code.

Each programming language uses a piece of software, called a compiler or an interpreter, to
translate your source code into machine language. Machine language is also called binary

3

Understanding Computer Systems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



language, and is represented as a series of 0s and 1s. The compiler or interpreter that
translates your code tells you if any programming language component has been used
incorrectly. Syntax errors are relatively easy to locate and correct because your compiler or
interpreter highlights them. If you write a computer program using a language such as C++
but spell one of its words incorrectly or reverse the proper order of two words, the software
lets you know that it found a mistake by displaying an error message as soon as you try to
translate the program.

Although there are differences in how compilers and interpreters work, their basic function is the same—to
translate your programming statements into code the computer can use. When you use a compiler, an entire
program is translated before it can execute; when you use an interpreter, each instruction is translated just
prior to execution. Usually, you do not choose which type of translation to use—it depends on the
programming language. However, there are some languages for which both compilers and interpreters are
available.

After a program’s source code is successfully translated to machine language, the computer
can carry out the program instructions. When instructions are carried out, a program runs,
or executes. In a typical program, some input will be accepted, some processing will occur,
and results will be output.

Besides the popular, comprehensive programming languages such as Java and C++, many programmers
use scripting languages (also called scripting programming languages or script languages) such as
Python, Lua, Perl, and PHP. Scripts written in these languages usually can be typed directly from a keyboard
and are stored as text rather than as binary executable files. Scripting language programs are interpreted
line by line each time the program executes, instead of being stored in a compiled (binary) form. Still, with all
programming languages, each instruction must be translated to machine language before it can execute.

TWO TRUTHS & A LIE

Understanding Computer Systems

In each Two Truths and a Lie section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Hardware is the equipment, or the devices, associated with a computer.
Software is computer instructions.

2. The grammar rules of a computer programming language are its syntax.

3. You write programs using machine language, and translation software converts
the statements to a programming language.

. s1 dna s0 si hci h w, egaugnal eni hca mot st ne met at s eht str evnoc
)r et er pr et ni r or eli p moc a dell ac( mar gor p noi t al snart a dna, avaJ r o ci saBl ausi V sa
hcus egaugnal gni mmar gor p a gni su s mar gor p eti r wuoY. 3# si t ne met at s esl af ehT

4

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Simple Program Logic
A program with syntax errors cannot be fully translated and cannot execute. A program with
no syntax errors is translatable and can execute, but it still might contain logical errors and
produce incorrect output as a result. For a program to work properly, you must develop
correct logic; that is, you must write program instructions in a specific sequence, you must
not leave any instructions out, and you must not add extraneous instructions.

Suppose you instruct someone to
make a cake as follows:

Get a bowl
Stir
Add two eggs
Add a gallon of gasoline
Bake at 350 degrees for 45 minutes
Add three cups of flour

The dangerous cake-baking instructions are shown with a Don’t Do It icon. You will see this icon when the
book contains an unrecommended programming practice that is used as an example of what not to do.

Even though the cake-baking instructions use English language syntax correctly, the
instructions are out of sequence, some are missing, and some instructions belong to
procedures other than baking a cake. If you follow these instructions, you will not make an
edible cake, and you may end up with a disaster. Many logical errors are more difficult to
locate than syntax errors—it is easier for you to determine whether eggs is spelled incorrectly
in a recipe than it is for you to tell if there are too many eggs or if they are added too soon.

Just as baking directions can be provided in Mandarin, Urdu, or Spanish, program logic can
be expressed correctly in any number of programming languages. Because this book is not
concerned with a specific language, the programming examples could have been written in
Visual Basic, C++, or Java. For convenience, this book uses instructions written in English!

After you learn French, you automatically know, or can easily figure out, many Spanish words. Similarly, after
you learn one programming language, it is much easier to understand several other languages.

Most simple computer programs include steps that perform input, processing, and output.
Suppose you want to write a computer program to double any number you provide. You can
write the program in a programming language such as Visual Basic or Java, but if you were to
write it using English-like statements, it would look like this:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

Don’t Do It
Don't bake a cake like 
this!

5

Understanding Simple Program Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The number-doubling process includes three instructions:

The instruction to input myNumber is an example of an input operation. When the
computer interprets this instruction, it knows to look to an input device to obtain a
number. When you work in a specific programming language, you write instructions that
tell the computer which device to access for input. For example, when a user enters a
number as data for a program, the user might click on the number with a mouse, type it
from a keyboard, or speak it into a microphone. Logically, however, it doesn’t matter
which hardware device is used, as long as the computer knows to accept a number. When
the number is retrieved from an input device, it is placed in the computer’s memory in a
variable named myNumber. A variable is a named memory location whose value can vary—
for example, the value of myNumber might be 3 when the program is used for the first time
and 45 when it is used the next time. In this book, variable names will not contain
embedded spaces; for example, the book will use myNumber instead of my Number.

From a logical perspective, when you input, process, or output a value, the hardware device is irrelevant. The
same is true in your daily life. If you follow the instruction “Get eggs for the cake,” it does not really matter if
you purchase them from a store or harvest them from your own chickens—you get the eggs either way.
There might be different practical considerations to getting the eggs, just as there are for getting data from
a large database as opposed to getting data from an inexperienced user working at home on a laptop
computer. For now, this book is only concerned with the logic of operations, not the minor details.

A college classroom is similar to a named variable in that its name (perhaps 204 Adams Building) can hold
different contents at different times. For example, your Logic class might meet there on Monday night, and a
math class might meet there on Tuesday morning.

The instruction set myAnswer = myNumber * 2 is an example of a processing operation.
In most programming languages, an asterisk is used to indicate multiplication, so this
instruction means “Change the value of the memory location myAnswer to equal the value
at the memory location myNumber times two.” Mathematical operations are not the only
kind of processing operations, but they are very typical. As with input operations, the type
of hardware used for processing is irrelevant—after you write a program, it can be used on
computers of different brand names, sizes, and speeds.

In the number-doubling program, the output myAnswer instruction is an example of an
output operation. Within a particular program, this statement could cause the output to
appear on the monitor (which might be a flat-panel plasma screen or a smartphone display),
or the output could go to a printer (which could be laser or ink-jet), or the output could be
written to a disk or DVD. The logic of the output process is the same no matter what hardware
device you use. When this instruction executes, the value stored in memory at the location
named myAnswer is sent to an output device. (The output value also remains in computer
memory until something else is stored at the same memory location or power is lost.)

Watch the video A Simple Program.

6

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Computer memory consists of millions of numbered locations where data can be stored. The memory
location of myNumber has a specific numeric address, but when you write programs, you seldom need to
be concerned with the value of the memory address; instead, you use the easy-to-remember name you
created. Computer programmers often refer to memory addresses using hexadecimal notation, or base 16.
Using this system, they might use a value like 42FF01A to refer to a memory address. Despite the use of
letters, such an address is still a hexadecimal number. Appendix A contains information on this numbering
system.

TWO TRUTHS & A LIE

Understanding Simple Program Logic

1. A program with syntax errors can execute but might produce incorrect results.

2. Although the syntax of programming languages differs, the same program logic
can be expressed in different languages.

3. Most simple computer programs include steps that perform input, processing,
and output.

. stl user t cerr ocni ecudor pt hgi mt ub, et ucexe nac sr orr e xat nys on hti w
mar gor p a; et ucexet onnac sr orr e xat nys hti w mar gor p A. 1# si t ne met at s esl af ehT

Understanding the Program Development Cycle
A programmer’s job involves writing instructions (such as those in the doubling program in
the preceding section), but a professional programmer usually does not just sit down at a
computer keyboard and start typing. Figure 1-1 illustrates the program development cycle,
which can be broken down into at least seven steps:

1. Understand the problem.

2. Plan the logic.

3. Code the program.

4. Use software (a compiler or interpreter) to translate the program into machine
language.

5. Test the program.

6. Put the program into production.

7. Maintain the program.

7

Understanding the Program Development Cycle

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding the Problem
Professional computer programmers write programs to satisfy the needs of others, called
users or end users. Examples of end users include a Human Resources department that
needs a printed list of all employees, a Billing department that wants a list of clients who are
30 or more days overdue on their payments, and an Order department that needs a Web site
to provide buyers with an online shopping cart. Because programmers are providing a service
to these users, programmers must first understand what the users want. When a program
runs, you usually think of the logic as a cycle of input-processing-output operations, but when
you plan a program, you think of the output first. After you understand what the desired
result is, you can plan the input and processing steps to achieve it.

Suppose the director of Human Resources says to a programmer, “Our department needs a
list of all employees who have been here over five years, because we want to invite them to a
special thank-you dinner.” On the surface, this seems like a simple request. An experienced
programmer, however, will know that the request is incomplete. For example, you might not
know the answers to the following questions about which employees to include:

Does the director want a list of full-time employees only, or a list of full- and part-time
employees together?

Does she want to include people who have worked for the company on a month-to-
month contractual basis over the past five years, or only regular, permanent employees?

Do the listed employees need to have worked for the organization for five years as of
today, as of the date of the dinner, or as of some other cutoff date?

What about an employee who worked three years, took a two-year leave of absence, and
has been back for three years?

Understand
the problem

Test the
program

Put the program
into production

Maintain the
program

Plan the
logic

Translate the
code

Write the
code

Figure 1-1 The program development cycle
© 2015 Cengage Learning

8

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The programmer cannot make any of these decisions; the user (in this case, the Human
Resources director) must address these questions.

More decisions still might be required. For example:

What data should be included for each listed employee? Should the list contain both first
and last names? Social Security numbers? Phone numbers? Addresses?

Should the list be in alphabetical order? Employee ID number order? Length-of-service
order? Some other order?

Should the employees be grouped by any criteria, such as department number or years of
service?

Several pieces of documentation are often provided to help the programmer understand the
problem. Documentation consists of all the supporting paperwork for a program; it might
include items such as original requests for the program from users, sample output, and
descriptions of the data items available for input.

Understanding the problem might be even more difficult if you are writing an app that you
hope to market for mobile devices. Business developers are usually approached by a user with
a need, but successful developers of mobile apps often try to identify needs that users aren’t
even aware of yet. For example, no one knew they wanted to play Angry Birds or leave
messages on Facebook before those applications were developed. Mobile app developers also
must consider a wider variety of user skills than programmers who develop applications that
are used internally in a corporation. Mobile app developers must make sure their programs
work with a range of screen sizes and hardware specifications because software competition is
intense and the hardware changes quickly.

Fully understanding the problem may be one of the most difficult aspects of programming.
On any job, the description of what the user needs may be vague—worse yet, users may not
really know what they want, and users who think they know frequently change their minds
after seeing sample output. A good programmer is often part counselor, part detective!

Watch the video The Program Development Cycle, Part 1.

Planning the Logic
The heart of the programming process lies in planning the program’s logic. During this phase
of the process, the programmer plans the steps of the program, deciding what steps to include
and how to order them. You can plan the solution to a problem in many ways. The two most
common planning tools are flowcharts and pseudocode. Both tools involve writing the steps
of the program in English, much as you would plan a trip on paper before getting into the car
or plan a party theme before shopping for food and favors.

You may hear programmers refer to planning a program as “developing an algorithm.” An
algorithm is the sequence of steps or rules you follow to solve a problem.

9

Understanding the Program Development Cycle

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In addition to flowcharts and pseudocode, programmers use a variety of other tools to help in program
development. One such tool is an IPO chart, which delineates input, processing, and output tasks.
Some object-oriented programmers also use TOE charts, which list tasks, objects, and events. In the
comprehensive version of this book, you can learn about storyboards and the UML, which are frequently
used in interactive, object-oriented applications.

The programmer shouldn’t worry about the syntax of any particular language during the
planning stage, but should focus on figuring out what sequence of events will lead from the
available input to the desired output. Planning the logic includes thinking carefully about all
the possible data values a program might encounter and how you want the program to handle
each scenario. The process of walking through a program’s logic on paper before you actually
write the program is called desk-checking. You will learn more about planning the logic
throughout this book; in fact, the book focuses on this crucial step almost exclusively.

Coding the Program
After the logic is developed, only then can the programmer write the source code for a
program. Hundreds of programming languages are available. Programmers choose particular
languages because some have built-in capabilities that make them more efficient than others
at handling certain types of operations. Despite their differences, programming languages are
quite alike in their basic capabilities—each can handle input operations, arithmetic
processing, output operations, and other standard functions. The logic developed to solve a
programming problem can be executed using any number of languages. Only after choosing a
language must the programmer be concerned with proper punctuation and the correct
spelling of commands—in other words, using the correct syntax.

Some experienced programmers can successfully combine logic planning and program
coding in one step. This may work for planning and writing a very simple program, just as you
can plan and write a postcard to a friend using one step. A good term paper or a Hollywood
screenplay, however, needs planning before writing—and so do most programs.

Which step is harder: planning the logic or coding the program? Right now, it may seem to
you that writing in a programming language is a very difficult task, considering all the spelling
and syntax rules you must learn. However, the planning step is actually more difficult. Which
is more difficult: thinking up the twists and turns to the plot of a best-selling mystery novel, or
writing a translation of an existing novel from English to Spanish? And who do you think gets
paid more, the writer who creates the plot or the translator? (Try asking friends to name any
famous translator!)

Using Software to Translate the Program into Machine Language
Even though there are many programming languages, each computer knows only one
language—its machine language, which consists of 1s and 0s. Computers understand machine
language because they are made up of thousands of tiny electrical switches, each of which can
be set in either the on or off state, which is represented by a 1 or 0, respectively.

10

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Languages like Java or Visual Basic are available for programmers because someone has
written a translator program (a compiler or interpreter) that changes the programmer’s
English-like high-level programming language into the low-level machine language that the
computer understands. When you learn the syntax of a programming language, the
commands work on any machine on which the language software has been installed.
However, your commands then are translated to machine language, which differs in various
computer makes and models.

If you write a programming statement incorrectly (for example, by misspelling a word, using a
word that doesn’t exist in the language, or using “illegal” grammar), the translator program
doesn’t know how to proceed and issues an error message identifying a syntax error.
Although making errors is never desirable, syntax errors are not a programmer’s deepest
concern, because the compiler or interpreter catches every syntax error and displays a
message that notifies you of the problem. The computer will not execute a program that
contains even one syntax error.

Typically, a programmer develops logic, writes the code, and compiles the program, receiving
a list of syntax errors. The programmer then corrects the syntax errors and compiles the
program again. Correcting the first set of errors frequently reveals new errors that originally
were not apparent to the compiler. For example, if you could use an English compiler and
submit the sentence The dg chase the cat, the compiler at first might point out only one
syntax error. The second word, dg, is illegal because it is not part of the English language.
Only after you corrected the word to dog would the compiler find another syntax error on the
third word, chase, because it is the wrong verb form for the subject dog. This doesn’t mean
chase is necessarily the wrong word. Maybe dog is wrong; perhaps the subject should be dogs,
in which case chase is right. Compilers don’t always know exactly what you mean, nor do they
know what the proper correction should be, but they do know when something is wrong with
your syntax.

Watch the video The Program Development Cycle, Part 2.

Programmers often compile their code one section at a time. It is far less overwhelming and
easier to understand errors that are discovered in 20 lines of code at a time than to try to
correct mistakes after 2,000 lines of code have been written. When writing a program,
a programmer might need to recompile the code several times. An executable program is
created only when the code is free of syntax errors. After a program has been translated into
machine language, the machine language program is saved and can be run any number of
times without repeating the translation step. You only need to retranslate your code if you
make changes to your source code statements. Figure 1-2 shows a diagram of this entire
process.

11

Understanding the Program Development Cycle

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Testing the Program
A program that is free of syntax errors is not necessarily free of logical errors. A logical error
results when you use a syntactically correct statement but use the wrong one for the current
context. For example, the English sentence The dog chases the cat, although syntactically
perfect, is not logically correct if the dog chases a ball or the cat is the aggressor.

Once a program is free of syntax errors, the programmer can test it—that is, execute it with
some sample data to see whether the results are logically correct. Recall the number-doubling
program:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

If you execute the program, provide the value 2 as input to the program, and the answer 4 is
displayed, you have executed one successful test run of the program.

However, if the answer 40 is displayed, maybe the program contains a logical error. Maybe
the second line of code was mistyped with an extra zero, so that the program reads:

input myNumber
set myAnswer = myNumber * 20
output myAnswer

Placing 20 instead of 2 in the multiplication statement caused a logical error. Notice that
nothing is syntactically wrong with this second program—it is just as reasonable to multiply a
number by 20 as by 2—but if the programmer intends only to double myNumber, then a logical
error has occurred.

Write and correct
the program code

Compile the
program

Executable
program

Data that the
program uses

List of
syntax
error

messages

Program
output

If there are no
syntax errors

If there are
syntax errors

Figure 1-2 Creating an executable program
© 2015 Cengage Learning

Don’t Do It
The programmer typed 
20 instead of 2.

12

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The process of finding and correcting program errors is called debugging. You debug a
program by testing it using many sets of data. For example, if you write the program to
double a number, then enter 2 and get an output value of 4, that doesn’t necessarily mean
you have a correct program. Perhaps you have typed this program by mistake:

input myNumber
set myAnswer = myNumber + 2
output myAnswer

An input of 2 results in an answer of 4, but that doesn’t mean your program doubles
numbers—it actually only adds 2 to them. If you test your program with additional data and
get the wrong answer—for example, if you enter 7 and get an answer of 9—you know there is
a problem with your code.

Selecting test data is somewhat of an art in itself, and it should be done carefully. If the Human
Resources department wants a list of the names of five-year employees, it would be a mistake to
test the program with a small sample file of only long-term employees. If no newer employees
are part of the data being used for testing, you do not really know if the program would have
eliminated them from the five-year list. Many companies do not know that their software has a
problem until an unusual circumstance occurs—for example, the first time an employee has
more than nine dependents, the first time a customer orders more than 999 items at a time, or
when the Internet runs out of allocated IP addresses, a problem known as IPV4 exhaustion.

Putting the Program into Production
Once the program is thoroughly tested and debugged, it is ready for the organization to use.
Putting the program into production might mean simply running the program once, if it was
written to satisfy a user’s request for a special list. However, the process might take months if
the program will be run on a regular basis, or if it is one of a large system of programs being
developed. Perhaps data-entry people must be trained to prepare the input for the new
program, users must be trained to understand the output, or existing data in the company
must be changed to an entirely new format to accommodate this program. Conversion, the
entire set of actions an organization must take to switch over to using a new program or set of
programs, can sometimes take months or years to accomplish.

Maintaining the Program
After programs are put into production, making necessary changes is called maintenance.
Maintenance can be required for many reasons: for example, because new tax rates are
legislated, the format of an input file is altered, or the end user requires additional information
not included in the original output specifications. Frequently, your first programming job will
require maintaining previously written programs. When you maintain the programs others
have written, you will appreciate the effort the original programmer put into writing clear

Don’t Do It
The programmer typed 
"+" instead of "*".

13

Understanding the Program Development Cycle

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



code, using reasonable variable names, and documenting his or her work. When you make
changes to existing programs, you repeat the development cycle. That is, you must
understand the changes, then plan, code, translate, and test them before putting them into
production. If a substantial number of program changes are required, the original program
might be retired, and the program development cycle might be started for a new program.

Watch the video The Program Development Cycle, Part 3.

TWO TRUTHS & A LIE

Understanding the Program Development Cycle

1. Understanding the problem that must be solved can be one of the most difficult
aspects of programming.

2. The two most commonly used logic-planning tools are flowcharts and
pseudocode.

3. Flowcharting a program is a very different process if you use an older
programming language instead of a newer one.

. segaugnal f or eb mun yna gni su det ucexe eb nac mel bor p gni mmar gor p a evl os ot
depol eved ci gol ehT. snoi t cnuf dr adnat s r eht o dna, snoi t ar epot upt uo, gni ssecor p
ci t e mhti r a, snoi t ar epot upni el dnah nac hcae —seitili bapac ci sabri eht ni ekil a eti uq

er a segaugnal gni mmar gor p, secner effi d ri eht eti pseD. 3# si t ne met at s esl af ehT

Using Pseudocode Statements and Flowchart Symbols
When programmers plan the logic for a solution to a programming problem, they often use
one of two tools: pseudocode (pronounced sue-doe-code) or flowcharts.

Pseudocode is an English-like representation of the logical steps it takes to solve a
problem. Pseudo is a prefix that means false, and to code a program means to put it in a
programming language; therefore, pseudocode simply means false code, or sentences that
appear to have been written in a computer programming language but do not necessarily
follow all the syntax rules of any specific language.

A flowchart is a pictorial representation of the same thing.

14

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Writing Pseudocode
You have already seen examples of statements that represent pseudocode earlier in this
chapter, and there is nothing mysterious about them. The following five statements constitute
a pseudocode representation of a number-doubling problem:

start
input myNumber
set myAnswer = myNumber * 2
output myAnswer

stop

Using pseudocode involves writing down all the steps you will use in a program. Usually,
programmers preface their pseudocode with a beginning statement like start and end it with
a terminating statement like stop. The statements between start and stop look like English
and are indented slightly so that start and stop stand out. Most programmers do not bother
with punctuation such as periods at the end of pseudocode statements, although it would not
be wrong to use them if you prefer that style. Similarly, there is no need to capitalize the first
word in a statement, although you might choose to do so.

Pseudocode is fairly flexible because it is a planning tool, and not the final product. Therefore,
for example, you might prefer any of the following:

Instead of start and stop, some pseudocode developers would use other terms such as
begin and end.

Instead of writing input myNumber, some developers would write get myNumber or read

myNumber.

Instead of writing set myAnswer = myNumber * 2, some developers would write
calculate myAnswer = myNumber times 2 or compute myAnswer as myNumber doubled.

Instead of writing output myAnswer, many pseudocode developers would write display

myAnswer, print myAnswer, or write myAnswer.

The point is, the pseudocode statements are instructions to retrieve an original number from
an input device and store it in memory where it can be used in a calculation, and then to get
the calculated answer from memory and send it to an output device so a person can see it.
When you eventually convert your pseudocode to a specific programming language, you do
not have such flexibility because specific syntax will be required. For example, if you use the
C# programming language and write the statement to output the answer to the monitor, you
will code the following:

Console.Write(myAnswer);

The exact use of words, capitalization, and punctuation are important in the C# statement,
but not in the pseudocode statement. Quick Reference 1-1 summarizes the pseudocode
standards used in this book. (Note that the Quick Reference mentions modules; you will learn
about modules in Chapter 2. Additional pseudocode style features will be discussed as topics
are introduced throughout this book.)

15

Using Pseudocode Statements and Flowchart Symbols

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



QUICK REFERENCE 1-1 Pseudocode Standards

Programs begin with start and end with stop; these two words are
always aligned.

Whenever a module name is used, it is followed by a set of parentheses.

Modules begin with the module name and end with return. The module name and
return are always aligned.

Each program statement performs one action—for example, input, processing,
or output.

Program statements are indented a few spaces more than start or the
module name.

Each program statement appears on a single line if possible. When this is not possible,
continuation lines are indented.

Program statements begin with lowercase letters.

No punctuation is used to end statements.

As you learn to create pseudocode and flowchart statements, you will develop a sense for how much detail
to include. The statements represent the main steps that must be accomplished without including minute
points. The concept is similar to writing an essay outline in which each statement of the outline represents
a paragraph.

Drawing Flowcharts
Some professional programmers prefer writing pseudocode to drawing flowcharts,
because using pseudocode is more similar to writing the final statements in the
programming language. Others prefer drawing flowcharts to represent the logical
flow, because flowcharts allow programmers to visualize more easily how the program
statements will connect. Especially for beginning programmers, flowcharts are an
excellent tool that helps them to visualize how the statements in a program
are interrelated.

You can draw a flowchart by hand or use software, such as Microsoft Word and
Microsoft PowerPoint, that contains flowcharting tools. You can use several other
software programs, such as Visio and Visual Logic, specifically to create flowcharts.

16

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you create a flowchart, you draw geometric
shapes that contain the individual statements and
that are connected with arrows. You use a
parallelogram to represent an input symbol, which
indicates an input operation. You write an input
statement in English inside the parallelogram,
as shown in Figure 1-3.

Arithmetic operation statements are examples of
processing. In a flowchart, you use a rectangle as the
processing symbol that contains a processing statement,
as shown in Figure 1-4.

To represent an output statement, you use the same
symbol as for input statements—the output symbol
is a parallelogram, as shown in Figure 1-5. Because
the parallelogram is used for both input and output,
it is often called the input/output symbol or
I/O symbol.

Some software programs that use flowcharts (such as Visual Logic) use a left-slanting parallelogram to
represent output. As long as the flowchart creator and the flowchart reader are communicating, the actual
shape used is irrelevant. This book will follow the most standard convention of using the right-slanting
parallelogram for both input and output.

To show the correct sequence of these statements, you use arrows, or flowlines, to connect
the steps. Whenever possible, most of a flowchart should read from top to bottom or from left
to right on a page. That’s the way we read English, so when flowcharts follow this convention,
they are easier for us to understand.

To be complete, a flowchart should include two more elements: terminal symbols, or start/
stop symbols, at each end. Often, you place a word like start or begin in the first terminal
symbol and a word like end or stop in the other. The standard terminal symbol is shaped like
a racetrack; many programmers refer to this shape as a lozenge, because it resembles the
shape of the medication you might use to soothe a sore throat. Figure 1-6 shows a complete
flowchart for the program that doubles a number, and the pseudocode for the same problem.
You can see from the figure that the flowchart and pseudocode statements are the same—
only the presentation format differs.

set myAnswer =
myNumber * 2

Figure 1-4 Processing symbol
© 2015 Cengage Learning

output myAnswer

Figure 1-5 Output symbol
© 2015 Cengage Learning

input myNumber

Figure 1-3 Input symbol
© 2015 Cengage Learning 17

Using Pseudocode Statements and Flowchart Symbols

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programmers seldom create both pseudocode and a flowchart for the same problem. You
usually use one or the other. In a large program, you might even prefer to write pseudocode
for some parts and to draw a flowchart for others.

When you tell a friend how to get to your house, you might write a series of instructions or
you might draw a map. Pseudocode is similar to written, step-by-step instructions; a
flowchart, like a map, is a visual representation of the same thing. Quick Reference 1-2
summarizes the flowchart symbols used in this book.

QUICK REFERENCE 1-2 Flowchart Symbols

Terminal

Input/Output

Process

Flowline

Decision

Internal
module call

External
module call

start

Flowchart Pseudocode

stop

input myNumber

output myAnswer

set myAnswer =
myNumber * 2

start

   input myNumber

   set myAnswer = myNumber * 2

   output myAnswer

stop

Figure 1-6 Flowchart and pseudocode of program that doubles a number
© 2015 Cengage Learning

18

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Repeating Instructions
After the flowchart or pseudocode has been developed, the programmer only needs to: (1)
buy a computer, (2) buy a language compiler, (3) learn a programming language, (4) code the
program, (5) attempt to compile it, (6) fix the syntax errors, (7) compile it again, (8) test it
with several sets of data, and (9) put it into production.

“Whoa!” you are probably saying to yourself. “This is simply not worth it! All that work to
create a flowchart or pseudocode, and then all those other steps? For five dollars, I can buy a
pocket calculator that will double any number for me instantly!” You are absolutely right. If this
were a real computer program, and all it did was double the value of a number, it would not
be worth the effort. Writing a computer program would be worthwhile only if you had many
numbers (let’s say 10,000) to double in a limited amount of time—let’s say the next two minutes.

Unfortunately, the program represented in Figure 1-6 does not double 10,000 numbers; it
doubles only one. You could execute the program 10,000 times, of course, but that would
require you to sit at the computer and run the program over and over again. You would be
better off with a program that could process 10,000 numbers, one after the other.

One solution is to write the program shown in Figure 1-7 and execute the same steps 10,000
times. Of course, writing this program would be very time consuming; you might as well buy
the calculator.

A better solution is to have the computer execute the same set of three instructions over and over
again, as shown in Figure 1-8. The repetition of a series of steps is called a loop. With this
approach, the computer gets a number, doubles it, displays the answer, and then starts again with
the first instruction. The same spot in memory, called myNumber, is reused for the second number
and for any subsequent numbers. The spot in memory named myAnswer is reused each time to
store the result of the multiplication operation. However, the logic illustrated in the flowchart in
Figure 1-8 contains a major problem—the sequence of instructions never ends. This programming
situation is known as an infinite loop—a repeating flow of logic with no end. You will learn one way
to handle this problem later in this chapter; you will learn a superior way in Chapter 3.

start
  input myNumber
  set myAnswer = myNumber * 2
  output myAnswer
  input myNumber
  set myAnswer = myNumber * 2
  output myAnswer
  input myNumber
  set myAnswer = myNumber * 2
  output myAnswer
  …and so on for 9,997 more times

Don’t Do It
You would never want to 
write such a repetitious 
list of instructions.

Figure 1-7 Inefficient pseudocode for program that doubles 10,000 numbers
© 2015 Cengage Learning

19

Using Pseudocode Statements and Flowchart Symbols

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Pseudocode Statements and Flowchart Symbols

1. When you draw a flowchart, you use a parallelogram to represent an input
operation.

2. When you draw a flowchart, you use a parallelogram to represent a processing
operation.

3. When you draw a flowchart, you use a parallelogram to represent an output
operation.

. noi t ar epo gni ssecor p at neser per
ot el gnat cer a esu uoy ,tr ahc wolf a war d uoy neh W. 2# si t ne met at s esl af ehT

Using a Sentinel Value to End a Program
The logic in the flowchart for doubling numbers, shown in Figure 1-8, has a major flaw—the
program contains an infinite loop. If, for example, the input numbers are being entered at the
keyboard, the program will keep accepting numbers and outputting their doubled values
forever. Of course, the user could refuse to type any more numbers. But the program cannot
progress any further while it is waiting for input; meanwhile, the program is occupying
computer memory and tying up operating system resources. Refusing to enter any more
numbers is not a practical solution. Another way to end the program is simply to turn off the

start

input myNumber

output myAnswer

set myAnswer =
myNumber * 2

Don’t Do It
This logic saves
steps, but it has a
fatal flaw – it never
ends.

Figure 1-8 Flowchart of infinite number-doubling program
© 2015 Cengage Learning

20

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



computer. But again, that’s neither the best solution nor an elegant way for the program
to end.

A better way to end the program is to set a predetermined value for myNumber that means
“Stop the program!” For example, the programmer and the user could agree that the user will
never need to know the double of 0 (zero), so the user could enter a 0 to stop. The program
could then test any incoming value contained in myNumber and, if it is a 0, stop the program.
Testing a value is also called making a decision.

You represent a decision in a flowchart by drawing a decision symbol, which is shaped like a
diamond. The diamond usually contains a question, the answer to which is one of two
mutually exclusive options—often yes or no. All good computer questions have only two
mutually exclusive answers, such as yes and no or true and false. For example, “What day of
the year is your birthday?” is not a good computer question because there are 366 possible
answers. However, “Is your birthday June 24?” is a good computer question because the
answer is always either yes or no.

The question to stop the doubling program should be “Is the value of myNumber just entered
equal to 0?” or “myNumber = 0?” for short. The complete flowchart will now look like the one
shown in Figure 1-9.

One drawback to using 0 to stop a program, of course, is that it won’t work if the user does
need to find the double of 0. In that case, some other data-entry value that the user never will

stopmyNumber
= 0?

Yes

No

start

input myNumber

output myAnswer

set myAnswer =
myNumber * 2

Don’t Do It
This logic is not
structured; you will
learn about structure
in Chapter 3.

Figure 1-9 Flowchart of number-doubling program with sentinel value of 0
© 2015 Cengage Learning

21

Using a Sentinel Value to End a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



need, such as 999 or –1, could be selected to signal that the program should end. A
preselected value that stops the execution of a program is often called a dummy value because
it does not represent real data, but just a signal to stop. Sometimes, such a value is called a
sentinel value because it represents an entry or exit point, like a sentinel who guards a
fortress.

Not all programs rely on user data entry from a keyboard; many read data from an input
device, such as a disk. When organizations store data on a disk or other storage device, they
do not commonly use a dummy value to signal the end of the file. For one thing, an input
record might have hundreds of fields, and if you store a dummy record in every file, you are
wasting a large quantity of storage on “nondata.” Additionally, it is often difficult to choose
sentinel values for fields in a company’s data files. Any balanceDue, even a zero or a negative
number, can be a legitimate value, and any customerName, even “ZZ”, could be someone’s
name. Fortunately, programming languages can recognize the end of data in a file
automatically, through a code that is stored at the end of the data. Many programming
languages use the term eof (for end of file) to refer to this marker that automatically acts as a
sentinel. This book, therefore, uses eof to indicate the end of data whenever using a dummy
value is impractical or inconvenient. In the flowchart shown in Figure 1-10, the eof question
is shaded.

stopeof?
Yes

No

start

input myNumber

output myAnswer

set myAnswer =
myNumber * 2

Don’t Do It
This logic is not
structured; you will
learn about structure
in Chapter 3.

Figure 1-10 Flowchart using eof
© 2015 Cengage Learning

22

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using a Sentinel Value to End a Program

1. A program that contains an infinite loop is one that never ends.

2. A preselected value that stops the execution of a program is often called a
dummy value or a sentinel value.

3. Many programming languages use the term fe (for file end) to refer to a marker
that automatically acts as a sentinel.

.l eni t nes
elif ar of mr et no mmoc eht si ) elif f o dner of( foe mr et ehT. 3#si t ne met at s esl af ehT

Understanding Programming and User Environments
Many approaches can be used to write and execute a computer program. When you plan a
program’s logic, you can use a flowchart, pseudocode, or a combination of the two. When you
code the program, you can type statements into a variety of text editors. When your program
executes, it might accept input from a keyboard, mouse, microphone, or any other input
device, and when you provide a program’s output, you might use text, images, or sound.
This section describes the most common environments you will encounter as a new
programmer.

Understanding Programming Environments
When you plan the logic for a computer program, you can use paper and pencil to create a
flowchart, or you might use software that allows you to manipulate flowchart shapes. If you
choose to write pseudocode, you can do so by hand or by using a word-processing program.
To enter the program into a computer so you can translate and execute it, you usually use a
keyboard to type program statements into an editor. You can type a program into one of the
following:

A plain text editor

A text editor that is part of an integrated development environment

A text editor is a program that you use to create simple text files. It is similar to a word
processor, but without as many features. You can use a text editor such as Notepad that is
included with Microsoft Windows. Figure 1-11 shows a C# program in Notepad that accepts
a number and doubles it. An advantage to using a simple text editor to type and save a
program is that the completed program does not require much disk space for storage. For
example, the file shown in Figure 1-11 occupies only 314 bytes of storage.

23

Understanding Programming and User Environments

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You can use the editor of an integrated development environment (IDE) to enter your
program. An IDE is a software package that provides an editor, compiler, and other
programming tools. For example, Figure 1-12 shows a C# program in the Microsoft Visual
Studio IDE, an environment that contains tools useful for creating programs in Visual Basic,
C++, and C#.

This line contains a
prompt that tells the user
what to enter. You will
learn more about prompts
in Chapter 2.

Figure 1-11 A C# number-doubling program in Notepad

Figure 1-12 A C# number-doubling program in Visual Studio

24

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using an IDE is helpful to programmers because usually it provides features similar to those
you find in many word processors. In particular, an IDE’s editor commonly includes such
features as the following:

It uses different colors to display various language components, making elements like data
types easier to identify.

It highlights syntax errors visually for you.

It employs automatic statement completion; when you start to type a statement, the IDE
suggests a likely completion, which you can accept with a keystroke.

It provides tools that allow you to step through a program’s execution one statement at a time
so you can more easily follow the program’s logic and determine the source of any errors.

When you use the IDE to create and save a program, you occupy much more disk space than
when using a plain text editor. For example, the program in Figure 1-12 occupies more than
49,000 bytes of disk space.

Although various programming environments might look different and offer different
features, the process of using them is very similar. When you plan the logic for a program
using pseudocode or a flowchart, it does not matter which programming environment you
will use to write your code, and when you write the code in a programming language, it does
not matter which environment you use to write it.

Understanding User Environments
A user might execute a program you have written in any number of environments. For
example, a user might execute the number-doubling program from a command line like the
one shown in Figure 1-13. A command line is a location on your computer screen at which
you type text entries to communicate with the computer’s operating system. In the program
in Figure 1-13, the user is asked for a number, and the results are displayed.

Many programs are not run at the command line in a text environment, but are run using a
graphical user interface, or GUI (pronounced gooey), which allows users to interact with a
program in a graphical environment. When running a GUI program, the user might type
input into a text box or use a mouse or other pointing device to select options on the screen.
Figure 1-14 shows a number-doubling program that performs exactly the same task as the
one in Figure 1-13, but this program uses a GUI.

Figure 1-13 Executing a number-doubling program in a command-line environment

25

Understanding Programming and User Environments

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A command-line program and a GUI program might be written in the same programming
language. (For example, the programs shown in Figures 1-13 and 1-14 were both written using
C#.) However, no matter which environment is used to write or execute a program, the logical
process is the same. The two programs in Figures 1-13 and 1-14 both accept input, perform
multiplication, and perform output. In this book, you will not concentrate on which environment
is used to type a program’s statements, nor will you care about the type of environment the user
will see. Instead, you will be concerned with the logic that applies to all programming situations.

TWO TRUTHS & A LIE

Understanding Programming and User Environments

1. You can type a program into an editor that is part of an integrated development
environment, but using a plain text editor provides you with more programming help.

2. When a program runs from the command line, a user types text to provide input.

3. Although GUI and command-line environments look different, the logic of input,
processing, and output apply to both program types.

.r oti det xet ni al p a naht pl eh gni mmar gor p
er o msedi vor pt ne mnori vnet ne mpol eved det ar get ni nA. 1# si t ne met at s esl af ehT

Understanding the Evolution of Programming Models
People have been writing modern computer programs since the 1940s. The oldest
programming languages required programmers to work with memory addresses and to
memorize awkward codes associated with machine languages. Newer programming
languages look much more like natural language and are easier to use, partly because they
allow programmers to name variables instead of using unwieldy memory addresses. Also,
newer programming languages allow programmers to create self-contained modules or
program segments that can be pieced together in a variety of ways. The oldest computer
programs were written in one piece, from start to finish, but modern programs are rarely
written that way—they are created by teams of programmers, each developing reusable and
connectable program procedures. Writing several small modules is easier than writing one

Figure 1-14 Executing a number-doubling program in a GUI environment

26

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



large program, and most large tasks are easier when you break the work into units and get
other workers to help with some of the units.

Ada Byron Lovelace predicted the development of software in 1843; she is often regarded as the first
programmer. The basis for most modern software was proposed by Alan Turing in 1935.

Currently, two major models or paradigms are used by programmers to develop programs
and their procedures:

Procedural programming focuses on the procedures that programmers create. That is,
procedural programmers focus on the actions that are carried out—for example, getting
input data for an employee and writing the calculations needed to produce a paycheck
from the data. Procedural programmers would approach the job of producing a paycheck
by breaking down the process into manageable subtasks.

Object-oriented programming focuses on objects, or “things,” and describes their features
(also called attributes) and behaviors. For example, object-oriented programmers might
design a payroll application by thinking about employees and paychecks, and by describing
their attributes. Employees have names and Social Security numbers, and paychecks have
names and check amounts. Then the programmers would think about the behaviors of
employees and paychecks, such as employees getting raises and adding dependents and
paychecks being calculated and output. Object-oriented programmers would then build
applications from these entities.

With either approach, procedural or object oriented, you can produce a correct paycheck,
and both models employ reusable program modules. The major difference lies in the focus
the programmer takes during the earliest planning stages of a project. For now, this book
focuses on procedural programming techniques. The skills you gain in programming
procedurally—declaring variables, accepting input, making decisions, producing output, and
so on—will serve you well whether you eventually write programs using a procedural
approach, an object-oriented approach, or both. The programming language in which you
write your source code might determine your approach. You can write a procedural program
in any language that supports object orientation, but the opposite is not always true.

TWO TRUTHS & A LIE

Understanding the Evolution of Programming Models

1. The oldest computer programs were written in many separate modules.

2. Procedural programmers focus on actions that are carried out by a program.

3. Object-oriented programmers focus on a program’s objects and their attributes
and behaviors.

. sel udo mot ni dedi vi d er a s mar gor p
r e wen; ecei p el gni s a ni netti r wer ews mar gor pt sedl o ehT. 1# si t ne met at s esl af ehT

27

Understanding the Evolution of Programming Models

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter Summary
Together, computer hardware (physical devices) and software (instructions) accomplish three
major operations: input, processing, and output. You write computer instructions in a
computer programming language that requires specific syntax; the instructions are translated
into machine language by a compiler or interpreter. When both the syntax and logic of a
program are correct, you can run, or execute, the program to produce the desired results.

For a program to work properly, you must develop correct logic. Logical errors are much
more difficult to locate than syntax errors.

A programmer’s job involves understanding the problem, planning the logic, coding the
program, translating the program into machine language, testing the program, putting the
program into production, and maintaining it.

When programmers plan the logic for a solution to a programming problem, they often
use flowcharts or pseudocode. When you draw a flowchart, you use parallelograms to
represent input and output operations, and rectangles to represent processing.
Programmers also use decisions to control repetition of instruction sets.

To avoid creating an infinite loop when you repeat instructions, you can test for a sentinel
value. You represent a decision in a flowchart by drawing a diamond-shaped symbol that
contains a question, the answer to which is either yes or no.

You can type a program into a plain text editor or one that is part of an integrated development
environment. When a program’s data values are entered from a keyboard, they can be entered
at the command line in a text environment or in a GUI. Either way, the logic is similar.

Procedural and object-oriented programmers approach problems differently. Procedural
programmers concentrate on the actions performed with data. Object-oriented
programmers focus on objects and their behaviors and attributes.

Key Terms
A computer system is a combination of all the components required to process and store
data using a computer.

Hardware is the collection of physical devices that comprise a computer system.

Software consists of the programs that tell the computer what to do.

Programs are sets of instructions for a computer.

Programming is the act of developing and writing programs.

Application software comprises all the programs you apply to a task.

An app is a piece of application software; the term is frequently used for applications on
mobile devices.

28

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



System software comprises the programs that you use to manage your computer.

Input describes the entry of data items into computer memory using hardware devices such as
keyboards and mice.

Data items include all the text, numbers, and other information processed by a computer.

Processing data items may involve organizing them, checking them for accuracy, or
performing mathematical operations on them.

The central processing unit, or CPU, is the computer hardware component that processes data.

Output describes the operation of retrieving information from memory and sending it to a
device, such as a monitor or printer, so people can view, interpret, and work with the results.

Information is processed data.

Storage devices are types of hardware equipment, such as disks, that hold information for
later retrieval.

The cloud refers to remote computers accessed through the Internet.

Programming languages, such as Visual Basic, C#, C++, or Java, are used to write programs.

Program code is the set of instructions a programmer writes in a programming language.

Coding the program is the act of writing programming language instructions.

The syntax of a language is its grammar rules.

A syntax error is an error in language or grammar.

Computer memory is the temporary, internal storage within a computer.

Random access memory (RAM) is temporary, internal computer storage.

Volatile describes storage whose contents are lost when power is lost.

Nonvolatile describes storage whose contents are retained when power is lost.

Machine language is a computer’s on/off circuitry language.

Source code is the statements a programmer writes in a programming language.

Object code is translated machine language.

A compiler or interpreter translates a high-level language into machine language and
indicates if you have used a programming language incorrectly.

Binary language is represented using a series of 0s and 1s.

To run or execute a program is to carry out its instructions.

Scripting languages (also called scripting programming languages or script languages)
such as Python, Lua, Perl, and PHP are used to write programs that are typed directly from a
keyboard. Scripting languages are stored as text rather than as binary executable files.

29

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A logical error occurs when incorrect instructions are performed, or when instructions are
performed in the wrong order.

The logic of a computer program is the complete sequence of instructions that lead to a
problem’s solution.

A variable is a named memory location whose value can vary.

The program development cycle consists of the steps that occur during a program’s lifetime.

Users (or end users) are people who employ and benefit from computer programs.

Documentation consists of all the supporting paperwork for a program.

An algorithm is the sequence of steps necessary to solve any problem.

An IPO chart is a program development tool that delineates input, processing, and output
tasks.

A TOE chart is a program development tool that lists tasks, objects, and events.

Desk-checking is the process of walking through a program solution on paper.

A high-level programming language supports English-like syntax.

A low-level machine language is made up of 1s and 0s and does not use easily interpreted
variable names.

Debugging is the process of finding and correcting program errors.

Conversion is the entire set of actions an organization must take to switch over to using a new
program or set of programs.

Maintenance consists of all the improvements and corrections made to a program after it is in
production.

Pseudocode is an English-like representation of the logical steps it takes to solve a problem.

A flowchart is a pictorial representation of the logical steps it takes to solve a problem.

An input symbol indicates an input operation and is represented by a parallelogram in flowcharts.

A processing symbol indicates a processing operation and is represented by a rectangle in
flowcharts.

An output symbol indicates an output operation and is represented by a parallelogram in
flowcharts.

An input/output symbol or I/O symbol is represented by a parallelogram in flowcharts.

Flowlines, or arrows, connect the steps in a flowchart.

A terminal symbol indicates the beginning or end of a flowchart segment and is represented
by a lozenge.

A loop is a repetition of a series of steps.

30

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An infinite loop occurs when repeating logic cannot end.

Making a decision is the act of testing a value.

A decision symbol is shaped like a diamond and used to represent decisions in flowcharts.

A dummy value is a preselected value that stops the execution of a program.

A sentinel value is a preselected value that stops the execution of a program.

The term eof means end of file.

A text editor is a program that you use to create simple text files; it is similar to a word
processor, but without as many features.

An integrated development environment (IDE) is a software package that provides an editor,
compiler, and other programming tools.

Microsoft Visual Studio IDE is a software package that contains useful tools for creating
programs in Visual Basic, C++, and C#.

A command line is a location on your computer screen at which you type text entries to
communicate with the computer’s operating system.

A graphical user interface, or GUI (pronounced gooey), allows users to interact with a
program in a graphical environment.

Procedural programming is a programming model that focuses on the procedures that
programmers create.

Object-oriented programming is a programming model that focuses on objects, or “things,”
and describes their features (also called attributes) and behaviors.

Exercises

Review Questions

1. Computer programs also are known as .

a. hardware
b. software

c. data
d. information

2. The major computer operations include .

a. hardware and software
b. input, processing, and output
c. sequence and looping
d. spreadsheets, word processing, and data communications

31

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Visual Basic, C++, and Java are all examples of computer .

a. operating systems
b. hardware

c. machine languages
d. programming languages

4. A programming language’s rules are its .

a. syntax
b. logic

c. format
d. options

5. The most important task of a compiler or interpreter is to .

a. create the rules for a programming language
b. translate English statements into a language such as Java
c. translate programming language statements into machine language
d. execute machine language programs to perform useful tasks

6. Which of the following is temporary, internal storage?

a. CPU
b. hard disk

c. keyboard
d. memory

7. Which of the following pairs of steps in the programming process is in the correct order?

a. code the program, plan the logic
b. test the program, translate it into machine language
c. put the program into production, understand the problem
d. code the program, translate it into machine language

8. A programmer’s most important task before planning the logic of a program is
to .

a. decide which programming language to use
b. code the problem
c. train the users of the program
d. understand the problem

9. The two most commonly used tools for planning a program’s logic
are .

a. flowcharts and pseudocode
b. ASCII and EBCDIC
c. Java and Visual Basic
d. word processors and spreadsheets

10. Writing a program in a language such as C++ or Java is known as the
program.

a. translating
b. coding

c. interpreting
d. compiling

32

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11. An English-like programming language such as Java or Visual Basic is
a programming language.

a. machine-level
b. low-level

c. high-level
d. binary-level

12. Which of the following is an example of a syntax error?

a. producing output before accepting input
b. subtracting when you meant to add
c. misspelling a programming language word
d. all of the above

13. Which of the following is an example of a logical error?

a. performing arithmetic with a value before inputting it
b. accepting two input values when a program requires only one
c. dividing by 3 when you meant to divide by 30
d. all of the above

14. The parallelogram is the flowchart symbol representing .

a. input
b. output

c. either a or b
d. none of the above

15. In a flowchart, a rectangle represents .

a. input
b. a sentinel

c. a question
d. processing

16. In flowcharts, the decision symbol is a .

a. parallelogram
b. rectangle

c. lozenge
d. diamond

17. The term eof represents .

a. a standard input device
b. a generic sentinel value
c. a condition in which no more memory is available for storage
d. the logical flow in a program

18. When you use an IDE instead of a simple text editor to develop a
program, .

a. the logic is more complicated
b. the logic is simpler

c. the syntax is different
d. some help is provided

19. When you write a program that will run in a GUI environment as opposed to a
command-line environment, .

a. the logic is very different
b. some syntax is different

c. you do not need to plan the logic
d. users are more confused

33

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



20. As compared to procedural programming, with object-oriented
programming, .

a. the programmer’s focus differs
b. you cannot use some languages, such as Java
c. you do not accept input
d. you do not code calculations; they are created automatically

Programming Exercises

1. Match the definition with the appropriate term.

1. Computer system devices

2. Another word for programs

3. Language rules

4. Order of instructions

5. Language translator

a. compiler

b. syntax

c. logic

d. hardware

e. software

2. In your own words, describe the steps to writing a computer program.

3. Match the term with the appropriate shape (see Figure 1-15).

A.1. Input

C.3. Output

D.4. Decision

5. Terminal

B.2. Processing

Figure 1-15 Identifying shapes
© 2015 Cengage Learning

34

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4. Draw a flowchart or write pseudocode to represent the logic of a program that
allows the user to enter a value. The program divides the value by 2 and outputs
the result.

5. Draw a flowchart or write pseudocode to represent the logic of a program that
allows the user to enter a value for one edge of a cube. The program calculates the
surface area of one side of the cube, the surface area of the cube, and its volume.
The program outputs all the results.

6. Draw a flowchart or write pseudocode to represent the logic of a program that
allows the user to enter two values. The program outputs the product of the
two values.

7. a. Draw a flowchart or write pseudocode to represent the logic of a program that
allows the user to enter values for the width and length of a room’s floor in feet.
The program outputs the area of the floor in square feet.

b. Modify the program that computes floor area to compute and output the
number of 6-inch square tiles needed to tile the floor.

8. a. Draw a flowchart or write pseudocode to represent the logic of a program that
allows the user to enter values for the width and length of a wall in feet. The
program outputs the area of the wall in square feet.

b. Modify the program that computes wall area to allow the user to enter the price
of a gallon of paint. Assume that a gallon of paint covers 350 square feet of a
wall. The program outputs the number of gallons needed and the cost of the job.
(For this exercise, assume that you do not need to account for windows or
doors, and that you can purchase partial gallons of paint.)

c. Modify the program that computes paint cost to allow the user to enter the
number of doorways that do not have to be painted. Assume that each doorway
is 14 square feet. Output the number of gallons needed and the cost of the job.

9. Research current rates of monetary exchange. Draw a flowchart or write pseudo-
code to represent the logic of a program that allows the user to enter a number of
dollars and convert it to Euros and Japanese yen.

10. Draw a flowchart or write pseudocode to represent the logic of a program that
allows the user to enter values for a salesperson’s base salary, total sales, and
commission rate. The program computes and outputs the salesperson’s pay by
adding the base salary to the product of the total sales and commission rate.

11. A consignment shop accepts a product for sale and sets an initial price. Each
month that the item doesn’t sell, the price is reduced by 20 percent. When the item
sells, the item’s owner receives 60 percent of the sale price, and the shop gets
40 percent. Draw a flowchart or write pseudocode to represent the logic of a
program that allows the user to enter an original product price. The output is the
sale price, the owner’s cut, and the shop’s cut each month for the first three
months the item is on sale.

35

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12. A mobile phone app allows a user to press a button that starts a timer that counts
seconds. When the user presses the button again, the timer stops. Draw a flowchart
or write pseudocode that accepts the elapsed time in seconds and displays the value
in minutes and seconds. For example, if the elapsed time was 130 seconds, the
output would be 2 minutes and 10 seconds.

Performing Maintenance

1. In this chapter you learned that some of the tasks assigned to new programmers
frequently involve maintenance—making changes to existing programs because of
new requirements. A file named MAINTENANCE01-01.txt is included with your
downloadable student files. Assume that this program is a working program in
your organization and that it needs modifications as described in the comments
(lines that begin with two slashes) at the beginning of the file. Your job is to alter
the program to meet the new specifications.

Find the Bugs

Since the early days of computer programming, program errors have been called bugs.
The term is often said to have originated from an actual moth that was discovered
trapped in the circuitry of a computer at Harvard University in 1945. Actually, the term
bug was in use prior to 1945 to mean trouble with any electrical apparatus; even during
Thomas Edison’s life, it meant an industrial defect. However, the term debugging is
more closely associated with correcting program syntax and logic errors than with any
other type of trouble.

1. Your downloadable files for Chapter 1 include DEBUG01-01.txt, DEBUG01-02.txt,
and DEBUG01-03.txt. Each file starts with some comments (lines that begin with
two slashes) that describe the program. Examine the pseudocode that follows the
introductory comments, then find and correct all the bugs.

2. Your downloadable files for Chapter 1 include a file named DEBUG01-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. In 1952, A. S. Douglas wrote his University of Cambridge Ph.D. dissertation on
human-computer interaction, and created the first graphical computer game—a
version of Tic-Tac-Toe. The game was programmed on an EDSAC vacuum-tube
mainframe computer. The first computer game is generally assumed to be Spacewar!,

36

C H A P T E R 1 An Overview of Computers and Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



developed in 1962 at MIT; the first commercially available video game was Pong,
introduced by Atari in 1972. In 1980, Atari’s Asteroids and Lunar Lander became the
first video games to be registered with the U. S. Copyright Office. Throughout the
1980s, players spent hours with games that now seem very simple and unglamorous;
do you recall playing Adventure, Oregon Trail, Where in the World Is Carmen
Sandiego?, or Myst?

Today, commercial computer games are much more complex; they require
many programmers, graphic artists, and testers to develop them, and large
management and marketing staffs are needed to promote them. A game might
cost many millions of dollars to develop and market, but a successful game might
earn hundreds of millions of dollars. Obviously, with the brief introduction to
programming you have had in this chapter, you cannot create a very sophisticated
game. However, you can get started.

Mad Libs is a children’s game in which players provide a few words that are
then incorporated into a silly story. The game helps children understand different
parts of speech because they are asked to provide specific types of words.
For example, you might ask a child for a noun, another noun, an adjective, and
a past-tense verb. The child might reply with such answers as table, book, silly,
and studied. The newly created Mad Lib might be:

Mary had a little table

Its book was silly as snow

And everywhere that Mary studied

The table was sure to go.

Create the logic for a Mad Lib program that accepts five words from input, then
creates and displays a short story or nursery rhyme that uses them.

Up for Discussion

1. Which is the better tool for learning programming—flowcharts or pseudocode?
Cite any educational research you can find.

2. What is the image of the computer programmer in popular culture? Is the image
different in books than in TV shows and movies? Would you like that image for
yourself?

37

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 2
Elements of
High-Quality Programs

In this chapter, you will learn about:

Declaring and using variables and constants

Performing arithmetic operations

The advantages of modularization

Modularizing a program

Hierarchy charts

Features of good program design

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declaring and Using Variables and Constants
As you learned in Chapter 1, data items include all the text, numbers, and other information
that are processed by a computer. When you input data items into a computer, they are
stored in variables in memory where they can be processed and converted to information
that is output.

When you write programs, you work with data in three different forms: literals (or unnamed
constants), variables, and named constants.

Understanding Unnamed, Literal Constants and their Data Types
All programming languages support two broad data types; numeric describes data that
consists of numbers and string describes data that is nonnumeric. Most programming
languages support several additional data types, including multiple types for numeric values
that are very large or very small and for those that do and do not have fractional decimal
digits. Languages such as C++, C#, Visual Basic, and Java distinguish between integer (whole
number) numeric variables and floating-point (fractional) numeric variables that contain a
decimal point. (Floating-point numbers are also called real numbers.) Thus, in some
languages, the values 4 and 4.3 would be stored in different types of numeric variables.
Additionally, many languages allow you to distinguish between smaller and larger values that
occupy different numbers of bytes in memory. You will learn a little more about these
specialized data types later in this chapter, and even more when you study a programming
language, but this book uses the two broadest types: numeric and string.

When you use a specific numeric value, such as 43, within a program, you write it using the
digits and no quotation marks. A specific numeric value is often called a numeric constant
(or literal numeric constant) because it does not change—a 43 always has the value 43. When
you store a numeric value in computer memory, additional characters such as dollar signs and
commas are not input or stored. Those characters can be added to output for readability, but
they are not part of the number.

A specific text value, or string of characters, such as “Amanda”, is a string constant (or literal
string constant). String constants, unlike numeric constants, appear within quotation marks
in computer programs. String values are also called alphanumeric values because they can
contain alphabetic characters as well as numbers and other characters. For example,
“$3,215.99 U.S.”, including the dollar sign, comma, periods, letters, and numbers, is a string.
Although strings can contain numbers, numeric values cannot contain alphabetic characters.
The numeric constant 43 and the string constant “Amanda” are examples of unnamed
constants—they do not have identifiers like variables do.

Watch the video Declaring Variables and Constants.

39

Declaring and Using Variables and Constants

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Variables
Variables are named memory locations whose contents can vary or differ over time. For
example, in the number-doubling program in Figure 2-1, myNumber and myAnswer are
variables. At any moment in time, a variable holds just one value. Sometimes, myNumber holds
2 and myAnswer holds 4; at other times, myNumber holds 6 and myAnswer holds 12. The ability
of variables to change in value is what makes computers and programming worthwhile.
Because one memory location can be used repeatedly with different values, you can write
program instructions once and then use them for thousands of separate calculations. One set
of payroll instructions at your company produces each employee paycheck, and one set of
instructions at your electric company produces each household’s bill.

In most programming languages, before you can use any variable, you must include a
declaration for it. A declaration is a statement that provides a data type and an identifier
for a variable. An identifier is a program component’s name. A data item’s data type is a
classification that describes the following:

What values can be held by the item

How the item is stored in computer memory

What operations can be performed on the item

As mentioned earlier, most programming languages support several data types, but in this
book, only two data types will be used: num and string.

start

stop

input myNumber

output myAnswer

set myAnswer =

myNumber * 2

start

   input myNumber

   set myAnswer = myNumber * 2

   output myAnswer

stop

Figure 2-1 Flowchart and pseudocode for the number-doubling program
© 2015 Cengage Learning

40

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you declare a variable, you provide both a data type and an identifier. Optionally, you
can declare a starting value for any variable. Declaring a starting value is known as initializing
the variable. For example, each of the following statements is a valid declaration. Two of the
statements include initializations, and two do not:

num mySalary
num yourSalary = 14.55
string myName
string yourName = "Juanita"

Figure 2-2 shows the number-doubling program from Figure 2-1 with the added declarations
shaded. Variables must be declared before they are used for the first time in a program. Some
languages require all variables to be declared at the beginning of the program, others allow
variables to be declared at the beginning of each module, and others allow variables to be
declared anywhere at all as long as they are declared before their first use. This book will
follow the convention of declaring all variables together.

In many programming languages, if you declare a variable and do not initialize it, the variable
contains an unknown value until it is assigned a value. A variable’s unknown value commonly
is called garbage. Although some languages use a default value for some variables (such as
assigning 0 to any unassigned numeric variable), this book will assume that an unassigned
variable holds garbage. In many languages it is illegal to use a garbage-holding variable in
an arithmetic statement or to display it as output. Even if you work with a language that
allows you to display garbage, it serves no purpose to do so and constitutes a logical error.

stop

input myNumber

output myAnswer

set myAnswer =
myNumber * 2

Declarations
   num myNumber
   num myAnswer

start

start

  Declarations

     num myNumber

     num myAnswer

  input myNumber

  set myAnswer = myNumber * 2

  output myAnswer

stop

Figure 2-2 Flowchart and pseudocode of number-doubling program with variable declarations
© 2015 Cengage Learning

41

Declaring and Using Variables and Constants

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you create a variable without assigning it an initial value (as with myNumber and
myAnswer in Figure 2-2), your intention is to assign a value later—for example, by receiving
one as input or placing the result of a calculation there.

Naming Variables
The number-doubling example in Figure 2-2 requires two variables: myNumber and myAnswer.
Alternatively, these variables could be named userEntry and programSolution, or
inputValue and twiceTheValue. As a programmer, you choose reasonable and descriptive
names for your variables. The language translator (interpreter or compiler) then associates
the names you choose with specific memory addresses.

Every computer programming language has its own set of rules for creating identifiers. Most
languages allow letters and digits within identifiers. Some languages allow hyphens in variable
names, such as hourly-wage, and some allow underscores, as in hourly_wage. Some
languages allow dollar signs or other special characters in variable names (for example,
hourly$); others allow foreign-alphabet characters, such as π or Ω. Each programming
language has a few (perhaps 100 to 200) reserved keywords that are not allowed as variable
names because they are part of the language’s syntax. For example, the data type names in a
language, such as num and string, would not be allowed as variable names. When you learn a
programming language, you will learn its list of keywords.

Different languages put different limits on the length of variable names, although in general,
the length of identifiers in newer languages is virtually unlimited. In the oldest computer
languages, all variable names were written using all uppercase letters because the keypunch
machines used at that time created only uppercase letters. In most modern languages,
identifiers are case sensitive, so HoUrLyWaGe, hourlywage, and hourlyWage are three separate
variable names. Programmers use multiple conventions for naming variables, often depending
on the programming language or standards adopted by their employers. Quick Reference 2-1
describes commonly used variable naming conventions.

QUICK REFERENCE 2-1 Variable Naming Conventions

(continues)

Convention for naming variables Examples
Languages where
commonly used

Camel casing is the convention in which
the variable starts with a lowercase letter
and any subsequent word begins with an
uppercase letter. It is sometimes called
lower camel casing to emphasize the
difference from Pascal casing.

hourlyWage
lastName

Java, C#

42

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



(continues)

Adopting a naming convention for variables and using it consistently will help make your
programs easier to read and understand.

Even though every language has its own rules for naming variables, you should not concern
yourself with the specific syntax of any particular computer language when designing the
logic of a program. The logic, after all, works with any language. The variable names used
throughout this book follow only three rules:

1. Variable names must be one word. The name can contain letters, digits, hyphens, or
underscores. No language allows embedded spaces in variable names, and most do not
allow punctuation such as periods, commas, or colons. This book uses only alphabetic
letters, digits, and underscores in variable names. Therefore, r is a legal variable name,
as are rate and interestRate. The variable name interest rate is not allowed
because of the space.

2. Variable names must start with a letter. Some programming languages allow variable
names to start with a nonalphabetic character such as an underscore. Almost all
programming languages prohibit variable names that start with a digit. This book follows
the most common convention of starting variable names with a letter.

Convention for naming variables Examples
Languages where
commonly used

Pascal casing is a convention in which
the first letter of a variable name is
uppercase. It is sometimes called upper
camel casing to distinguish it from lower
camel casing.

HourlyWage
LastName

Visual Basic

Hungarian notation is a form of camel
casing in which a variable’s data type is
part of the identifier.

numHourlyWage
stringLastName

C for Windows API
programming

Snake casing is a convention in which
parts of a variable name are separated
by underscores.

hourly_wage
last_name

C, C++, Python, Ruby

Mixed case with underscores is a
variable naming convention similar to
snake casing, but new words start with
an uppercase letter.

Hourly_Wage
Last_Name

Ada

Kebob case is sometimes used as the
name for the style that uses dashes to
separate parts of a variable name. The
name derives from the fact that the words
look like pieces of food on a skewer.

hourly-wage
last-name

Lisp (with lowercase
letters), COBOL (with
uppercase letters)

43

Declaring and Using Variables and Constants

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you write a program using an editor that is packaged with a compiler in an IDE, the compiler may
display variable names in a different color from other program components. This visual aid helps your
variable names stand out from words that are part of the programming language.

3. Variable names should have some appropriate meaning. This is not a formal rule
of any programming language. When computing an interest rate in a program,
the computer does not care if you call the variable g, u84, or fred. As long as
the correct numeric result is placed in the variable, its actual name doesn’t
matter. However, it’s much easier to follow the logic of a statement like
set interestEarned = initialInvestment * interestRate than a statement
like set f = i * r or set someBanana = j89 * myFriendLinda. When a program
requires changes, which could be months or years after you write the original
version, you and your fellow programmers will appreciate clear, descriptive
variable names in place of cryptic identifiers. Later in this chapter, you will learn
more about selecting good identifiers.

Notice that the flowchart in Figure 2-2 follows the preceding rules for variables: Both variable
names, myNumber and myAnswer, are single words without embedded spaces, and they have
appropriate meanings. Some programmers name variables after friends or create puns with
them, but computer professionals consider such behavior unprofessional and amateurish.

Assigning Values to Variables
When you create a flowchart or pseudocode for a program that doubles numbers, you can
include a statement such as the following:

set myAnswer = myNumber * 2

Such a statement is an assignment statement. This statement incorporates two actions. First,
the computer calculates the arithmetic value of myNumber * 2. Second, the computed value is
stored in the myAnswer memory location.

The equal sign is the assignment operator. The assignment operator is an example of a
binary operator, meaning it requires two operands—one on each side. (An operand is simply
a value used by an operator.) The assignment operator always operates from right to left,
which means that it has right-associativity or right-to-left associativity. This means that the
value of the expression to the right of the assignment operator is evaluated first, and then the
result is assigned to the operand on the left. The operand to the right of an assignment
operator must be a value—for example, a named or unnamed constant or an arithmetic
expression. The operand to the left of an assignment operator must be a name that represents
a memory address—the name of the location where the result will be stored.

For example, if you have declared two numeric variables named someNumber and
someOtherNumber, then each of the following is a valid assignment statement:

set someNumber = 2
set someNumber = 3 + 7
set someOtherNumber = someNumber
set someOtherNumber = someNumber * 5

44

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In each case, the expression to the right of the assignment operator is evaluated and stored at
the location referenced on the left side. The result to the left of an assignment operator is
called an lvalue. The l is for left. Lvalues are always memory address identifiers.

The following statements, however, are not valid:

set 2 + 4 = someNumber
set someOtherNumber * 10 = someNumber
set someNumber + someOtherNumber = 10

In each of these cases, the value to the left of the assignment operator is not a memory
address, so the statements are invalid.

When you write pseudocode or draw a flowchart, it might help you to use the word set in
assignment statements, as shown in these examples, to emphasize that the left-side value is
being set. However, in most programming languages, the word set is not used, and assignment
statements take the following simpler form:

someNumber = 2
someOtherNumber = someNumber

Because the abbreviated form is how assignments appear in most languages, this convention
is used for the rest of this book.

Understanding the Data Types of Variables
Computers handle string data differently from the way they handle numeric data. You may
have experienced these differences if you have used application software such as spreadsheets
or database programs. For example, in a spreadsheet, you cannot sum a column of words.
Similarly, every programming language requires that you specify the correct type for each
variable, and that you use each type appropriately.

A numeric variable is one that can hold digits and have mathematical operations
performed on it. In this book, all numeric variables can hold a decimal point and a sign
indicating positive or negative; some programming languages provide specialized numeric
types for these options. In the statement myAnswer = myNumber * 2, both myAnswer and
myNumber are numeric variables; that is, their intended contents are numeric values, such
as 6 and 3, 14.8 and 7.4, or –18 and –9.

A string variable can hold text, such as letters of the alphabet, and other special
characters, such as punctuation marks. If a working program contains the statement
lastName = "Lincoln", then lastName is a string variable. A string variable also can hold
digits either with or without other characters. For example, “235 Main Street” and “86” are
both strings. A string like “86” is stored differently than the numeric value 86, and you
cannot perform arithmetic with the string. Programmers frequently use strings to hold
digits when they will never be used in arithmetic statements–for example, an account
number or a zip code.

Type-safety is the feature of some programming languages that prevents assigning values of
an incorrect data type. You can assign data to a variable only if it is the correct type. (Such

Don’t Do It
The operand to the left of
an assignment operator
must represent a memory
address.

45

Declaring and Using Variables and Constants

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



languages are called strongly typed.) If you declare taxRate as a numeric variable and
inventoryItem as a string, then the following statements are valid:

taxRate = 2.5
inventoryItem = "monitor"

The following are invalid because the type of data being assigned does not match the variable
type:

taxRate = "2.5"
inventoryItem = 2.5
taxRate = inventoryItem
inventoryItem = taxRate

Watch the video Understanding Data Types.

Declaring Named Constants
Besides variables, most programming languages allow you to create named constants.
A named constant is similar to a variable, except it can be assigned a value only once. You use
a named constant when you want to assign a useful name for a value that will never be
changed during a program’s execution. Using named constants makes your programs easier
to understand by eliminating magic numbers. A magic number is an unnamed constant, like
0.06, whose purpose is not immediately apparent.

For example, if a program uses a sales tax rate of 6 percent, you might want to declare a
named constant as follows:

num SALES_TAX_RATE = 0.06

After SALES_TAX_RATE is declared, the following statements have identical meaning:

taxAmount = price * 0.06
taxAmount = price * SALES_TAX_RATE

The way in which named constants are declared differs among programming languages. This
book follows the convention of using all uppercase letters in constant identifiers, and using
underscores to separate words for readability. Using these conventions makes named
constants easier to recognize. In many languages a constant must be assigned its value when it
is declared, but in some languages a constant can be assigned its value later. In both cases,
however, a constant’s value cannot be changed after the first assignment. This book follows
the convention of initializing all constants when they are declared.

When you declare a named constant, program maintenance becomes easier. For example,
if the value of the sales tax rate changes from 0.06 to 0.07 in the future, and you have declared
a named constant SALES_TAX_RATE, you only need to change the value assigned to the named
constant at the beginning of the program, then retranslate the program into machine
language, and all references to SALES_TAX_RATE are automatically updated. If you used the
unnamed literal 0.06 instead, you would have to search for every instance of the value and

Don’t Do It
If taxRate is numeric
and inventoryItem is
a string, then these
assignments are invalid.

46

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



replace it with the new one. Additionally, if the literal 0.06 was used in other calculations
within the program (for example, as a discount rate or price), you would have to carefully
select which instances of the value to alter, and you would be likely to make a mistake.

Sometimes, using unnamed literal constants is appropriate in a program, especially if their meaning is clear
to most readers. For example, in a program that calculates half of a value by dividing by two, you might
choose to use the unnamed literal 2 instead of incurring the extra time and memory costs of creating
a named constant HALF and assigning 2 to it. Extra costs that result from adding variables or instructions to
a program are known as overhead.

TWO TRUTHS & A LIE

Declaring and Using Variables and Constants

1. A variable’s data type describes the kind of values the variable can hold and the
types of operations that can be performed with it.

2. If name is a string variable, then the statement set name = "Ed" is valid.

3. The operand to the right of an assignment operator must be a name that
represents a memory address.

. eul av r eht or o, noi sser pxe ci t e mhti r a,t nat snoc a ebt hgi m
r ot ar epot ne mngi ssa naf ot hgi r eht ot eul av ehT. der ot s eblli wtl user eht er eh w

noit acol eht f o e man eht —sser dda yr o me ma st neser per t aht e man a ebt su m
r ot ar epot ne mngi ssa naf otf el eht ot dnar epo ehT. 3# si t ne met at s esl af ehT

Performing Arithmetic Operations
Most programming languages use the following standard arithmetic operators:

+ (plus sign)—addition

– (minus sign)—subtraction

* (asterisk)—multiplication

/ (slash)—division

Many languages also support additional operators that calculate the remainder after division, raise a
number to a power, manipulate individual bits stored within a value, and perform other operations.

Each of the standard arithmetic operators is a binary operator; that is, each requires an
expression on both sides. For example, the following statement adds two test scores and
assigns the sum to a variable named totalScore:

totalScore = test1 + test2

47

Performing Arithmetic Operations

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The following adds 10 to totalScore and stores the result in totalScore:

totalScore = totalScore + 10

In other words, this example increases the value of totalScore. This last example looks odd
in algebra because it might appear that the value of totalScore and totalScore plus 10 are
equivalent. You must remember that the equal sign is the assignment operator, and that the
statement is actually taking the original value of totalScore, adding 10 to it, and assigning
the result to the memory address on the left of the operator, which is totalScore.

In programming languages, you can combine arithmetic statements. When you do, every
operator follows rules of precedence (also called the order of operations) that dictate the
order in which operations in the same statement are carried out. The rules of precedence for
the basic arithmetic statements are as follows:

Expressions within parentheses are evaluated first. If there are multiple sets of
parentheses, the expression within the innermost parentheses is evaluated first.

Multiplication and division are evaluated next, from left to right.

Addition and subtraction are evaluated next, from left to right.

The assignment operator has a very low precedence. Therefore, in a statement such as
d = e * f + g, the operations on the right of the assignment operator are always performed
before the final assignment to the variable on the left.

When you learn a specific programming language, you will learn about all the operators that are used in that
language. Many programming language books contain a table that specifies the relative precedence of every
operator used in the language.

For example, consider the following two arithmetic statements:

firstAnswer = 2 + 3 * 4
secondAnswer = (2 + 3) * 4

After these statements execute, the value of firstAnswer is 14. According to the rules of
precedence, multiplication is carried out before addition, so 3 is multiplied by 4, giving 12,
and then 2 and 12 are added, and 14 is assigned to firstAnswer. The value of secondAnswer,
however, is 20, because the parentheses force the contained addition operation to be performed
first. The 2 and 3 are added, producing 5, and then 5 is multiplied by 4, producing 20.

Forgetting about the rules of arithmetic precedence, or forgetting to add parentheses when
you need them, can cause logical errors that are difficult to find in programs. For example, the
following statement might appear to average two test scores:

average = score1 + score2 / 2

However, it does not. Because division has a higher precedence than addition, the preceding
statement takes half of score2, adds it to score1, and stores the result in average. The
correct statement is:
average = (score1 + score2) / 2

48

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You are free to add parentheses even when you don’t need them to force a different order of
operations; sometimes you use them just to make your intentions clearer. For example, the
following statements operate identically:
totalPriceWithTax = price + price * TAX_RATE
totalPriceWithTax = price + (price * TAX_RATE)

In both cases, price is multiplied by TAX_RATE first, then it is added to price, and finally the
result is stored in totalPriceWithTax. Because multiplication occurs before addition on
the right side of the assignment operator, both statements are the same. However, if you feel
that the statement with the parentheses makes your intentions clearer to someone reading
your program, then you should use them.

All the arithmetic operators have left-to-right associativity. This means that operations with
the same precedence take place from left to right. Consider the following statement:
answer = a + b + c * d / e – f

Multiplication and division have higher precedence than addition or subtraction, so the
multiplication and division are carried out from left to right as follows:

c is multiplied by d, and the result is divided by e, giving a new result.

Therefore, the statement becomes:
answer = a + b + (temporary result just calculated) – f

Then, addition and subtraction are carried out from left to right as follows:

a and b are added, the temporary result is added, and then f is subtracted. The final result is
then assigned to answer.

Another way to say this is that the following two statements are equivalent:
answer = a + b + c * d / e – f
answer = a + b + ((c * d) / e) – f

Quick Reference 2-2 summarizes the precedence and associativity of the five most frequently
used operators.

QUICK REFERENCE 2-2 Precedence and Associativity of Five Common Operators

Operator
symbol Operator name

Precedence (compared to other
operators in this table) Associativity

= Assignment Lowest Right-to-left

+ Addition Medium Left-to-right

- Subtraction Medium Left-to-right

* Multiplication Highest Left-to-right

/ Division Highest Left-to-right

49

Performing Arithmetic Operations

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Watch the video Arithmetic Operator Precedence.

The Integer Data Type
As mentioned earlier in this chapter, many modern programming languages allow
programmers to make fine distinctions between numeric data types. In particular, many
languages treat integer numeric values (whole numbers) and floating-point numeric values
(numbers with decimal places) differently. In these languages, you can always assign an
integer, such as 3, to a floating-point variable or named constant, and it will be converted to
3.0. However, you cannot assign a floating-point value (such as 3.0) directly to an integer
variable, because the decimal position values will be lost, even when they are 0.

When you work with a language that makes distinctions between integer and floating-point
values, you can combine the different types in arithmetic expressions. When you do, addition,
subtraction, and multiplication work as expected. For example, the result of 2.3 + 5 is 7.3, and
the result of 4.2 * 2 is 8.4. When you mix types, division works as expected as well. For
example, the result of 9.3 / 3 is 3.1.

However, in many languages, dividing an integer by another integer is a special case. In
languages such as Java, C++, and C#, dividing two integers results in an integer, and any
fractional part of the result is lost. For example, in these languages, the result of 7 / 2 is 3, not
3.5 as you might expect. Programmers say that the decimal portion of the result is cut off,
or truncated.

When programming in a language that truncates the results of integer division, you must be particularly
careful with numbers lower than 1. For example, if you write a program that halves a recipe, you might use
an expression such as 1 / 2 * cupsSugar. No matter what the value of cupsSugar is, the result will
always be 0 because 2 goes into 1 zero whole times.

Many programming languages also support a remainder operator, which is sometimes called
the modulo operator or the modulus operator. When used with two integer operands, the
remainder operator is the value that remains after division. For example, 24 Mod 10 is 4
because when 24 is divided by 10, 4 is the remainder. In Visual Basic, the remainder operator
is the keyword Mod. In Java, C++, and C#, the operator is the percent sign (%).

The remainder operator can be useful in a variety of situations. For example, you can
determine whether a number is even or odd by finding the remainder when the number is
divided by 2. Any number that has a remainder of 0 is even, and any number with a remainder
of 1 is odd.

Because the remainder operator differs among programming languages, and because the
operation itself is handled differently when used with negative operands, the remainder
operator will not be used in the rest of this language-independent book. Similarly, this book
uses one data type, num, for all numeric values, and it is assumed that both integer and
floating-point values can be stored in num variables and named constants.

50

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Performing Arithmetic Operations

1. Parentheses have higher precedence than any of the common arithmetic
operators.

2. Operations in arithmetic statements occur from left to right in the order in which
they appear.

3. The following adds 5 to a variable named points:

points = points + 5

.t sal ecal p ekat noi t cart bus
dna noi ti dda dna,t xent uo dei rr ac er a noi si vi d dna noi t acil pi tl u m,t srif t uo

dei rr ac er a seseht ner ap ni hti wsnoi t ar epot ub,t hgi r ot tf el morf t uo dei rr ac er a
t ne met at s ci t e mhti r a na ni ecnedecer pl auqef o snoi t ar epO. 2#si t ne met at s esl af ehT

Understanding the Advantages of Modularization
Programmers seldom write programs as one long series of steps. Instead, they break
down their programming problems into smaller units and tackle one cohesive task at a
time. These smaller units are modules. Programmers also refer to them as subroutines,
procedures, functions, or methods; the name usually reflects the programming language
being used. For example, Visual Basic programmers use procedure (or subprocedure). C
and C++ programmers call their modules functions, whereas C#, Java, and other object-
oriented language programmers are more likely to use method. Programmers in COBOL,
RPG, and BASIC (all older languages) are most likely to use subroutine.

You can learn about modules that receive and return data in Chapter 9 of the comprehensive version of
this book.

A main program executes a module by calling it. To call a module is to use its name to invoke
the module, causing it to execute. When the module’s tasks are complete, control returns
to the spot from which the module was called in the main program. When you access
a module, the action is similar to putting a DVD player on pause. You abandon your primary
action (watching a video), take care of some other task (for example, making a sandwich), and
then return to the main task exactly where you left off.

51

Understanding the Advantages of Modularization

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The process of breaking down a large program into modules is modularization;
computer scientists also call it functional decomposition. You are never required to
modularize a large program to make it run on a computer, but there are at least three
reasons for doing so:

Modularization provides abstraction.

Modularization helps multiple programmers to work on a problem.

Modularization allows you to reuse work more easily.

Modularization Provides Abstraction
One reason that modularized programs are easier to understand is that they enable a
programmer to see the “big picture.” Abstraction is the process of paying attention to
important properties while ignoring nonessential details. Abstraction is selective ignorance.
Life would be tedious without abstraction. For example, you can create a list of things to
accomplish today:

Do laundry
Call Aunt Nan
Start term paper

Without abstraction, the list of chores would begin:

Pick up laundry basket
Put laundry basket in car
Drive to Laundromat
Get out of car with basket
Walk into Laundromat
Set basket down
Find quarters for washing machine
… and so on.

You might list a dozen more steps before you finish the laundry and move on to the second
chore on your original list. If you had to consider every small, low-level detail of every task in
your day, you would probably never make it out of bed in the morning. Using a higher-level,
more abstract list makes your day manageable. Abstraction makes complex tasks look simple.

Abstract artists create paintings in which they see only the big picture—color and form—and ignore the
details. Abstraction has a similar meaning among programmers.

Likewise, some level of abstraction occurs in every computer program. Fifty years ago, a
programmer had to understand the low-level circuitry instructions the computer used. But
now, newer high-level programming languages allow you to use English-like vocabulary in
which one broad statement corresponds to dozens of machine instructions. No matter which
high-level programming language you use, if you display a message on the monitor, you are
never required to understand how a monitor works to create each pixel on the screen. You

52

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



write an instruction like output message and the details of the hardware operations are
handled for you by the operating system.

Modules provide another way to achieve abstraction. For example, a payroll program can call
a module named computeFederalWithholdingTax(). When you call this module from your
program, you use one statement; the module itself might contain dozens of statements. You
can write the mathematical details of the module later, someone else can write them, or you
can purchase them from an outside source. When you plan your main payroll program, your
only concern is that a federal withholding tax will have to be calculated; you save the details
for later.

Modularization Helps Multiple Programmers to Work on a Problem
When you divide any large task into modules, you gain the ability to more easily divide the
task among various people. Rarely does a single programmer write a commercial program
that you buy. Consider any word-processing, spreadsheet, or database program you have
used. Each program has so many options, and responds to user selections in so many possible
ways, that it would take years for a single programmer to write all the instructions.
Professional software developers can write new programs in weeks or months, instead of
years, by dividing large programs into modules and assigning each module to an individual
programmer or team.

Modularization Allows You to Reuse Work
If a module is useful and well written, you may want to use it more than once within a
program or in other programs. For example, a routine that verifies the validity of dates is
useful in many programs written for a business. (For example, a month value is valid if
it is not lower than 1 or higher than 12, a day value is valid if it is not lower than
1 or higher than 31 if the month is 1, and so on.) If a computerized personnel file
contains each employee’s birth date, hire date, last promotion date, and termination date,
the date-validation module can be used four times with each employee record. Other
programs in an organization can also use the module; these programs might ship
customer orders, plan employees’ birthday parties, or calculate when loan payments
should be made. If you write the date-checking instructions so they are entangled with
other statements in a program, they are difficult to isolate and reuse. On the other hand,
if you place the instructions in a separate module, the unit is easy to use and portable to
other applications. The feature of modular programs that allows individual modules to
be used in a variety of applications is reusability.

You can find many real-world examples of reusability. When you build a house, you don’t
invent plumbing and heating systems; you incorporate systems with proven designs. This
certainly reduces the time and effort it takes to build a house. The systems you choose are in
service in other houses, so they have been tested under a variety of circumstances, increasing
their reliability. Reliability is the feature of programs that assures you a module has been
proven to function correctly. Reliable software saves time and money. If you create the

53

Understanding the Advantages of Modularization

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



functional components of your programs as stand-alone modules and test them in your
current programs, much of the work will already be done when you use the modules in future
applications.

TWO TRUTHS & A LIE

Understanding the Advantages of Modularization

1. Modularization eliminates abstraction, a feature that makes programs more
confusing.

2. Modularization makes it easier for multiple programmers to work on a problem.

3. Modularization allows you to reuse work more easily.

. er ut ci p gi b eht ees ot
uoy s woll a hci h w, noi t cart sba sel bane noi t azi r al udo M. 1# si t ne met at s esl af ehT

Modularizing a Program
Most programs consist of a main program, which contains the basic steps, or the mainline
logic, of the program. The main program then accesses modules that provide more refined
details.

When you create a module, you include the following:

A header—The module header includes the module identifier and possibly other
necessary identifying information.

A body—The module body contains all the statements in the module.

A return statement—The module return statement marks the end of the module and
identifies the point at which control returns to the program or module that called the
module. In most programming languages, if you do not include a return statement at
the end of a module, the logic will still return. However, this book follows the convention
of explicitly including a return statement with every module.

Naming a module is similar to naming a variable. The rules and conventions for naming
modules are slightly different in every programming language, but in this text, module names
follow the same general rules used for variable identifiers:

Module names must start with a letter and cannot contain spaces.

Module names should have some meaning.

54

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Although it is not a requirement of any programming language, it frequently makes sense to use a verb as all
or part of a module’s name, because modules perform some action. Typical module names begin with action
words such as get, calculate, and display. When you program in visual languages that use screen
components such as buttons and text boxes, the module names frequently contain verbs representing user
actions, such as click or drag.

Additionally, in this text, module names are followed by a set of parentheses. This will help
you distinguish module names from variable names. This style corresponds to the way
modules are named in many programming languages, such as Java, C++, and C#.

As you learn more about modules in specific programming languages, you will find that you sometimes place
variable names within the parentheses that follow module names. Any variables enclosed in the parentheses
contain information you want to send to the module. For now, the parentheses at the end of module names
will be empty in this book.

When a main program wants to use a module, it calls the module. A module can call another
module, and the called module can call another. The number of chained calls is limited only
by the amount of memory available on your computer. In this book, the flowchart symbol
used to call a module is a rectangle with a bar across the top. You place the name of the
module you are calling inside the rectangle.

Some programmers use a rectangle with stripes down each side to represent a module in a flowchart,
and this book uses that convention if a module is external to a program. For example, prewritten, built-in
modules that generate random numbers, compute standard trigonometric functions, and sort values often
are external to your programs. However, if the module is being created as part of the program, the book
uses a rectangle with a single stripe across the top.

In a flowchart, you draw each module separately with its own sentinel symbols. The
beginning sentinel contains the name of the module. This name must be identical to
the name used in the calling program or module. The ending sentinel contains return,
which indicates that when the module ends, the logical progression of statements will
exit the module and return to the calling program or module. Similarly, in pseudocode,
you start each module with its name and end with a return statement; the module
name and return statements are vertically aligned and all the module statements are
indented between them.

For example, consider the program in Figure 2-3, which does not contain any modules. It
accepts a customer’s name and balance due as input and produces a bill. At the top of the bill,
the company’s name and address are displayed on three lines, which are followed by the
customer’s name and balance due. To display the company name and address, you can simply
include three output statements in the mainline logic of a program, as shown in Figure 2-3, or
you can modularize the program by creating both the mainline logic and a displayAddressInfo()
module, as shown in Figure 2-4.

55

Modularizing a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



output "Total: ",
balance

output "Omro,
WI 54963"

output "Customer: ",
name

stop

input name,
balance

output "47 Park
Lane"

Declarations
   string name
   num balance

start

start

  Declarations

     string name

     num balance

  input name, balance

  output "ABC Manufacturing"

  output "47 Park Lane"

  output "Omro, WI 54963"

  output "Customer: ", name

  output "Total: ", balance

stop

In an interactive program,
you would add prompts
such as Please enter
name and Please enter
balance. These have been
omitted here to keep the
example short. You will
learn more about prompts
later in this chapter. 

output "ABC
Manufacturing"

Figure 2-3 Program that produces a bill using only main program
© 2015 Cengage Learning

56

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When the displayAddressInfo() module is called in Figure 2-4, logic transfers from the
main program to the displayAddressInfo() module, as shown by the large red arrow in
both the flowchart and the pseudocode. There, each module statement executes in turn
before logical control is transferred back to the main program, where it continues with the

output "Total: ",
balance

output "Omro, WI
54963"

output "Customer: ",
name

stop
return

input name,
balance

output "47 Park
Lane"

Declarations
   string name
   num balance

start

displayAddressInfo()

start

  Declarations

     string name

     num balance

  input name, balance

  displayAddressInfo()

  output "Customer: ", name

  output "Total: ", balance

stop

displayAddressInfo()
  output "ABC Manufacturing"

  output "47 Park Lane"

  output "Omro, WI 54963"  
return

output "ABC
Manufacturing"

displayAddressInfo()

Figure 2-4 Program that produces a bill using main program that calls displayAddressInfo()module
© 2015 Cengage Learning

57

Modularizing a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



statement that follows the module call, as shown by the large blue arrow. Programmers say
the statements that are contained in a module have been encapsulated.

Neither of the programs in Figures 2-3 and 2-4 is superior to the other in terms of
functionality; both perform exactly the same tasks in the same order. However, you may
prefer the modularized version of the program for at least two reasons:

First, the main program remains short and easy to follow because it contains just one
statement to call the module, rather than three separate output statements to perform the
work of the module.

Second, a module is easy to reuse. After you create the address information module, you
can use it in any application that needs the company’s name and address. In other words,
you do the work once, and then you can use the module many times.

A potential drawback to creating modules and moving between them is the overhead incurred. The computer
keeps track of the correct memory address to which it should return after executing a module by recording
the memory address in a location known as the stack. This process requires a small amount of computer
time and resources. In most cases, the advantage to creating modules far outweighs the small amount of
overhead required.

Determining when to modularize a program does not depend on a fixed set of rules; it
requires experience and insight. Programmers do follow some guidelines when deciding how
far to break down modules or how much to put in each of them. Some companies may have
arbitrary rules, such as “a module’s instructions should never take more than a page,” or “a
module should never have more than 30 statements,” or “never have a module with only one
statement.” Rather than use such arbitrary rules, a better policy is to place together
statements that contribute to one specific task. The more the statements contribute to the
same job, the greater the functional cohesion of the module. A module that checks the
validity of a date variable’s value, or one that asks a user for a value and accepts it as input, is
considered cohesive. A module that checks date validity, deducts insurance premiums, and
computes federal withholding tax for an employee would be less cohesive.

Chapter 9 of the comprehensive version of this book provides more information on designing modules for
high cohesion. It also explores the topic of coupling, which is a measure of how much modules depend on
each other.

Watch the video Modularizing a Program.

Declaring Variables and Constants within Modules
You can place any statements within modules, including input, processing, and output
statements. You also can include variable and constant declarations within modules. For
example, you might decide to modify the billing program in Figure 2-4 so it looks like the one

58

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



in Figure 2-5. In this version of the program, three named constants that hold the three lines
of company data are declared within the displayAddressInfo() module. (See shading.)

output "Total: ",
balance

output "Customer: ",
name

stop

input name,
balance

output LINE1

output LINE2

Declarations
   string name
   num balance

Declarations

   string LINE1 = "ABC Manufacturing"

   string LINE2 = "47 Park Lane"

   string LINE3 = "Omro, WI 54963"

displayAddressInfo()

start displayAddressInfo()

start
  Declarations
     string name
     num balance
  input name, balance
  displayAddressInfo()

  output "Customer: ", name

  output "Total: ", balance
stop

displayAddressInfo()
  Declarations

     string LINE1 = "ABC Manufacturing"

     string LINE2 = "47 Park Lane"

     string LINE3 = "Omro, WI 54963"
  output LINE1
  output LINE2
  output LINE3 
return

return

output LINE3

Figure 2-5 The billing program with constants declared within the module
© 2015 Cengage Learning

59

Modularizing a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Variables and constants are usable only in the module in which they are declared.
Programmers say the data items are visible or in scope only within the module in which
they are declared. That means the program only recognizes them there. Programmers also
say that variables and constants are local to the module in which they are declared. In other
words, when the strings LINE1, LINE2, and LINE3 are declared in the displayAddressInfo()

module in Figure 2-5, they are not recognized and cannot be used by the main module.

One of the motivations for creating modules is that separate modules are easily reusable in
multiple programs. If the displayAddressInfo() module will be used by several programs
within the organization, it makes sense that the definitions for its variables and constants
must come with it. This makes the modules more portable; that is, they are self-contained
units that are easily transported.

Besides local variables and constants, you can create global variables and constants. Global
variables and constants are known to the entire program; they are said to be declared at the
program level. That means they are visible to and usable in all the modules called by the
program. The opposite is not true—variables and constants declared within a module are not
usable elsewhere; they are visible only to that module.

In many modern programming languages, the main program itself is a module, so variables
and constants declared there cannot be used elsewhere. To make the examples in this book
easier to follow, variables and constants declared at the start of a main program will be
considered global and usable in all modules. Until Chapter 9 in the comprehensive version,
this book will use only global variables and constants so that you can concentrate on the main
logic and not yet be concerned with the techniques necessary to make one module’s data
available to another. For example, in Figure 2-5, the main program variables name and
balance are global variables and could be used by any module.

Many programmers do not approve of using global variables and constants. They are used here so you can
more easily understand modularization before you learn the techniques of sending local variables from one
module to another. Chapter 9 of the comprehensive version of this book will describe how you can make
every variable local.

Understanding the Most Common Configuration for Mainline Logic
In Chapter 1, you learned that a procedural program contains procedures that follow one
another in sequence. The mainline logic of almost every procedural computer program can
follow a general structure that consists of three distinct parts:

1. Housekeeping tasks include any steps you must perform at the beginning of a
program to get ready for the rest of the program. They can include tasks such as
variable and constant declarations, displaying instructions to users, displaying report
headings, opening any files the program requires, and inputting the first piece of data.

Inputting the first data item is always part of the housekeeping module. You will learn the theory
behind this practice in Chapter 3. Chapter 7 covers file handling, including what it means to open and
close a file.

60

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2. Detail loop tasks do the core work of the program. When a program processes many
records, detail loop tasks execute repeatedly for each set of input data until there are
no more. For example, in a payroll program, the same set of calculations is executed
repeatedly until a check has been produced for each employee.

3. End-of-job tasks are the steps you take at the end of the program to finish the
application. You can call these finish-up or clean-up tasks. They might include
displaying totals or other final messages and closing any open files.

Figure 2-6 shows the relationship of these three typical program parts. Notice how the
housekeeping() and endOfJob() tasks are executed just once, but the detailLoop() tasks
repeat as long as the eof condition has not been met. The flowchart uses a flowline to show
how the detailLoop() module repeats; the pseudocode uses the words while and endwhile
to contain statements that execute in a loop. You will learn more about the while and
endwhile terms in subsequent chapters; for now, understand that they are a way of
expressing repeated actions.

stop

Yes

No

not eof?

start

Declarations

housekeeping()

endOfJob()

detailLoop()

start

  Declarations

  housekeeping()

  while not eof

     detailLoop()

  endwhile

  endOfJob()

stop

Figure 2-6 Flowchart and pseudocode of mainline logic for a typical procedural program
© 2015 Cengage Learning

61

Modularizing a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Many everyday tasks follow the three-module format just described. For example, a candy
factory opens in the morning, and the machines are started and filled with ingredients. These
housekeeping tasks occur just once at the start of the day. Then, repeatedly during the day,
candy is manufactured. This process might take many steps, each of which occurs many
times. These are the steps in the detail loop. Then, at the end of the day, the machines are
cleaned and shut down. These are the end-of-job tasks.

Not all programs take the format of the logic shown in Figure 2-6, but many do. Keep this
general configuration in mind as you think about how you might organize many programs.
For example, Figure 2-7 shows a sample payroll report for a small company. A user enters
employee names until there are no more to enter, at which point the user enters XXX.
As long as the entered name is not XXX, the user enters the employee’s weekly gross pay.
Deductions are computed as a flat 25 percent of the gross pay, and the statistics for each
employee are output. The user enters another name, and as long as it is not XXX, the
process continues. Examine the logic in Figure 2-8 to identify the components in the
housekeeping, detail loop, and end-of-job tasks. You will learn more about the payroll
report program in the next few chapters. For now, concentrate on the big picture of how
a typical application works.

Payroll Report

Name    Gross Deductions Net

Andrews

Brown 350.00 1050.00

Carter 1275.00 318.75 956.25

Young

***End of report

1000.00 250.00 750.00

1400.00

1100.00 275.00 825.00

Figure 2-7 Sample payroll report
© 2015 Cengage Learning

62

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



stop

return

Yes
name not equal

to QUIT?

No

start

housekeeping()

endOfJob()

detailLoop()

Declarations
   string name
   num gross
   num deduct
   num net
   num RATE = 0.25
   string QUIT = "XXX"
   string REPORT_HEADING = "Payroll Report"
   string COLUMN_HEADING = "Name Gross
      Deductions Net"
   string END_LINE = "***End of report"

detailLoop()

deduct =
gross * RATE

housekeeping()

input gross

output name,
gross, deduct, net

input name

return

output
REPORT_HEADING

output
COLUMN_HEADING

input name

endOfJob()

return

output END_LINEnet =
gross – deduct

Some programmers would not bother to
create a module that contains only one or
two statements. Instead, they would keep
these statements in the mainline logic. The
module is shown here so you can better
see the big picture of how the mainline
logic works using beginning, repeated,
and ending tasks.

Figure 2-8 Logic for payroll report
© 2015 Cengage Learning

63

Modularizing a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Modularizing a Program

1. A calling program calls a module’s name when it wants to use the module.

2. Whenever a main program calls a module, the logic transfers to the module;
when the module ends, the program ends.

3. Housekeeping tasks include any steps you must perform just once at the
beginning of a program to get ready for the rest of the program.

.ff otf el ti er eh wse muser dna el udo mgnill ac ni a meht ot
kcab sr ef snart wolf l aci gol eht , sdne el udo ma neh W. 2# si t ne met at s esl af ehT

Creating Hierarchy Charts
You may have seen hierarchy charts for organizations, such as the one in Figure 2-9. The
chart shows who reports to whom, not when or how often they report.

When a program has several modules calling other modules, programmers often use a program
hierarchy chart (sometimes called a structure chart) that operates in a similar manner to
show the overall picture of how modules are related to one another. A hierarchy chart does not
tell you what tasks are to be performed within a module, when the modules are called, how a
module executes, or why they are called—that information is in the flowchart or pseudocode.
A hierarchy chart tells you only which modules exist within a program and which modules call

CEO

SALES REP SALES REP SALES REP SALES REP SALES REP
EVENING

OPERATOR
PROGRAMMER PROGRAMMER

VP OF MARKETING

EASTERN
SALES MANAGER

WESTERN
SALES MANAGER

OPERATIONS
MANAGER

PROGRAMMING
MANAGER

VP OF INFORMATION

Figure 2-9 An organizational hierarchy chart
© 2015 Cengage Learning

64

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



others. The hierarchy chart for the program in Figure 2-8 looks like Figure 2-10. It shows that
the main module calls three others—housekeeping(), detailLoop(), and endOfJob().

Figure 2-11 shows an example of a hierarchy chart for the billing program of a mail-order
company. The hierarchy chart is for a more complicated program, but like the payroll report
chart in Figure 2-10, it supplies module names and a general overview of the tasks to be
performed, without specifying any details.

Because program modules are reusable, a specific module may be called from several locations
within a program. For example, in the billing program hierarchy chart in Figure 2-11, you can see
that the getOrder() module is used twice. By convention, you blacken a corner of each box that
represents a module used more than once. This action alerts readers that any change to this
module could have consequences in multiple locations.

detailLoop() endOfJob()

processOrder()

checkInventory() checkCredit()

displaySummaries()

computeBill()

computeTax()

getOrder()

main program

housekeeping()

getOrder()

Figure 2-11 Billing program hierarchy chart
© 2015 Cengage Learning

main program

housekeeping() detailLoop() endOfJob()

Figure 2-10 Hierarchy chart of payroll report program in Figure 2-8
© 2015 Cengage Learning

65

Creating Hierarchy Charts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A hierarchy chart can be both a planning tool for developing the overall relationship of
program modules before you write them and a documentation tool to help others see how
modules are related after a program is written. For example, if a tax law changes, a
programmer might be asked to rewrite the computeTax() module in the billing program
diagrammed in Figure 2-11. As the programmer changes the computeTax() module, the
hierarchy chart shows other dependent modules that might be affected. A hierarchy chart is
useful for getting the big picture in a complex program.

Hierarchy charts are used in procedural programming, but other types of diagrams frequently are used in
object-oriented environments. Chapter 13 of the comprehensive edition of this book describes the Unified
Modeling Language, which uses a set of diagrams to describe a system.

TWO TRUTHS & A LIE

Creating Hierarchy Charts

1. You can use a hierarchy chart to illustrate modules’ relationships.

2. A hierarchy chart tells you what tasks are to be performed within a module.

3. A hierarchy chart tells you only which modules call other modules.

.r eht o hcae ot det al er er a sel udo m woh st ci ped yl noti ; el udo ma ni hti w de mr ofr ep
sksat t uoba gni ht on uoy sll et tr ahc yhcr ar ei h A. 2# si t ne met at s esl af ehT

Features of Good Program Design
As your programs become larger and more complicated, the need for good planning and
design increases. Think of an application you use, such as a word processor or a spreadsheet.
The number and variety of user options are staggering. Not only would it be impossible for a
single programmer to write such an application, but without thorough planning and design,
the components would never work together properly. Ideally, each program module you
design needs to work well as a stand-alone component and as an element of larger systems.
Just as a house with poor plumbing or a car with bad brakes is fatally flawed, a computer-
based application can be highly functional only if each component is designed well. Walking
through your program’s logic on paper (called desk-checking, as you learned in Chapter 1) is
an important step to achieving superior programs. Additionally, you can implement several
design features while creating programs that are easier to write and maintain. To create good
programs, you should do the following:

Provide program comments where appropriate.

Choose identifiers thoughtfully.

66

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Strive to design clear statements within your programs and modules.

Write clear prompts and echo input.

Continue to maintain good programming habits as you develop your programming skills.

Using Program Comments
When you write programs, you often might want to insert program comments. Program
comments are written explanations that are not part of the program logic but that serve as
documentation for readers of the program. In other words, they are nonexecuting statements
that help readers understand programming statements. Readers might include users who help
you test the program and other programmers who might have to modify your programs in
the future. Even you, as the program’s author, will appreciate comments when you make
future modifications and forget why you constructed a statement in a certain way.

The syntax used to create program comments differs among programming languages. This
book starts comments in pseudocode with two forward slashes. For example, Figure 2-12
contains comments that explain the origins and purposes of variables in a real estate program.

Program comments are a type of internal documentation. This term distinguishes them from supporting
documents outside the program, which are called external documentation. Appendix C discusses other
types of documentation.

Declarations
num sqFeet

// sqFeet is an estimate provided by the seller of the property
num pricePerFoot

// pricePerFoot is determined by current market conditions
num lotPremium

// lotPremium depends on amenities such as whether lot is waterfront

Figure 2-12 Pseudocode that declares variables and includes comments

In a flowchart, you can use an annotation symbol to hold information that expands on what is
stored within another flowchart symbol. An annotation symbol is most often represented by a
three-sided box that is connected to the step it references by a dashed line. Annotation
symbols are used to hold comments or sometimes statements that are too long to fit neatly
into a flowchart symbol. For example, Figure 2-13 shows how a programmer might use some
annotation symbols in a flowchart for a payroll program.

© 2015 Cengage Learning

67

Features of Good Program Design

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You probably will use comments in your coded programs more frequently than you use them in pseudocode
or flowcharts. For one thing, flowcharts and pseudocode are more English-like than the code in some
languages, so your statements might be less cryptic. Also, your comments will remain in the program as
part of the program documentation, but your planning tools are likely to be discarded once the program
goes into production.

Including program comments is not necessary to create a working program, but comments
can help you to remember the purpose of variables or to explain complicated calculations,
especially when you come back to a program months or years after writing it. Some students
do not like to include comments in their programs because it takes time to type them and
they aren’t part of the “real” program, but the programs you write in the future probably will
require some comments. When you acquire your first programming job and modify a
program written by another programmer, you will appreciate well-placed comments that
explain complicated sections of the code.

output PROMPT

input hours

pay = hours * RATE

Declarations
   string PROMPT = "Enter hours worked: "
   num hours
   num RATE = 13.00
   num pay

stop

output pay

start

Program assumes all employees
make the same standard hourly
rate.

Note: RATE is expected to
increase on January 1.

Figure 2-13 Flowchart that includes annotation symbols
© 2015 Cengage Learning

68

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An additional responsibility regarding comments is that they must be kept current as a program is modified.
Outdated comments can provide misleading information about a program’s status.

Choosing Identifiers
The selection of good identifiers is an often-overlooked element in program design. When you
write programs, you choose identifiers for variables, constants, and modules. You learned the
rules for naming variables and modules earlier in this chapter: Each must be a single word with
no embedded spaces and must start with a letter. Those simple rules provide a lot of leeway in
naming program elements, but not all identifiers are equally good. Choosing good identifiers
simplifies your programming job and makes it easier for others to understand your work.

Some general guidelines include the following:

Although not required in any programming language, it usually makes sense to give a
variable or constant a name that is a noun (or a combination of an adjective and noun)
because it represents a thing. Similarly, it makes sense to give a module an identifier that is
a verb, or a combined verb and noun, because a module takes action.

Use meaningful names. Creating a data item named someData or a module named
firstModule() makes a program cryptic. Not only will others find it hard to read your
programs, but you will forget the purpose of these identifiers even within your own
programs. All programmers occasionally use short, nondescriptive names such as x or
temp in a quick program; however, in most cases, data and module names should be
meaningful. Programmers refer to programs that contain meaningful names as
self-documenting. This means that even without further documentation, the program
code explains itself to readers.

Use pronounceable names. A variable name like pzf is neither pronounceable nor
meaningful. A name that looks meaningful when you write it might not be as meaningful
when someone else reads it; for instance, preparead() might mean “Prepare ad” to you,
but “Prep a read” to others. Look at your names critically to make sure they can be
pronounced. Very standard abbreviations do not have to be pronounceable. For example,
most businesspeople would interpret ssn as a Social Security number.

Don’t forget that not all programmers share your culture. An abbreviation whose meaning
seems obvious to you might be cryptic to someone in a different part of the world, or even a
different part of your country. For example, you might name a variable roi to hold a value
for return on investment, but a French-speaking person might interpret the meaning as king.

Be judicious in your use of abbreviations. You can save a few keystrokes when creating a
module called getStat(), but is the module’s purpose to find the state in which a city is
located, input some statistics, or determine the status of some variables? Similarly, is a
variable named fn meant to hold a first name, file number, or something else?
Abbreviations can also confuse people in different lines of work: AKA might suggest a
sorority (Alpha Kappa Alpha) to a college administrator, a registry (American Kennel
Association) to a dog breeder, or an alias (also known as) to a police detective.

69

Features of Good Program Design

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To save typing time when you develop a program, you can use a short name like efn. After the program
operates correctly, you can use a text editor’s Search and Replace feature to replace your coded name with
a more meaningful name such as employeeFirstName. When working in an integrated development
environment, you can use the technique known as refactoring to rename every instance of an identifier.

Many IDEs support an automatic statement-completion feature that saves typing time. After the first time you
use a name like employeeFirstName, you need to type only the first few letters before the compiler
editor offers a list of available names from which to choose. The list is constructed from all the names you
have used that begin with the same characters.

Usually, avoid digits in a name. A zero can be confused with the letter O, and the
lowercase letter l is misread as the numeral 1. Of course, use your judgment:
budgetFor2014 probably will not be misinterpreted.

Use the rules your language allows to separate words in long, multiword variable names. For
example, if the programming language you use allows hyphens or underscores, then use a
module name like initialize-data() or initialize_data(), which is easier to read than
initializedata(). Another option is to use camel casing to create an identifier such as
initializeData(). If you use a language that is case sensitive, it is legal but confusing to use
variable names that differ only in case. For example, if a single program contains empName,
EmpName, and Empname, confusion is sure to follow.

Consider including a form of the verb to be, such as is or are, in names for variables that
are intended to hold a status. For example, use isFinished as a string variable that holds a
Y or N to indicate whether a file is exhausted. The shorter name finished is more likely
to be confused with a module that executes when a program is done. (Many languages
support a Boolean data type, which you assign to variables meant to hold only true or
false. Using a form of to be in identifiers for Boolean variables is appropriate.)

Many programmers follow the convention of naming constants using all uppercase
letters, inserting underscores between words for readability. In this chapter you saw
examples such as SALES_TAX_RATE.

Organizations sometimes enforce different rules for programmers to follow when naming
program components. It is your responsibility to find out the conventions used in your
organization and to adhere to them.

Programmers sometimes create a data dictionary, which is a list of every variable name used in a
program, along with its type, size, and description. When a data dictionary is created, it becomes part of the
program documentation.

When you begin to write programs, the process of determining what variables, constants, and
modules you need and what to name them all might seem overwhelming. The design process
is crucial, however. When you acquire your first professional programming assignment, the
design process might very well be completed already. Most likely, your first assignment will be
to write or modify one small member module of a much larger application. The more the
original programmers adhered to naming guidelines, the better the original design was, and
the easier your job of modification will be.

70

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Designing Clear Statements
In addition to using program comments and selecting good identifiers, you can use the
following tactics to contribute to the clarity of the statements within your programs:

Avoid confusing line breaks.

Use temporary variables to clarify long statements.

Avoiding Confusing Line Breaks
Some older programming languages require that program statements be placed in specific
columns. Most modern programming languages are free-form; you can arrange your lines of
code any way you see fit. As in real life, with freedom comes responsibility; when you have
flexibility in arranging your lines of code, you must take care to make sure your meaning is
clear. With free-form code, programmers are allowed to place two or three statements on a line,
or, conversely, to spread a single statement across multiple lines. Both make programs harder to
read. All the pseudocode examples in this book use appropriate, clear spacing and line breaks.

Using Temporary Variables to Clarify Long Statements
When you need several mathematical operations to determine a result, consider using a series
of temporary variables to hold intermediate results. A temporary variable (or work variable)
is not used for input or output, but instead is just a working variable that you use during a
program’s execution. For example, Figure 2-14 shows two ways to calculate a value for a real
estate salespersonCommission variable. Each example achieves the same result—the
salesperson’s commission is based on the square feet multiplied by the price per square foot,
plus any premium for a lot with special features, such as a wooded or waterfront lot. However,
the second example uses two temporary variables: basePropertyPrice and totalSalePrice.
When the computation is broken down into less complicated, individual steps, it is easier to
see how the total price is calculated. In calculations with even more computation steps,
performing the arithmetic in stages would become increasingly helpful.

// Using a single statement to compute commission
salespersonCommission = (sqFeet * pricePerFoot + lotPremium) * commissionRate

// Using multiple statements to compute commission
basePropertyPrice = sqFeet * pricePerFoot
totalSalePrice = basePropertyPrice + lotPremium
salespersonCommission = totalSalePrice * commissionRate

Figure 2-14 Two ways of achieving the same salespersonCommission result
© 2015 Cengage Learning

71

Features of Good Program Design

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programmers might say using temporary variables, like the second example in Figure 2-14, is cheap.
When executing a lengthy arithmetic statement, even if you don’t explicitly name temporary variables,
the programming language compiler creates them behind the scenes (although without descriptive names),
so declaring them yourself does not cost much in terms of program execution time.

Writing Clear Prompts and Echoing Input
When program input should be retrieved from a user, you almost always want to provide a
prompt for the user. A prompt is a message that is displayed on a monitor to ask the user for a
response and perhaps explain how that response should be formatted. Prompts are used both
in command-line and GUI interactive programs.

For example, suppose a program asks a user to enter a catalog number for an item the user is
ordering. The following prompt is not very helpful:

Please enter a number.

The following prompt is more helpful:

Please enter a five-digit catalog order number.

The following prompt is even more helpful:

The five-digit catalog order number appears to the right of the item's picture
in the catalog. Please enter it now.

When program input comes from a stored file instead of a user, prompts are not needed.
However, when a program expects a user response, prompts are valuable. For example, Figure
2-15 shows the flowchart and pseudocode for the beginning of the bill-producing program
shown earlier in this chapter. If the input was coming from a data file, no prompt would be
required, and the logic might look like the logic in Figure 2-15.

input name,
balance

Declarations
   string name
   num balance

start
start

  Declarations

     string name

     num balance

  input name, balance

Figure 2-15 Beginning of a program that accepts a name and balance as input
© 2015 Cengage Learning

72

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



However, if the input was coming from a user, including prompts would be helpful. You
could supply a single prompt such as Please enter a customer’s name and balance due, but
inserting more requests into a prompt generally makes it less likely that the user can
remember to enter all the parts or enter them in the correct order. It is almost always best to
include a separate prompt for each item to be entered. Figure 2-16 shows an example.

Users also find it helpful when you echo their input. Echoing input is the act of repeating
input back to a user either in a subsequent prompt or in output. For example, Figure 2-17
shows how the second prompt in Figure 2-16 can be improved by echoing the user’s first
piece of input data in the second prompt. When a user runs the program that is started in
Figure 2-17 and enters Green for the customer name, the second prompt will not be Please
enter balance due. Instead, it will be Please enter balance due for Green. For example, if a clerk
was about to enter the balance for the wrong customer, the mention of Green might be
enough to alert the clerk to the potential error.

output "Please
enter customer’s
name "

Declarations
   string name
   num balance

start

output "Please
enter balance
due "

input name

input balance

start

  Declarations

     string name

     num balance

  output "Please enter customer’s name "

  input name

  output "Please enter balance due "

  input balance

Figure 2-16 Beginning of a program that accepts a name and balance as input and uses a separate
prompt for each item
© 2015 Cengage Learning

73

Features of Good Program Design

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Maintaining Good Programming Habits
When you learn a programming language and begin to write lines of program code, it is easy
to forget the principles you have learned in this text. Having some programming knowledge
and a keyboard at your fingertips can lure you into typing lines of code before you think
things through. But every program you write will be better if you plan before you code.
Maintaining the habits of first drawing flowcharts or writing pseudocode, as you have learned
here, will make your future programming projects go more smoothly. If you desk-check your
program logic on paper before coding statements in a programming language, your programs
will run correctly sooner. If you think carefully about the variable and module names you
choose, and design program statements to be easy to read and use, your programs will be
easier to develop and maintain.

output "Please
enter customer’s
name "

Declarations
   string name
   num balance

start

input name

input balance

start

  Declarations

     string name

     num balance

  output "Please enter customer’s name "

  input name

  output "Please enter balance due for ", name

  input balance

output "Please
enter balance
due for ", name

Notice the space before the quotation mark
in the prompt that asks the user for a balance
due. The space will appear between "for" and
the last name.

Figure 2-17 Beginning of a program that accepts a customer’s name and uses it in the second prompt
© 2015 Cengage Learning

74

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Features of Good Program Design

1. A program comment is a message that is displayed on a monitor to ask the user
for a response and perhaps explain how that response should be formatted.

2. It usually makes sense to give each variable a name that contains a noun and to
give each module a name that contains a verb.

3. Echoing input can help a user to confirm that a data item was entered correctly.

. dett a mr of eb dl uohs esnopser t aht woh ni al pxe spahr ep dna esnopser a
r of r esu eht ksa ot r oti no ma no deyal psi d si t aht egasse ma si t p mor p A. mar gor p

eht gni daer esoht r of noi t at ne mucod sa sevr es t aht t ub ci gol mar gor p eht f otr ap
t on si t aht noi t anal pxe netti r wa si t ne mmoc mar gor p A. 1# si t ne met at s esl af ehT

Chapter Summary
Programs contain data in three different forms: literals (or unnamed constants), variables,
and named constants. Each of these types of data can be numeric or string. Variables are
named memory locations, the contents of which can vary. A variable declaration includes
a data type and an identifier; optionally, it can include an initialization. Every computer
programming language has its own set of rules for naming variables; however, all variable
names must be written as one word without embedded spaces and should have
appropriate meaning. A named constant is similar to a variable, except it can be assigned a
value only once.

Most programming languages use +, –, *, and / as the four standard arithmetic operators.
Every operator follows rules of precedence that dictate the order in which operations in
the same statement are carried out; multiplication and division always take precedence
over addition and subtraction. The rules of precedence can be overridden using
parentheses.

Programmers break down programming problems into smaller, cohesive units called
modules, subroutines, procedures, functions, or methods. To execute a module, you call it
from another program or module. Any program can contain an unlimited number of
modules, and each module can be called an unlimited number of times. Modularization
provides abstraction, allows multiple programmers to work on a problem, and makes it
easier for you to reuse work.

75

Chapter Summary

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you create a module, you include a header, a body, and a return statement.
A program or module calls a module’s name to execute it. You can place any statements
within modules, including declarations, which are local to the module. Global variables
and constants are those that are known to the entire program. The mainline logic of
almost every procedural computer program can follow a general structure that consists of
three distinct parts: housekeeping tasks, detail loop tasks, and end-of-job tasks.

A hierarchy chart illustrates modules and their relationships; it indicates which modules
exist within a program and which modules call others.

As programs become larger and more complicated, the need for good planning and design
increases. You should use program comments where appropriate. Choose identifiers
wisely, strive to design clear statements within your programs and modules, write clear
prompts and echo input, and continue to maintain good programming habits as you
develop your programming skills.

Key Terms
Numeric describes data that consists of numbers.

String describes data that is nonnumeric.

An integer is a whole number.

A floating-point number is a number with decimal places.

Real numbers are floating-point numbers.

A numeric constant (or literal numeric constant) is a specific numeric value.

A string constant (or literal string constant) is a specific group of characters enclosed within
quotation marks.

Alphanumeric values can contain alphabetic characters, numbers, and punctuation.

An unnamed constant is a literal numeric or string value.

A declaration is a statement that provides a data type, an identifier, and, optionally, an
initial value.

An identifier is a program component’s name.

A data item’s data type is a classification that describes what values can be assigned, how the
item is stored, and what types of operations can be performed with the item.

Initializing a variable is the act of assigning its first value, often at the same time the variable is
declared.

Garbage describes the unknown value stored in an unassigned variable.

Keywords comprise the limited word set that is reserved in a language.

76

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Camel casing is a naming convention in which the initial letter is lowercase, multiple-word
names are run together, and each new word within the name begins with an uppercase letter.

Lower camel casing is another name for the camel casing naming convention.

Pascal casing is a naming convention in which the initial letter is uppercase, multiple-word
names are run together, and each new word within the name begins with an uppercase letter.

Upper camel casing is another name for the Pascal casing naming convention.

Hungarian notation is a naming convention in which a data type or other information is
stored as part of a name.

Snake casing is a convention in which parts of a name are separated by underscores.

Mixed case with underscores is a naming convention similar to snake casing, but new words
start with an uppercase letter.

Kebob case is sometimes used as the name for the style that uses dashes to separate parts
of a name.

An assignment statement assigns a value from the right of an assignment operator to the
variable or constant on the left of the assignment operator.

The assignment operator is the equal sign; it is used to assign a value to the variable
or constant on its left.

A binary operator is an operator that requires two operands—one on each side.

An operand is a value used by an operator.

Right-associativity and right-to-left associativity describe operators that evaluate the
expression to the right first.

An lvalue is the memory address identifier to the left of an assignment operator.

A numeric variable is one that can hold digits, have mathematical operations performed
on it, and usually can hold a decimal point and a sign indicating positive or negative.

A string variable can hold text that includes letters, digits, and special characters such as
punctuation marks.

Type-safety is the feature of some programming languages that prevents assigning values of
an incorrect data type.

A named constant is similar to a variable, except that its value cannot change after the first
assignment.

A magic number is an unnamed constant whose purpose is not immediately apparent.

Overhead describes the extra resources a task requires.

Rules of precedence dictate the order in which operations in the same statement are
carried out.

77

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The order of operations describes the rules of precedence.

Left-to-right associativity describes operators that evaluate the expression to the left first.

The remainder operator is an arithmetic operator used in some programming languages;
when used with two integer operands, it results in the remainder after division.

Modules are small program units that you can use together to make a program. Programmers
also refer to modules as subroutines, procedures, functions, or methods.

To call a module is to use the module’s name to invoke it, causing it to execute.

Modularization is the process of breaking down a program into modules.

Functional decomposition is the act of reducing a large program into more manageable modules.

Abstraction is the process of paying attention to important properties while ignoring
nonessential details.

Reusability is the feature of modular programs that allows individual modules to be used in a
variety of applications.

Reliability is the feature of modular programs that assures you a module has been tested and
proven to function correctly.

A main program runs from start to stop and calls other modules.

The mainline logic is the logic that appears in a program’s main module; it calls other modules.

The module header includes the module identifier and possibly other necessary identifying
information.

The module body contains all the statements in the module.

The module return statement marks the end of the module and identifies the point
at which control returns to the program or module that called the module.

Encapsulation is the act of containing a task’s instructions in a module.

A stack is a memory location in which the computer keeps track of the correct memory
address to which it should return after executing a module.

The functional cohesion of a module is a measure of the degree to which all the module
statements contribute to the same task.

Visible describes data items when a module can recognize them.

In scope describes data that is visible.

Local describes variables that are declared within the module that uses them.

A portable module is one that can more easily be reused in multiple programs.

Global describes variables that are known to an entire program.

Housekeeping tasks include steps you must perform at the beginning of a program to get
ready for the rest of the program.

78

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Detail loop tasks of a program include the steps that are repeated for each set of input data.

End-of-job tasks hold the steps you take at the end of the program to finish the application.

A hierarchy chart is a diagram that illustrates modules’ relationships to each other.

Program comments are written explanations that are not part of the program logic but that
serve as documentation for those reading the program.

Internal documentation is documentation within a coded program.

External documentation is documentation that is outside a coded program.

An annotation symbol contains information that expands on what appears in another
flowchart symbol; it is most often represented by a three-sided box that is connected
to the step it references by a dashed line.

Self-documenting programs are those that contain meaningful identifiers that describe their
purpose.

A data dictionary is a list of every variable name used in a program, along with its type,
size, and description.

A temporary variable (or work variable) is a variable that you use to hold intermediate results
during a program’s execution.

A prompt is a message that is displayed on a monitor to ask the user for a response and
perhaps explain how that response should be formatted.

Echoing input is the act of repeating input back to a user either in a subsequent prompt
or in output.

Exercises

Review Questions

1. What does a declaration provide for a variable?

a. a name
b. a data type

c. both of the above
d. none of the above

2. A variable’s data type describes all of the following except .

a. what values the variable can hold
b. how the variable is stored in memory
c. what operations can be performed with the variable
d. the scope of the variable

79

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. The value stored in an uninitialized variable is .

a. garbage
b. null

c. compost
d. its identifier

4. The value 3 is a .

a. numeric variable
b. numeric constant

c. string variable
d. string constant

5. The assignment operator .

a. is a binary operator
b. has left-to-right associativity

c. is most often represented by a colon
d. two of the above

6. Which of the following is true about arithmetic precedence?

a. Multiplication has a higher precedence than division.
b. Operators with the lowest precedence always have left-to-right

associativity.
c. Division has higher precedence than subtraction.
d. all of the above

7. Which of the following is a term used as a synonym for module in some
programming languages?

a. method
b. procedure

c. both of these
d. none of these

8. Which of the following is a reason to use modularization?

a. Modularization avoids abstraction.
b. Modularization reduces overhead.
c. Modularization allows you to more easily reuse your work.
d. Modularization eliminates the need for syntax.

9. What is the name for the process of paying attention to important properties while
ignoring nonessential details?

a. abstraction
b. extraction

c. extinction
d. modularization

10. Every module has all of the following except .

a. a header
b. local variables

c. a body
d. a return statement

11. Programmers say that one module can another, meaning that the first
module causes the second module to execute.

a. declare
b. define

c. enact
d. call

80

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12. The more that a module’s statements contribute to the same job, the greater
the of the module.

a. structure
b. modularity

c. functional cohesion
d. size

13. In most modern programming languages, a variable or constant that is declared in
a module is in that module.

a. global
b. invisible

c. in scope
d. undefined

14. Which of the following is not a typical housekeeping task?

a. displaying instructions
b. printing summaries

c. opening files
d. displaying report headings

15. Which module in a typical program will execute the most times?

a. the housekeeping module
b. the detail loop

c. the end-of-job module
d. It is different in every program.

16. A hierarchy chart tells you .

a. what tasks are to be performed within each program module
b. when a module executes
c. which routines call which other routines
d. all of the above

17. What are nonexecuting statements that programmers place within code to explain
program statements in English?

a. comments
b. pseudocode

c. trivia
d. user documentation

18. Program comments are .

a. required to create a runnable program
b. a form of external documentation
c. both of the above
d. none of the above

19. Which of the following is valid advice for naming variables?

a. To save typing, make most variable names one or two letters.
b. To avoid conflict with names that others are using, use unusual or

unpronounceable names.
c. To make names easier to read, separate long names by using underscores

or capitalization for each new word.
d. To maintain your independence, shun the conventions of your

organization.

81

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



20. A message that asks a user for input is a(n) .

a. comment
b. prompt

c. echo
d. declaration

Programming Exercises

1. Explain why each of the following names does or does not seem like a good variable
name to you.

a. d

b. dsctamt

c. discountAmount

d. discount Amount

e. discount

f. discountAmountForEachNewCustomer

g. discountYear2015

h. 2015Discountyear

2. If productCost and productPrice are numeric variables, and productName is a
string variable, which of the following statements are valid assignments? If a
statement is not valid, explain why not.

a. productCost = 100

b. productPrice = productCost

c. productPrice = productName

d. productPrice = "24.95"

e. 15.67 = productCost

f. productCost = $1,345.52

g. productCost = productPrice - 10

h. productName = "mouse pad"

i. productCost + 20 = productPrice

j. productName = 3-inch nails

k. productName = 43

l. productName = "44"

m. "99" = productName

n. productName = brush

82

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



o. battery = productName

p. productPrice = productPrice

q. productName = productCost

3. Assume that income = 8 and expense = 6. What is the value of each of the
following expressions?

a. income + expense * 2

b. income + 4 – expense / 2

c. (income + expense) * 2

d. income – 3 * 2 + expense

e. 4 * ((income – expense) + 2) + 10

4. Draw a typical hierarchy chart for a program that produces a monthly bill for a
cell phone customer. Try to think of at least 10 separate modules that might be
included. For example, one module might calculate the charge for daytime phone
minutes used.

5. a. Draw the hierarchy chart and then plan the logic for a program needed by the
sales manager of The Henry Used Car Dealership. The program will determine
the profit on any car sold. Input includes the sale price and actual purchase
price for a car. The output is the profit, which is the sale price minus the
purchase price. Use three modules. The main program declares global variables
and calls housekeeping, detail, and end-of-job modules. The housekeeping
module prompts for and accepts a sale price. The detail module prompts for
and accepts the purchase price, computes the profit, and displays the result.
The end-of-job module displays the message Thanks for using this program.

b. Revise the profit-determining program so that it runs continuously for any
number of cars. The detail loop executes continuously while the sale price is not 0;
in addition to calculating the profit, it prompts the user for and gets the next sale
price. The end-of-job module executes after 0 is entered for the sale price.

6. a. Draw the hierarchy chart and then plan the logic for a program that calculates a
person’s body mass index (BMI). BMI is a statistical measure that compares a
person’s weight and height. The program uses three modules. The first prompts
a user for and accepts the user’s height in inches. The second module accepts the
user’s weight in pounds and converts the user’s height to meters and weight to
kilograms. Then, it calculates BMI as weight in kilograms divided by height in
meters squared, and displays the results. There are 2.54 centimeters in an inch,
100 centimeters in a meter, 453.59 grams in a pound, and 1,000 grams in a

kilogram. Use named constants whenever you think they are appropriate. The last
module displays the message End of job.

b. Revise the BMI-determining program to execute continuously until the user
enters 0 for the height in inches.

83

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7. Draw the hierarchy chart and design the logic for a program that calculates service
charges for Hazel’s Housecleaning service. The program contains housekeeping,
detail loop, and end-of-job modules. The main program declares any needed global
variables and constants and calls the other modules. The housekeeping module
displays a prompt for and accepts a customer’s last name. While the user does not
enter ZZZZ for the name, the detail loop accepts the number of bathrooms and the
number of other rooms to be cleaned. The service charge is computed as $40 plus
$15 for each bathroom and $10 for each of the other rooms. The detail loop also
displays the service charge and then prompts the user for the next customer’s
name. The end-of-job module, which executes after the user enters the sentinel
value for the name, displays a message that indicates the program is complete.

8. Draw the hierarchy chart and design the logic for a program that calculates
the projected cost of an automobile trip. Assume that the user’s car travels 20
miles per gallon of gas. Design a program that prompts the user for a number
of miles driven and a current cost per gallon. The program computes and
displays the cost of the trip as well as the cost if gas prices rise by 10 percent.
The program accepts data continuously until 0 is entered for the number of
miles. Use appropriate modules, including one that displays End of program
when the program is finished.

9. a. Draw the hierarchy chart and design the logic for a program needed by the
manager of the Stengel County softball team, who wants to compute slugging
percentages for his players. A slugging percentage is the total bases earned with
base hits divided by the player’s number of at-bats. Design a program that
prompts the user for a player jersey number, the number of bases earned, and
the number of at-bats, and then displays all the data, including the calculated
slugging average. The program accepts players continuously until 0 is entered
for the jersey number. Use appropriate modules, including one that displays
End of job after the sentinel is entered for the jersey number.

b. Modify the slugging percentage program to also calculate a player’s on-base
percentage. An on-base percentage is calculated by adding a player’s hits and
walks, and then dividing by the sum of at-bats, walks, and sacrifice flies.
Prompt the user for all the additional data needed, and display all the data for
each player.

c. Modify the softball program so that it also computes a gross production average
(GPA) for each player. A GPA is calculated by multiplying a player’s on-base
percentage by 1.8, then adding the player’s slugging percentage, and then
dividing by four.

10. Draw the hierarchy chart and design the logic for a program for the River Falls
Homes Construction Company. Design a program that prompts the user for a
lot number in the River Falls subdivision and data about the home to be built
there, including number of bedrooms, number of bathrooms, and the number of
cars the garage holds. Output is the price of the home, which is a $50,000 base
price plus $17,000 for each bedroom, $12,500 for each bathroom, and $6,000 for

84

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



each car the garage holds. The program accepts lot numbers continuously until
0 is entered. Use named constants where appropriate. Also, use appropriate
modules, including one that displays End of job after the sentinel is entered for
the lot number.

11. Draw the hierarchy chart and design the logic for a program for Arnie’s Appli-
ances. Design a program that prompts the user for a refrigerator model name and
the interior height, width, and depth in inches. Calculate the refrigerator capacity
in cubic feet by first multiplying the height, width, and depth to get cubic inches,
and then dividing by 1728 (the number of cubic inches in a cubic foot). The
program accepts model names continuously until “XXX” is entered. Use named
constants where appropriate. Also use modules, including one that displays End of
job after the sentinel is entered for the model name.

Performing Maintenance

1. A file named MAINTENANCE02-01.txt is included with your downloadable
student files. Assume that this program is a working program in your organiza-
tion and that it needs modifications as described in the comments (lines that
begin with two slashes) at the beginning of the file. Your job is to alter the
program to meet the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 2 include DEBUG02-01.txt, DEBUG02-02.
txt, and DEBUG02-03.txt. Each file starts with some comments that describe
the problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must
find and correct.

2. Your downloadable files for Chapter 2 include a file named DEBUG02-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. For games to hold your interest, they almost always include some random,
unpredictable behavior. For example, a game in which you shoot asteroids loses
some of its fun if the asteroids follow the same, predictable path each time you play.
Therefore, generating random values is a key component in creating most inter-
esting computer games. Many programming languages come with a built-in

85

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



module you can use to generate random numbers. The syntax varies in each
language, but it is usually something like the following:
myRandomNumber = random(10)

In this statement, myRandomNumber is a numeric variable you have declared and the
expression random(10) means “call a method that generates and returns a random
number between 1 and 10.” By convention, in a flowchart, you would place a statement
like this in a processing symbol with two vertical stripes at the edges, as shown below.

myRandomNumber =
random(10)

Create a flowchart or pseudocode that shows the logic for a program that generates
a random number, then asks the user to think of a number between 1 and 10.
Then display the randomly generated number so the user can see whether his or her
guess was accurate. (In future chapters, you will improve this game so that the user
can enter a guess and the program can determine whether the user was correct.)

Up for Discussion

1. Many programming style guides are published on the Web. These guides suggest good
identifiers, explain standard indentation rules, and identify style issues in specific
programming languages. Find style guides for at least two languages (for
example, C++, Java, Visual Basic, or C#) and list any differences you notice.

2. What advantages are there to requiring variables to have a data type?
3. As this chapter mentions, some programming languages require that named constants

are assigned a value when they are declared; other languages allow a constant’s value
to be assigned later in a program. Which requirement do you think is better? Why?

4. Many products use Pascal casing or camel casing in their names–for example,
MasterCard. Name as many more as you can.

5. Distance measurement is one situation in which using integer division and the
remainder operator might be useful. For example, if the programming language
supports it, you can divide a measurement of 123 inches by 12 to get 10 feet, and then
use the remainder operator to discover that the measurement is 3 inches over 10 feet.
Think of several other situations in which you might find a remainder operator useful.

6. Would you prefer to write a large program by yourself, or to work on a team in
which each programmer produces one or more modules? Why?

7. Extreme programming is a system for rapidly developing software. One of its tenets
is that all production code is written by two programmers sitting at one machine.
Is this a good idea? Does working this way as a programmer appeal to you? Why or
why not?

86

C H A P T E R 2 Elements of High-Quality Programs

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 3
Understanding
Structure

In this chapter, you will learn about:

The disadvantages of unstructured spaghetti code

The three basic structures—sequence, selection, and loop

Using a priming input to structure a program

The need for structure

Recognizing structure

Structuring and modularizing unstructured logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Disadvantages of Unstructured Spaghetti Code
Professional business applications usually get far more complicated than the examples
you have seen so far in Chapters 1 and 2. Imagine the number of instructions in the
computer programs that guide an airplane’s flight or audit an income tax return. Even
the program that produces your paycheck at work contains many, many instructions.
Designing the logic for such a program can be a time-consuming task. When you add
hundreds or thousands of instructions to a program, it is easy to create a complicated
mess. The descriptive name for logically snarled program statements is spaghetti code,
because the logic is as hard to follow as one noodle through a plate of spaghetti. Not
only is spaghetti code confusing, the programs that contain it are prone to error, difficult
to reuse, and hard to use as building blocks for larger applications. Programs that use
spaghetti code logic are unstructured programs; that is, they do not follow the rules of
structured logic that you will learn in this chapter. Structured programs do follow those
rules, and eliminate the problems caused by spaghetti code.

For example, suppose that you start a job as a dog washer and that you receive the
instructions shown in Figure 3-1. This flowchart is an example of unstructured spaghetti
code. A computer program that is organized similarly might “work”—that is, it might
produce correct results—but it would be difficult to read and maintain, and its logic
would be hard to follow.

You might be able to follow the logic of the dog-washing process in Figure 3-1 for two reasons:

You might already know how to wash a dog.

The flowchart contains a limited number of steps.

88

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



However, imagine that you were not familiar with dog washing, or that the process was far
more complicated. (For example, imagine you must wash 100 dogs concurrently while
applying flea and tick medication, giving them haircuts, and researching their genealogy.)

stop

Yes

Yes

Yes

No

No

No

Catch dog

Turn on water

Turn off water

Yes

Get dog wet and
apply shampoo

Catch dog

 

No

Rinse dog

Does dog
run away?

Does dog
run away?

Does dog have
shampoo on?

Does dog
run away?

start

Don’t Do It
This example does not use
good programming style.
By the end of the chapter,
you will know how to make
this example structured,
which will make it less
confusing.

Figure 3-1 Spaghetti code logic for washing a dog
© 2015 Cengage Learning

89

The Disadvantages of Unstructured Spaghetti Code

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Depicting more complicated logic in an unstructured way would be cumbersome. By the end
of this chapter, you will understand how to make the unstructured process in Figure 3-1
clearer and less error-prone.

Software developers say that a program that contains spaghetti code has a shorter life than one with
structured code. This means that programs developed using spaghetti code exist as production
programs in an organization for less time. Such programs are so difficult to alter that when improvements
are required, developers often find it easier to abandon the existing program and start from scratch.
This takes extra time and costs more money.

TWO TRUTHS & A LIE

The Disadvantages of Unstructured Spaghetti Code

1. Spaghetti code is the descriptive name for logically snarled programs.

2. Programs written using spaghetti code cannot produce correct results.

3. Programs written using spaghetti code are more difficult to maintain than other
programs.

Understanding the Three Basic Structures
In the mid-1960s, mathematicians proved that any program, no matter how complicated, can
be constructed using one or more of only three structures. A structure is a basic unit of
programming logic; each structure is one of the following:

sequence

selection

loop

With these three structures alone, you can diagram any task, from doubling a number to
performing brain surgery. You can diagram each structure with a specific configuration of
flowchart symbols.

The Sequence Structure
The sequence structure is shown in Figure 3-2. It performs actions or tasks in order, one
after the other. A sequence can contain any number of tasks, but there is no option to branch
off and skip any of the tasks. Once you start a series of actions in a sequence, you must
continue step by step until the sequence ends.

Thefalsestatementis#2.Programswrittenusingspaghetticodecan
producecorrectresults,buttheyaremoredifficulttounderstandandmaintain
thanprogramsthatusestructuredtechniques.

90

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



As an example, driving directions often are
listed as a sequence. To tell a friend how to get
to your house from school, you might provide
the following sequence, in which one step
follows the other and no steps can be skipped:
go north on First Avenue for 3 miles
turn left on Washington Boulevard
go west on Washington for 2 miles
stop at 634 Washington

The Selection Structure
The selection structure, or decision structure,
is shown in Figure 3-3. With this structure, one
of two courses of action is taken based on the answer to a question. A flowchart that describes
a selection structure begins with a decision symbol, and the branches of the decision must join
at the bottom of the structure. Pseudocode that
describes a selection structure starts with if.
Pseudocode uses the end-structure statement
endif to clearly show where the structure ends.

Some people call the selection structure an
if-then-else because it fits the following
statement:

if someCondition is true then
do oneProcess

else
do theOtherProcess

endif

For example, you might provide part of the
directions to your house as follows:
if traffic is backed up on Washington Boulevard then

continue for 1 block on First Avenue and turn left on Adams Lane
else

turn left on Washington Boulevard
endif

Similarly, a payroll program might include a statement such as:
if hoursWorked is more than 40 then

calculate regularPay and overtimePay
else

calculate regularPay
endif

These if-else examples can also be called dual-alternative ifs (or dual-alternative selections)
because they contain two alternatives—the action taken when the tested condition is true

YesNo

Figure 3-3 Selection structure
© 2015 Cengage Learning

Figure 3-2 Sequence structure
© 2015 Cengage Learning

91

Understanding the Three Basic Structures

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



and the action taken when it is false. Note that it is perfectly correct for one branch of the
selection to be a “do nothing” branch. In each of the following examples, an action is taken only
when the tested condition is true:
if it is raining then

take an umbrella
endif

if employee participates in the dental plan then
deduct $40 from employee gross pay

endif

The previous examples without else clauses are single-
alternative ifs (or single-alternative selections); a
diagram of their structure is shown in Figure 3-4. In these
cases, you do not take any special action if it is not raining
or if the employee does not belong to the dental plan. The
branch in which no action is taken is called the null case
or null branch.

The Loop Structure
The loop structure is shown in Figure 3-5. A loop
continues to repeat actions while a condition remains
true. The action or actions that occur within the loop are
the loop body. In the most common type of loop, a
condition is evaluated; if the answer is true, you execute
the loop body and evaluate the condition again. If the
condition is still true, you execute the loop body again
and then reevaluate the condition. This continues until
the condition becomes false, and then you exit the loop
structure. Programmers call this structure a while loop;
pseudocode that describes this type of loop starts with
while and ends with the end-structure statement endwhile. A flowchart that describes the
while loop structure always begins with a decision symbol that has a branch that returns to a
spot prior to the decision. You may hear programmers refer to looping as repetition or iteration.

The while loop tests a condition before executing the loop body even once. Another type of structured
loop tests a condition after the first loop body execution. You will learn more about this alternate type of loop
in Chapter 4 and in Appendix D. For the rest of this chapter, assume that all loops are while loops that ask
the controlling question before the loop body ever executes. All logical problems can be solved using only
the three structures—sequence, selection, and while loop.

Some programmers call a while loop a while…do loop, because it fits the following statement:

while testCondition continues to be true do
someProcess

endwhile

No

Yes

Figure 3-5 Loop structure
© 2015 Cengage Learning

YesNo

Figure 3-4 Single-alternative
selection structure
© 2015 Cengage Learning

92

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you provide directions to your house, part of the directions might be:
while the address of the house you are passing remains below 634

travel forward to the next house
look at the address on the house

endwhile

You encounter examples of looping every day, as in each of the following:
while you continue to be hungry

take another bite of food
determine whether you still feel hungry

endwhile

while unread pages remain in the reading assignment
read another unread page
determine whether there are more pages to read

endwhile

Combining Structures
All logic problems can be solved using only these three structures—sequence, selection, and loop.
The structures can be combined in an infinite number of ways. For example, you can have a
sequence of tasks followed by a selection, or a loop followed by a sequence. Attaching structures
end to end is called stacking structures. For example, Figure 3-6 shows a structured flowchart
achieved by stacking structures, and shows pseudocode that follows the flowchart logic.

sequence

Yes

No

stepB

stepA

YesNo

stepE stepD

conditionF?

conditionC?

stepA
stepB
if conditionC is true then
   stepD
else
   stepE
endif
while conditionF is true
   stepG
endwhile

selection

loop stepG

Figure 3-6 Structured flowchart and pseudocode with three stacked structures
© 2015 Cengage Learning

93

Understanding the Three Basic Structures

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Whether you are drawing a flowchart or writing pseudocode, you can use any opposite, mutually exclusive
words to represent decision outcomes—for example, Yes and No or true and false. This book follows the
convention of using Yes and No in flowchart diagrams and true and false in pseudocode.

The pseudocode in Figure 3-6 shows a sequence, followed by a selection, followed by a loop.
First stepA and stepB execute in sequence. Then a selection structure starts with the test of
conditionC. The instruction that follows the if clause (stepD) executes when its tested
condition (conditionC) is true, the instruction that follows else (stepE) executes when the
tested condition is false, and any instructions that follow endif execute in either case. In
other words, statements beyond the endif statement are “outside” the selection structure.
Similarly, the endwhile statement shows where the loop structure ends. In Figure 3-6, while
conditionF continues to be true, stepG continues to execute. If any statements followed the
endwhile statement, they would be outside of, and not a part of, the loop.

Besides stacking structures, you can replace any individual steps in a structured flowchart
diagram or pseudocode with additional structures. This means that any sequence, selection,
or loop can contain other sequence, selection, or loop structures. For example, you can have
a sequence of three tasks on one branch of a selection, as shown in Figure 3-7. Placing a
structure within another structure is called nesting structures.

In the pseudocode for the logic shown in Figure 3-7, the indentation shows that all three
statements (stepJ, stepK, and stepL) must execute if conditionH is true. These three
statements constitute a block, or a group of statements that executes as a single unit.

In place of one of the steps in the sequence in Figure 3-7, you can insert another structure. In
Figure 3-8, the process named stepK has been replaced with a loop structure that begins with
a test of the condition named conditionM.

if conditionH is true then
   stepJ
   stepK
   stepL
endif

No Yes

stepJ

stepK

stepL

conditionH?

Figure 3-7 Flowchart and pseudocode showing nested structures—a sequence nested within a selection
© 2015 Cengage Learning

94

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the pseudocode shown in Figure 3-8, notice that if and endif are vertically aligned. This
shows that they are “on the same level.” Similarly, stepJ, while, endwhile, and stepL are
aligned, and they are evenly indented. In the flowchart in Figure 3-8, you could draw a vertical
line through the symbols containing stepJ, the entry and exit points of the while loop, and
stepL. The flowchart and the pseudocode represent exactly the same logic.

When you nest structures, the statements that start and end a structure are always on the
same level and are always in pairs. Structures cannot overlap. For example, if you have an if
structure that contains a while structure, then the endwhile statement will come before the
endif. On the other hand, if you have a while that contains an if, then the endif statement
will come before the endwhile.

There is no limit to the number of levels you can create when you nest and stack structures.
For example, Figure 3-9 shows logic that has been made more complicated by replacing
stepN with a selection. The structure that performs stepP or stepQ based on the outcome of
conditionO is nested within the loop that is controlled by conditionM. In the pseudocode
in Figure 3-9, notice how the if, else, and endif that describe the condition selection are
aligned with each other and within the while structure that is controlled by conditionM.
As before, the indentation used in the pseudocode reflects the logic laid out graphically in
the flowchart.

conditionH?
No Yes

stepJ

stepL

stepNconditionM?

No

Yes

if conditionH is true then
   stepJ
   while conditionM is true
      stepN
   endwhile
   stepL
endif

Figure 3-8 Flowchart and pseudocode showing nested structures—a loop nested within a sequence,
nested within a selection
© 2015 Cengage Learning

95

Understanding the Three Basic Structures

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Many of the preceding examples are generic so that you can focus on the relationships of the
symbols without worrying what they do. Keep in mind that generic instructions like stepA

and generic conditions like conditionC can stand for anything. For example, Figure 3-10
shows the process of buying and planting flowers outdoors in the spring after the danger of
frost is over. The flowchart and pseudocode structures are identical to those in Figure 3-9.
In the exercises at the end of this chapter, you will be asked to develop more scenarios that
fit the same pattern.

conditionH?
No Yes

stepJ

stepL

stepQ stepP

No

Yes

conditionO?

conditionM?

No Yes

if conditionH is true then
   stepJ
   while conditionM is true
      if conditionO is true then
         stepP
      else
         stepQ
      endif
   endwhile
   stepL
endif

Figure 3-9 Flowchart and pseudocode for a selection within a loop within a sequence within a selection
© 2015 Cengage Learning

96

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The possible combinations of logical structures are endless, but each segment of a structured
program is a sequence, a selection, or a loop. The three structures are shown together in
Quick Reference 3-1. Notice that each structure has one entry point and one exit point. One
structure can attach to another only at one of these points.

No Yes

No

Yes

No Yes

are we planting
flowers this year?

plant
flowers
in ground

if we are planting flowers this year then
   buy flowers in pots
   while frost is still possible
      if it is over 50F today then
         bring potted flowers outdoors for the day
      else
         keep potted flowers inside for the day
      endif
   endwhile
   plant flowers in ground
endif

is frost
still
possible?

is it over
50F today?

keep potted
flowers inside
for the day

buy flowers
in pots

bring potted
flowers outdoors
for the day

Figure 3-10 The process of buying and planting flowers in the spring
© 2015 Cengage Learning

97

Understanding the Three Basic Structures

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



QUICK REFERENCE 3-1 The Three Structures

entry

Sequence

exit

entry

No

No

Yes Yes

Selection

exit

entry

Loop

exit

Try to imagine physically picking up any of the three structures using the entry and exit “handles.” These are
the spots at which you could connect one structure to another. Similarly, any complete structure, from its
entry point to its exit point, can be inserted within the process symbol of any other structure, forming nested
structures.

In summary, a structured program has the following characteristics:

A structured program includes only combinations of the three basic structures—
sequence, selection, and loop. Any structured program might contain one, two, or all
three types of structures.

Each of the structures has a single entry point and a single exit point.

Structures can be stacked or connected to one another only at their entry or exit points.

Any structure can be nested within another structure.

A structured program is never required to contain examples of all three structures. For example, many
simple programs contain only a sequence of several tasks that execute from start to finish without any
needed selections or loops. As another example, a program might display a series of numbers, looping to do
so, but never making any decisions about the numbers.

98

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Watch the video Understanding Structure.

TWO TRUTHS & A LIE

Understanding the Three Basic Structures

1. Each structure in structured programming is a sequence, selection, or
loop.

2. All logic problems can be solved using only three structures—sequence,
selection, and loop.

3. The three structures cannot be combined in a single program.

Using a Priming Input to Structure a Program
Recall the number-doubling program discussed in Chapter 2; Figure 3-11 shows a similar
program. The program accepts a number as input and checks for the end-of-data condition.
If the condition is not met, then the number is doubled, the answer is displayed, and the next
number is input.

Thefalsestatementis#3.Thethreestructurescanbestackedornested
inaninfinitenumberofways.

99

Using a Priming Input to Structure a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recall from Chapter 1 that this book uses eof to represent a generic end-of-data condition when the exact
tested parameters are not important to the discussion. In this example, the test is for not eof because
processing will continue while the end of the data has not been reached.

Is the program represented by Figure 3-11 structured?
At first, it might be hard to tell. The three allowed
structures were illustrated in Quick Reference 3-1, and
the flowchart in Figure 3-11 does not look exactly like
any of those three shapes. However, because you may
stack and nest structures while retaining overall
structure, it might be difficult to determine whether a
flowchart as a whole is structured. It is easiest to
analyze the flowchart in Figure 3-11 one step at a time.
The beginning of the flowchart looks like Figure 3-12.
Is this portion of the flowchart structured? Yes, it is a
sequence of two tasks—making declarations and
inputting a value.

input
originalNumber

Declarations
   num originalNumber
   num calculatedAnswer

start

stop not eof?
No

Yes

output
calculatedAnswer

calculatedAnswer =
originalNumber * 2

Don’t Do It
This logic is not structured.

Figure 3-11 Unstructured flowchart of a number-doubling program
© 2015 Cengage Learning

start

input
originalNumber

Declarations
num originalNumber
num calculatedAnswer

Figure 3-12 Beginning of a
number-doubling flowchart
© 2015 Cengage Learning

100

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Adding the next piece of the flowchart looks like
Figure 3-13. After a value is input for originalNumber, the
not eof? condition is tested. The sequence is finished;
either a selection or a loop is starting. You might not know
which one, but you do know that with a sequence, each
task or step must follow without any opportunity to
branch off. So, which type of structure starts with the
question in Figure 3-13? Is it a selection or a loop?

Selection and loop structures both start with a question,
but they differ as follows:

In a selection structure, the logic branches in one of
two directions after the question, and then the flow
comes back together; the question is not asked a
second time within the selection structure.

In a loop, each time the answer to the question
results in the execution of the loop body, the flow of
logic returns to the question that started the loop.
When the body of a loop executes, the question that
controls the loop is always asked again.

If the end-of-data condition is not met in the number-
doubling problem in the original Figure 3-11, then the
result is calculated and output, a new number is obtained, and the logic returns to the
question that tests for the end of the file. In other words, while the answer to the not eof?

question continues to be Yes, a body of two statements continues to execute. Therefore,
the not eof? question starts a structure that is more likely to be a loop than a selection.

The number-doubling problem does contain a loop, but it is not a structured loop. In a
structured while loop, the rules are:

1. You ask a question.

2. If the answer indicates you should execute the loop body, then you do so.

3. After you execute the loop body, then you must go right back to ask the question
again—you can’t go anywhere else!

The flowchart in Figure 3-11 asks a question. If the answer is Yes (that is, while not eof?

is true), then the program performs two tasks in the loop body: It does the arithmetic and
it displays the results. Doing two things is acceptable because two tasks with no possible
branching constitute a sequence, and it is fine to nest one structure within another
structure. However, when the sequence ends, the logic does not flow right back to the loop-
controlling question. Instead, it goes above the question to get another number. For the
loop in Figure 3-11 to be a structured loop, the logic must return to the not eof?

question when the embedded sequence ends.

The flowchart in Figure 3-14 shows the program with the flow of logic returning to the
not eof? question immediately after the nested two-step sequence. Figure 3-14 shows

input
originalNumber

Yes

not eof?
No

Declarations
num originalNumber
num calculatedAnswer

start

Figure 3-13 Number-doubling
flowchart continued
© 2015 Cengage Learning

101

Using a Priming Input to Structure a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



a structured flowchart, but it has one major flaw—the flowchart does not do the job of
continuously doubling different numbers.

Follow the flowchart through a typical program run, assuming the eof condition is an
input value of 0. Suppose that when the program starts, the user enters 9 for the value
of originalNumber. That is not eof, so the number is multiplied by 2, and 18 is
displayed as the value of calculatedAnswer. Then the question not eof? is asked again.
The not eof? condition must still be true because a new value representing the sentinel
(ending) value has not been entered and cannot be entered. The logic never returns to
the input originalNumber task, so the value of originalNumber never changes.
Therefore, 9 doubles again and the answer 18 is displayed again. The not eof? result is
still true, so the same steps are repeated. This goes on forever, with the answer 18 being
calculated and output repeatedly. The program logic shown in Figure 3-14 is structured,
but it does not work as intended. Conversely, the program in Figure 3-15 works, but
it is not structured because after the tasks execute within a structured loop, the flow of
logic must return directly to the loop-controlling question. In Figure 3-15, the logic
does not return to this question; instead, it goes “too high” outside the loop to repeat
the input originalNumber task.

input
originalNumber

Declarations
   num originalNumber
   num calculatedAnswer

start

stop

 not eof?
Yes

No

output
calculatedAnswer

calculatedAnswer =
originalNumber * 2

Don’t Do It

This logic is structured,
but the program never
accepts subsequent
input values.

Figure 3-14 Structured, but nonfunctional, flowchart of number-doubling problem
© 2015 Cengage Learning

102

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



How can the number-doubling problem be both structured and work as intended? Often,
for a program to be structured, you must add something extra. In this case, it is a priming
input step. A priming input or priming read is an added statement that gets the first input
value in a program. For example, if a program will receive 100 data values as input, you input
the first value in a statement that is separate from the other 99. You must do this to keep
the program structured.

Consider the solution in Figure 3-16; it is structured and it does what it is supposed to do.
It contains a shaded, additional input originalNumber statement. The program logic
contains a sequence and a loop. The loop contains another sequence.

input
originalNumber

Declarations
   num originalNumber
   num calculatedAnswer

start

stop

 not eof?
Yes

No

output
calculatedAnswer

calculatedAnswer =
originalNumber * 2

Don’t Do It
This logic is not structured.

Figure 3-15 Functional but unstructured flowchart
© 2015 Cengage Learning

103

Using a Priming Input to Structure a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The additional input originalNumber step shown in Figure 3-16 is typical in structured
programs. The first of the two input steps is the priming input. The term priming comes
from the fact that the input is first, or primary (it gets the process going, as in “priming
the pump”). The purpose of the priming input step is to control the upcoming loop
that begins with the not eof? question. The last element within the structured loop gets
the next, and all subsequent, input values. This is also typical in structured loops—the
last step executed within the loop body alters the condition tested in the question
that begins the loop, which in this case is the not eof? question.

In Chapter 2, you learned that the group of preliminary tasks that sets the stage for the main work of
a program is called the housekeeping section. The priming input is an example of a housekeeping task.

Figure 3-17 shows another way you might attempt to draw the logic for the number-
doubling program. At first glance, the figure might seem to show an acceptable solution
to the problem—it is structured, it contains a sequence followed by a single loop with
a sequence of three steps nested within it, and it appears to eliminate the need for the
priming input statement. When the program starts, the declarations are made and the

This step gets all
subsequent inputs.

This is the priming
input.

input
originalNumber

Declarations
   num originalNumber
   num calculatedAnswer

start

stop

 not eof?
Yes

No

output
calculatedAnswer

input
originalNumber

calculatedAnswer =
originalNumber * 2

Figure 3-16 Functional, structured flowchart for the number-doubling problem
© 2015 Cengage Learning

104

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



not eof? question is asked. If it is not the end of input data, then the program gets a
number, doubles it, and displays it. Then, if the not eof? condition remains true, the
program gets another number, doubles it, and displays it. The program might continue
while many numbers are input. At some point, the input number will represent the eof

condition; for example, the program might have been written to recognize the value 0 as
the program-terminating value. After the eof value is entered, its condition is not
immediately tested. Instead, a result is calculated and displayed one last time before
the loop-controlling question is asked again. If the program was written to recognize eof
when originalNumber is 0, then an extraneous answer of 0 will be displayed before
the program ends. Depending on the language you are using and on the type of input
being used, the results might be worse: The program might terminate by displaying an
error message or the value output might be indecipherable garbage. In any case, this last
output is superfluous—no value should be doubled and output after the eof condition is
encountered.

As a general rule, a program-ending test should always come immediately after an input
statement because that’s the earliest point at which it can be evaluated. Therefore, the best
solution to the number-doubling problem remains the one shown in Figure 3-16—the
structured solution containing the priming input statement.

input
originalNumber

Declarations
   num originalNumber
   num calculatedAnswer

start

stop

 not eof?
Yes

No

output
calculatedAnswer

calculatedAnswer =
originalNumber * 2

Don’t Do It
This logic is structured,
but flawed. When the user
inputs the eof value, it will
incorrectly be doubled and
output.

Figure 3-17 Structured but incorrect solution to the number-doubling problem
© 2015 Cengage Learning

105

Using a Priming Input to Structure a Program

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using a Priming Input to Structure a Program

1. A priming input is the statement that repeatedly gets all the data that is input
in a program.

2. A structured program might contain more instructions than an unstructured one.

3. A program can be structured yet still be incorrect.

Understanding the Reasons for Structure
At this point, you may very well be saying, “I liked the original number-doubling program
back in Figure 3-11 just fine. I could follow it. Also, the first program had one less step in it, so
it was less work. Who cares if a program is structured?”

Until you have some programming experience, it is difficult to appreciate the reasons for
using only the three structures—sequence, selection, and loop. However, staying with these
three structures is better for the following reasons:

Clarity—The number-doubling program is small. As programs get bigger, they get more
confusing if they are not structured.

Professionalism—All other programmers (and programming teachers you might encounter)
expect your programs to be structured. It is the way things are done professionally.

Efficiency—Most newer computer languages support structure and use syntax that lets you deal
efficiently with sequence, selection, and looping. Older languages, such as assembly languages,
COBOL, and RPG, were developed before the principles of structured programming were
discovered. However, even programs that use those older languages can be written in a
structured form. Newer languages such as C#, C++, and Java enforce structure by their syntax.

In older languages, you could leave a selection or loop before it was complete by using a “go to” statement.
The statement allowed the logic to “go to” any other part of the program whether it was within the same
structure or not. Structured programming is sometimes called goto-less programming.

Maintenance—You and other programmers will find it easier to modify and maintain
structured programs as changes are required in the future.

Modularity—Structured programs can be easily broken down into modules that can be
assigned to any number of programmers. The routines are then pieced back together like
modular furniture at each routine’s single entry or exit point. Additionally, a module often
can be used in multiple programs, saving development time in the new project.

Thefalsestatementis#1.Apriminginputgetsthefirstinput.

106

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding the Reasons for Structure

1. Structured programs are clearer than unstructured programs.

2. You and other programmers will find it easier to modify and maintain structured
programs as changes are required in the future.

3. Structured programs are not easily divided into parts, making them less prone to error.

Recognizing Structure
When you are beginning to learn about structured
program design, it is difficult to detect whether a
flowchart of a program’s logic is structured. For
example, is the flowchart segment in Figure 3-18
structured?

Yes, it is. It has a sequence and a selection structure.

Is the flowchart segment in Figure 3-19 structured?

Yes, it is. It has a loop and a selection within the loop.

Is the flowchart segment in the upper-left corner of
Figure 3-20 structured?

No, it is not built from the three basic
structures. One way to straighten out an
unstructured flowchart segment is to use
the “spaghetti bowl” method; that is,
picture the flowchart as a bowl of spaghetti
that you must untangle. Imagine you can
grab one piece of pasta at the top of the
bowl and start pulling. As you “pull” each
symbol out of the tangled mess, you can
untangle the separate paths until the entire
segment is structured.

B?
YesNo

A

C

Figure 3-18 Example 1
© 2015 Cengage Learning

D?

E?

Yes

No
No Yes

F

Figure 3-19 Example 2
© 2015 Cengage Learning

Thefalsestatementis#3.Structuredprogramscanbeeasilybrokendowninto
modulesthatcanbeassignedtoanynumberofprogrammers.

107

Recognizing Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



H?

I?
Yes

YesNo

No

No

G

J K
H?

G

H?

G

J

G
1

2

3

4

5

6

7

No Yes
H?

I?

G

J

No

No

Yes
H?

I?

G

J J

No

No

Yes

Yes

H?

I?

G

J J K

No

No

Yes

Yes

H?

I?

G

J J K

Don’t Do It
This program segment is
not structured.

Figure 3-20 Example 3 and process to structure it
© 2015 Cengage Learning

108

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Look at the diagram in the upper-left corner of Figure 3-20. If you could start pulling the
arrow at the top, you would encounter a box labeled G. (See Figure 3-20, Step 1.) A single
process like G is part of an acceptable structure—it constitutes at least the beginning of a
sequence structure.

Imagine that you continue pulling symbols from the tangled segment. The next item
in the flowchart is a question that tests a condition labeled H, as you can see in
Figure 3-20, Step 2. At this point, you know the sequence that started with G has ended.
Sequences never have questions in them, so the sequence is finished; either a selection
or a loop is beginning with question H. A loop must return to the loop-controlling
question at some later point. You can see from the original logic that whether the
answer to H is Yes or No, the logic never returns to H. Therefore, H begins a selection
structure, not a loop structure.

To continue detangling the logic, you would pull up on the flowline that emerges from the left
side (the No side) of Question H. You encounter J, as shown in Step 3 of Figure 3-20. When
you continue beyond J, you reach the end of the flowchart.

Now you can turn your attention to the Yes side (the right side) of the condition tested
in H. When you pull up on the right side, you encounter Question I. (See Step 4 of
Figure 3-20.)

In the original version of the flowchart in Figure 3-20, follow the line on the left side
of Question I. The line emerging from the left side of selection I is attached to J, which
is outside the selection structure. You might say the I-controlled selection is becoming
entangled with the H-controlled selection, so you must untangle the structures by
repeating the step that is causing the tangle. (In this example, you repeat Step J to
untangle it from the other usage of J.) Continue pulling on the flowline that
emerges from J until you reach the end of the program segment, as shown in Step 5 of
Figure 3-20.

Now pull on the right side of Question I. Process K pops up, as shown in Step 6 of
Figure 3-20; then you reach the end.

At this point, the untangled flowchart has three loose ends. The loose ends of Question I can
be brought together to form a selection structure; then the loose ends of Question H can be
brought together to form another selection structure. The result is the flowchart shown in
Step 7 of Figure 3-20. The entire flowchart segment is structured—it has a sequence followed
by a selection inside a selection.

If you want to try structuring a more difficult example of an unstructured program, see Appendix B.

109

Recognizing Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Recognizing Structure

1. Some processes cannot be expressed in a structured format.

2. An unstructured flowchart can achieve correct outcomes.

3. Any unstructured flowchart can be “detangled” to become structured.

Structuring and Modularizing Unstructured Logic
Recall the dog-washing process illustrated in Figure 3-1 at the beginning of this chapter.
When you look at it now, you should recognize it as an unstructured process. Can
this process be reconfigured to perform precisely the same tasks in a structured way?
Of course!

Figure 3-21 demonstrates how you might approach structuring the dog-washing logic.
Part 1 of the figure shows the beginning of the process. The first step, Catch dog, is a
simple sequence. This step is followed by a question. When a question is encountered,
the sequence is over, and either a loop or a selection starts. In this case, after the dog
runs away, you must catch the dog and determine whether he runs away again, so a
loop begins. To create a structured loop like the ones you have seen earlier in this
chapter, you can repeat the Catch dog process and return immediately to the Does dog
run away? question.

Thefalsestatementis#1.Anysetofinstructionscanbeexpressedin
astructuredformat.

110

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Catch dog

Catch
dog

Does dog
run away?

start

Catch dog

Catch dog

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No
Turn off
water

Does dog
run away?

Turn on water

Catch dog

Does dog
run away?

start

Catch
dog

Yes

No

Does dog
run away?

Turn on water

Catch dog

Catch
dog

Turn off
water

Does dog
run away?

Turn on water

Does dog
run away?

start

Catch dog

Don’t Do It
This loop is not structured
because its logic does
not return to the question
after its body executes.

1

3

2

Figure 3-21 Steps to structure the dog-washing process
© 2015 Cengage Learning

111

Structuring and Modularizing Unstructured Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the original flowchart in Figure 3-1, you turn on the water when the dog does not run
away. This step is a simple sequence, so it can correctly be added after the loop. When the
water is turned on, the original logic checks whether the dog runs away after this new
development. This starts a loop. In the original flowchart, the lines cross, creating a tangle, so
you repeat as many steps as necessary to detangle the lines. After you turn off the water and
catch the dog, you encounter the question Does dog have shampoo on? Because the logic
has not yet reached the shampooing step, there is no need to ask this question; the answer at
this point always will be No. When one of the logical paths emerging from a question can
never be traveled, you can eliminate the question. Part 2 of Figure 3-21 shows that if the
dog runs away after you turn on the water, but before you’ve gotten the dog wet and
shampooed him, you must turn the water off, catch the dog, and return to the question
that asks whether the dog runs away.

The logic in Part 2 of Figure 3-21 is not structured because the second loop that begins
with the question Does dog run away? does not immediately return to the loop-
controlling question after its body executes. So, to make the loop structured, you can
repeat the actions that occur before returning to the loop-controlling question. The
flowchart segment in Part 3 of Figure 3-21 is structured; it contains a sequence, a loop, a
sequence, and a final, larger loop. This last loop contains its own sequence, loop, and
sequence.

After the dog is caught and the water is on, you wet and shampoo the dog. Then,
according to the original flowchart in Figure 3-1, you once again check to see whether
the dog has run away. If he has, you turn off the water and catch the dog. From this
location in the logic, the answer to the Does dog have shampoo on? question will always
be Yes; as before, there is no need to ask a question when there is only one possible
answer. So, if the dog runs away, the last loop executes. You turn off the water, continue
to catch the dog as he repeatedly escapes, and turn the water on. When the dog is
caught at last, you rinse the dog and end the program. Figure 3-22 shows both the
complete flowchart and pseudocode.

112

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The flowchart in Figure 3-22 is complete and is structured. It contains alternating sequence
and loop structures.

start

stop

Catch dog

Catch dog

Turn off water

Turn on water

Catch dog

Catch dog

Turn on water

Get dog wet
and apply
shampoo

No

No

No

No

Yes

Yes

Yes

Does dog
run away?

Does dog
run away?

Does dog
run away?

Does dog
run away?

Turn off water

Turn on water

Catch dog

Rinse dog

Catch dog

No

Yes

YesDoes dog
run away?

start
   Catch dog
   while dog runs away
      Catch dog
   endwhile
   Turn on water
   while dog runs away
      Turn off water
      Catch dog
      while dog runs away
         Catch dog
      endwhile
      Turn on water
   endwhile
   Get dog wet and apply shampoo
   while dog runs away
      Turn off water
      Catch dog
      while dog runs away
         Catch dog
      endwhile
      Turn on water
   endwhile
   Rinse dog
stop

Figure 3-22 Structured dog-washing flowchart and pseudocode
© 2015 Cengage Learning

113

Structuring and Modularizing Unstructured Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 3-22 includes three places where the sequence-loop-sequence of catching the dog and
turning on the water are repeated. If you wanted to, you could modularize the duplicate
sections so that their instruction sets are written once and contained in a separate module.
Figure 3-23 shows a modularized version of the program; the three module calls are shaded.

Rinse dog

Does dog
run away?

Does dog
run away?

Does dog
run away?

Yes

Yes

Yes

No

No

No

start

catchDogStartWater()

catchDogStartWater()

catchDogStartWater()

catchDogStartWater()

Get dog wet and
apply shampoo

Turn off water

Catch dog

Catch dog

Turn off water

Turn on water

stop

return

start
   catchDogStartWater()
   while dog runs away 
      Turn off water
      catchDogStartWater()
   endwhile
   Get dog wet and apply shampoo
   while dog runs away
      Turn off water
      catchDogStartWater()
   endwhile
   Rinse dog
stop

catchDogStartWater()
   Catch dog
   while dog runs away
      Catch dog
   endwhile
   Turn on water
return

Figure 3-23 Modularized version of the dog-washing program
© 2015 Cengage Learning

114

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



One advantage to modularizing the steps needed to catch the dog and start the water
is that the main program becomes shorter and easier to understand. Another
advantage is that if this process needs to be modified, the changes can be made in just
one location. For example, if you decided it was necessary to test the water
temperature each time you turned on the water, you would add those instructions only
once in the modularized version. In the original version in Figure 3-22, you would have
to add those instructions in three places, causing more work and increasing the chance
for errors.

No matter how complicated, any set of steps can always be reduced to combinations
of the three basic sequence, selection, and loop structures. These structures can be
nested and stacked in an infinite number of ways to describe the logic of any process
and to create the logic for every computer program written in the past, present, or
future.

For convenience, many programming languages allow two variations of the three basic structures. The case
structure is a variation of the selection structure and the do loop is a variation of the while loop. You can
learn about these two structures in Appendix D. Even though these extra structures can be used in most
programming languages, all logical problems can be solved without them.

Watch the video Structuring Unstructured Logic.

TWO TRUTHS & A LIE

Structuring and Modularizing Unstructured Logic

1. When you encounter a question in a logical diagram, a sequence should
be ending.

2. In a structured loop, the logic returns to the loop-controlling question after the
loop body executes.

3. If a flowchart or pseudocode contains a question to which the answer never
varies, you can eliminate the question.

Thefalsestatementis#1.Whenyouencounteraquestioninalogicaldiagram,either
aselectionoraloopshouldstart.However,anytypeofstructuremightendbefore
thequestionisencountered.

115

Structuring and Modularizing Unstructured Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter Summary
Spaghetti code is the descriptive name for unstructured program statements that do not
follow the rules of structured logic.

Clearer programs can be constructed using only three basic structures: sequence,
selection, and loop. These three structures can be combined in an infinite number of ways
by stacking and nesting them. Each structure has a single entry point and a single exit
point; one structure can attach to another only at one of these points.

A priming input is the statement that gets the first input value prior to starting
a structured loop. Usually, the last step within the loop body gets the next and all
subsequent input values.

Programmers use structured techniques to promote clarity, professionalism, efficiency,
and modularity.

One way to order an unstructured flowchart segment is to imagine it as a bowl of
spaghetti that you must untangle.

Any set of logical steps can be rewritten to conform to the three structures: sequence,
selection, and loop.

Key Terms
Spaghetti code is snarled, unstructured program logic.

Unstructured programs are programs that do not follow the rules of structured logic.

Structured programs are programs that do follow the rules of structured logic.

A structure is a basic unit of programming logic; each structure is a sequence, selection, or loop.

A sequence structure contains series of steps executed in order. A sequence can contain any
number of tasks, but there is no option to branch off, skipping any of the tasks.

A selection structure or decision structure contains a question, and, depending on the
answer, takes one of two courses of action before continuing with the next task.

An end-structure statement designates the end of a pseudocode structure.

An if-then-else is another name for a dual-alternative selection structure.

Dual-alternative ifs (or dual-alternative selections) define one action to be taken when
the tested condition is true and another action to be taken when it is false.

Single-alternative ifs (or single-alternative selections) take action on just one branch of
the decision.

The null case or null branch is the branch of a decision in which no action is taken.

A loop structure continues to repeat actions while a test condition remains true.

116

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A loop body is the set of actions that occur within a loop.

A while loop is a structure that continues to repeat a process while some condition
remains true.

Repetition and iteration are alternate names for a loop structure.

A while…do loop is an alternate name for a while loop.

Stacking structures is the act of attaching structures end to end.

Nesting structures is the act of placing a structure within another structure.

A block is a group of statements that executes as a single unit.

A priming input or priming read is the statement that reads the first input prior to starting
a structured loop that uses the data.

Goto-less programming is a name to describe structured programming, because structured
programmers do not use a “go to” statement.

Exercises

Review Questions

1. Snarled program logic is called code.

a. snake
b. string

c. spaghetti
d. gnarly

2. The three structures of structured programming are .

a. sequence, selection, and loop
b. selection, loop, and iteration

c. sequence, order, and process
d. if, else, and then

3. A sequence structure can contain .

a. only one task
b. exactly three tasks

c. no more than three tasks
d. any number of tasks

4. Which of the following is not another term for a selection structure?

a. decision structure
b. loop structure

c. dual-alternative if structure
d. if-then-else structure

5. The structure that tests a condition, takes action if the result is true, and then tests
the condition again can be called all of the following except a(n) .

a. iteration
b. loop

c. repetition
d. if-then-else

117

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6. Placing a structure within another structure is called the structures.

a. stacking
b. untangling

c. building
d. nesting

7. Attaching structures end to end is called .

a. stacking
b. untangling

c. building
d. nesting

8. When an action is required if a condition is true, but no action is needed if it is
false, you use a .

a. sequence
b. loop

c. dual-alternative selection
d. single-alternative selection

9. To take action as long as a condition remains true, you use a .

a. sequence
b. loop

c. dual-alternative selection
d. single-alternative selection

10. When you must perform one action when a condition is true and a different one
when it is false, you use a .

a. sequence
b. loop

c. dual-alternative selection
d. single-alternative selection

11. Which of the following attributes do all three basic structures share?

a. Their flowcharts all contain exactly three processing symbols.
b. They all have one entry and one exit point.
c. They all contain a decision.
d. They all begin with a process.

12. Which is true of stacking structures?

a. Two incidences of the same structure cannot be stacked adjacently.
b. When you stack structures, you cannot nest them in the same program.
c. Each structure has only one point where it can be stacked on top of another.
d. When you stack structures, the top structure must be a sequence.

13. When you input data in a loop within a program, the input statement that precedes
the loop .

a. is the only part of the program allowed to be unstructured
b. cannot result in eof

c. is called a priming input
d. executes hundreds or even thousands of times in most business programs

118

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14. A group of statements that executes as a unit is a .

a. block
b. family

c. chunk
d. cohort

15. Which of the following is acceptable in a structured program?

a. placing a sequence within the true branch of a dual-alternative decision
b. placing a decision within a loop
c. placing a loop within one of the steps in a sequence
d. All of these are acceptable.

16. In a selection structure, the structure-controlling question is .

a. asked once at the beginning of the structure
b. asked once at the end of the structure
c. asked repeatedly until it is false
d. asked repeatedly until it is true

17. When a loop executes, the structure-controlling question is .

a. asked exactly once
b. never asked more than once
c. asked either before or after the loop body executes
d. asked only if it is true, and not asked if it is false

18. Which of the following is not a reason for enforcing structure rules in computer
programs?

a. Structured programs are clearer to understand than unstructured ones.
b. Other professional programmers will expect programs to be structured.
c. Structured programs usually are shorter than unstructured ones.
d. Structured programs can be broken down into modules easily.

19. Which of the following is not a benefit of modularizing programs?

a. Modular programs are easier to read and understand than nonmodular ones.
b. If you use modules, you can ignore the rules of structure.
c. Modular components are reusable in other programs.
d. Multiple programmers can work on different modules at the same time.

20. Which of the following is true of structured logic?

a. You can use structured logic with newer programming languages, such as Java
and C#, but not with older ones.

b. Any task can be described using some combination of the three structures:
sequence, selection, and loop.

c. Structured programs require that you break the code into easy-to-handle
modules that each contain no more than five actions.

d. All of these are true.

119

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Exercises

1. In Figure 3-10, the process of buying and planting flowers in the spring was shown
using the same structures as the generic example in Figure 3-9. Use the same logical
structure as in Figure 3-9 to create a flowchart or pseudocode that describes some
other process you know.

2. Each of the flowchart segments in Figure 3-24 is unstructured. Redraw each
segment so that it does the same thing but is structured.

a.

B?
Yes

No

A

C

b.

E?
YesNo

D

H

I

F

G?
Yes

No

c.

L?
Yes

Yes

No

K

P

R

M

N

O?
Yes

No

Q?

No

Figure 3-24 Flowcharts for Exercise 2 (continues)
© 2015 Cengage Learning

120

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Write pseudocode for each example (a through e) in Exercise 2, making sure your
pseudocode is structured and accomplishes the same tasks as the flowchart segment.

4. Assume that you have created a mechanical arm that can hold a pen. The arm can
perform the following tasks:

Lower the pen to a piece of paper.

Raise the pen from the paper.

Move the pen 1 inch along a straight line. (If the pen is lowered, this action
draws a 1-inch line from left to right; if the pen is raised, this action just
repositions the pen 1 inch to the right.)

Turn 90 degrees to the right.

Draw a circle that is 1 inch in diameter.

Draw a structured flowchart or write structured pseudocode describing the logic
that would cause the arm to draw or write the following. Have a fellow student act

d.

T?
Yes

Yes

No

S

Y

A

U

V

X

Yes

No

Z?

W?

No

e.

B?
Yes

Yes

No

G

I

I

C

D

F

Yes

No

H?

E?

No

Figure 3-24 Flowcharts for Exercise 2
© 2015 Cengage Learning

(continued)

121

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



as the mechanical arm and carry out your instructions. Don’t reveal the desired
outcome to your partner until the exercise is complete.

a. a 1-inch square

b. a 2-inch by 1-inch rectangle

c. a string of three beads

d. a short word (for example, cat)

e. a four-digit number

5. Assume that you have created a mechanical robot that can perform the following
tasks:

Stand up.

Sit down.

Turn left 90 degrees.

Turn right 90 degrees.

Take a step.

Additionally, the robot can determine the answer to one test condition:

Am I touching something?

a. Place two chairs 20 feet apart, directly facing each other. Draw a structured
flowchart or write pseudocode describing the logic that would allow the robot to
start from a sitting position in one chair, cross the room, and end up sitting in the
other chair. Have a fellow student act as the robot and carry out your
instructions.

b. Draw a structured flowchart or write pseudocode describing the logic that would
allow the robot to start from a sitting position in one chair, stand up and circle
the chair, cross the room, circle the other chair, return to the first chair, and sit.
Have a fellow student act as the robot and carry out your instructions.

6. Draw a structured flowchart or write pseudocode that describes the process of
guessing a number between 1 and 100. After each guess, the player is told that the
guess is too high or too low. The process continues until the player guesses the
correct number. Pick a number and have a fellow student try to guess it by following
your instructions.

7. Looking up a word in a dictionary can be a complicated process. For example,
assume that you want to look up logic. You might open the dictionary to a random
page and see juice. You know this word comes alphabetically before logic, so you flip
forward and see lamb. That is still not far enough, so you flip forward and see
monkey. You have gone too far, so you flip back, and so on. Draw a structured
flowchart or write pseudocode that describes the process of looking up a word in a
dictionary. Pick a word at random and have a fellow student attempt to carry out
your instructions.

122

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8. Draw a structured flowchart or write structured pseudocode describing how to do a
load of laundry. Include at least two decisions and two loops.

9. Draw a structured flowchart or write structured pseudocode describing how to
study for an exam. Include at least two decisions and two loops.

10. Draw a structured flowchart or write structured pseudocode describing how to
wrap a present. Include at least two decisions and two loops.

11. Draw a structured flowchart or write structured pseudocode describing the steps to
prepare your favorite dish. Include at least two decisions and two loops.

Performing Maintenance

1. A file named MAINTENANCE03-01.txt is included with your downloadable stu-
dent files. Assume that this program is a working program in your organization and
that it needs modifications as described in the comments (lines that begin with two
slashes) at the beginning of the file. Your job is to alter the program to meet the new
specifications.

Find the Bugs

1. Your downloadable files for Chapter 3 include DEBUG03-01.txt, DEBUG03-02.txt,
and DEBUG03-03.txt. Each file starts with some comments that describe the problem.
Comments are lines that begin with two slashes (//). Following the comments, each file
contains pseudocode that has one or more bugs you must find and correct.

2. Your downloadable files for Chapter 3 include a file named DEBUG03-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. Choose a simple children’s game and describe its logic, using a structured flowchart
or pseudocode. For example, you might try to explain Rock, Paper, Scissors; Musical
Chairs; Duck, Duck, Goose; the card game War; or the elimination game Eenie,
Meenie, Minie, Moe.

2. Choose a television game show such as Wheel of Fortune or Jeopardy! and describe
its rules using a structured flowchart or pseudocode.

3. Choose a sport such as baseball or football and describe the actions in one limited
play period (such as an at-bat in baseball or a possession in football) using a
structured flowchart or pseudocode.

123

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Up for Discussion

1. Find more information about one of the following people and explain why he or she
is important to structured programming: Edsger Dijkstra, Corrado Bohm, Giuseppe
Jacopini, and Grace Hopper.

2. Computer programs can contain structures within structures and stacked
structures, creating very large programs. Computers also can perform millions
of arithmetic calculations in an hour. How can we possibly know the results are
correct?

3. Develop a checklist of rules you can use to help you determine whether a flowchart
or pseudocode segment is structured.

124

C H A P T E R 3 Understanding Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 4
Making Decisions

In this chapter, you will learn about:

Boolean expressions and the selection structure

The relational comparison operators

AND logic

OR logic

NOT logic

Making selections within ranges

Precedence when combining AND and OR operators

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Boolean Expressions and the Selection Structure
The reason people frequently think computers are smart lies in the ability of computer
programs to make decisions. A medical diagnosis program that can decide if your symptoms
fit various disease profiles seems quite intelligent, as does a program that can offer different
potential driving routes based on your destination.

Every decision a computer program makes involves evaluating a Boolean expression—an
expression whose value can be only true or false. True/false evaluation is natural from a
computer’s standpoint, because computer circuitry consists of two-state on-off switches,
often represented by 1 or 0. Every computer decision yields a true-or-false, yes-or-no, 1-or-0
result. A Boolean expression is used to control every selection structure. The selection
structure is not new to you—it’s one of the three basic structures you learned about in
Chapter 3. See Figures 4-1 and 4-2.

Mathematician George Boole (1815–1864) approached logic more simply than his predecessors did,
by expressing logical selections with common algebraic symbols. He is considered the founder of
mathematical logic, and Boolean (true/false) expressions are named for him.

In Chapter 3 you learned that the structure in Figure 4-1 is a dual-alternative selection
because an action is associated with each of two possible outcomes: Depending on the answer
to the question in the decision symbol, the logical flow proceeds either to the left branch
of the structure or to the right. The choices are mutually exclusive; that is, the logic can flow
to only one of the two alternatives, never to both. This form of the selection structure is an
if-then-else selection.

No Yes

Figure 4-1 The dual-alternative
selection structure
© 2015 Cengage Learning

YesNo

Figure 4-2 The single-alternative
selection structure
© 2015 Cengage Learning

126

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



This book follows the convention that the two logical paths emerging from a dual-alternative selection are
drawn to the right and left of a diamond in a flowchart. Some programmers draw one of the flowlines emerging
from the bottom of the diamond. The exact format of the diagram is not as important as the idea that one
logical path flows into a selection, and two possible outcomes emerge. Your flowcharts will be easier for
readers to follow if you are consistent when you draw selections. For example, if the Yes branch flows to the
right for one selection, it should flow to the right for all subsequent selections in the same flowchart.

The flowchart segment in Figure 4-2 represents a single-alternative selection in which action
is required for only one outcome of the question. This form of the selection structure is called
an if-then selection, because no alternative or else action is necessary.

Quick Reference 4-1 shows the pseudocode standards used to construct if statements in
this book.

QUICK REFERENCE 4-1 if Statement Pseudocode Standards

if condition then
statements that execute when condition is true

else
statements that execute when condition is false

endif

The if keyword starts the
statement and precedes any
statements that execute
when the tested condition
is true.

The tested condition is a Boolean expression. It might be a comparison
such as x > y, it might be a Boolean variable if the language supports
that type, or it might be a call to a method that returns a Boolean value.
(Chapter 9 in the comprehensive version of this book describes methods
that return values.)

Many languages do not use the word then;
this book uses it for clarity. 

The else
keyword
precedes any
statements
that execute
if the tested
condition is
false. An
else clause
is not
required. The endif keyword ends

the structure.

Although many modern languages
do not require indentation, the
statements in both if and else
clauses in this book are indented.

Figure 4-3 shows the flowchart and pseudocode for an interactive program that computes pay
for employees. The program displays the weekly pay for each employee at the same hourly
rate ($10.00) and assumes that there are no payroll deductions. The mainline logic calls
housekeeping(), detailLoop(), and finish() modules. The detailLoop() module contains
a typical dual-alternative selection that determines whether an employee has worked more
than a standard workweek (40 hours), and pays one and one-half times the employee’s usual
hourly rate for hours worked in excess of 40 per week.

127

Boolean Expressions and the Selection Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



return

YesNo hours >
WORK_WEEK?

pay = hours *
RATE

pay = (WORK_WEEK *
RATE) + (hours –
WORK_WEEK) * RATE *
OVERTIME

detailLoop()

input hours

output "Enter
hours worked >> "

output "Enter
employee name or ",
QUIT, "to quit >> "

output "Pay for ", 
name, "is $”, pay

input name

output "Overtime pay
calculations
complete"

finish()

return

stop

name <>
QUIT?

Yes

No

start

housekeeping()

finish()

detailLoop()

Declarations
   string name
   num hours
   num RATE = 10.00
   num WORK_WEEK = 40
   num OVERTIME = 1.5
   num pay
   string QUIT = "ZZZ"

housekeeping()

return

input name

output "This program
computes payroll
based on"

output "overtime rate
of ", OVERTIME,
"after ", WORK_WEEK,
" hours."

output "Enter
employee name or ",
QUIT, "to quit >> "

Figure 4-3 Flowchart and pseudocode for overtime payroll program (continues)

128

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Throughout this book, many examples are presented in both flowchart and pseudocode form. When you
analyze a solution, you might find it easier to concentrate on just one of the two design tools at first. When
you understand how the program works using one design tool (for example, the flowchart), you can confirm
that the solution is identical using the other tool.

start
   Declarations
      string name
      num hours
      num RATE = 10.00
      num WORK_WEEK = 40
      num OVERTIME = 1.5
      num pay
      string QUIT = "ZZZ"
   housekeeping()
   while name <> QUIT
      detailLoop()
   endwhile
   finish()
stop

housekeeping()
   output "This program computes payroll based on"
   output "overtime rate of ", OVERTIME, "after ", WORK_WEEK, " hours."
   output "Enter employee name or ", QUIT, "to quit >> "
   input name
return

detailLoop()
   output "Enter hours worked >> "
   input hours
   if hours > WORK_WEEK then
      pay = (WORK_WEEK * RATE) + (hours – WORK_WEEK) * RATE * OVERTIME
   else
      pay = hours * RATE
   endif
   output "Pay for ", name, "is $", pay
   output "Enter employee name or ", QUIT, "to quit >> "
   input name
return

finish()
   output "Overtime pay calculations complete" 
return

Figure 4-3 Flowchart and pseudocode for overtime payroll program
© 2015 Cengage Learning

(continued)

129

Boolean Expressions and the Selection Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the detailLoop() module of the program in Figure 4-3, the decision contains two clauses:

The if-then clause is the part of the decision that holds the action or actions that
execute when the tested condition in the decision is true. In this example, the clause holds
the longer overtime calculation.

The else clause of the decision is the part that executes only when the tested condition
in the decision is false. In this example, the clause contains the shorter calculation.

Figure 4-4 shows a sample execution of the program in a command-line environment.
Data values are entered for three employees. The first two employees do not work
more than 40 hours, so their pay is displayed simply as hours times 10.00. The third
employee, however, has worked one hour of overtime, and so makes $15 for the last
hour instead of $10.

Many modern programming languages support Boolean data types. Instead of holding numbers or words,
each Boolean variable can hold only one of two values—true or false.

Watch the video Boolean Expressions and Decisions.

Figure 4-4 Sample execution of the overtime payroll program in Figure 4-3

130

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Boolean Expressions and the Selection Structure

1. The if-then clause is the part of a decision that executes when a tested
condition in a decision is true.

2. The else clause is the part of a decision that executes when a tested condition
in a decision is true.

3. A Boolean expression is one whose value is true or false.

Using Relational Comparison Operators
Quick Reference 4-2 describes the six relational comparison operators supported by all
modern programming languages. Each of these operators is binary—that is, like the
arithmetic operators you learned about in Chapter 2, each relational comparison operator in
Quick Reference 4-2 requires two operands. Each expression that uses one of these operators
evaluates to true or false. Notice that some operators are formed using two characters with no
space between them.

Both operands in a comparison expression must be the same data type; that is, you can
compare numeric values to other numeric values, and text strings to other strings. Some
programming languages allow exceptions; for example, you can compare a character to a
number using the character’s numeric code value. Appendix A contains more information on
coding systems. In this book, only operands of the same data type will be compared.

In any Boolean expression, the two values compared can be either variables or constants.
For example, the Boolean expression currentTotal = 100 compares a variable,
currentTotal, to a numeric constant, 100. Depending on the value of currentTotal, the
expression is true or false. In the expression currentTotal = previousTotal, both values
are variables, and the result is also true or false depending on the values stored in each of the
two variables. Although it’s legal, you would never use expressions in which you compare
two constants—for example, 20 = 20 or 30 = 40. Such expressions are trivial expressions
because each will always evaluate to the same result: true for 20 = 20 and false for 30 = 40.

Thefalsestatementis#2.Theelseclauseisthepartofadecisionthatexecuteswhen
atestedconditioninadecisionisfalse.

131

Using Relational Comparison Operators

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



QUICK REFERENCE 4-2 Relational Comparison Operators

Some languages require special operations to compare strings, but this book will assume
that the standard comparison operators work correctly with strings based on their
alphabetic values. For example, the comparison "black" < "blue" would be evaluated as
true because "black" precedes "blue" alphabetically. Usually, string variables are not
considered to be equal unless they are identical, including the spacing and whether they
appear in uppercase or lowercase. For example, “black pen” is not equal to “blackpen”,
“BLACK PEN”, or “Black Pen”.

Any decision can be made using combinations of just three types of comparisons: equal,
greater than, and less than. You never need the three additional comparisons (greater than
or equal, less than or equal, or not equal), but using them often makes decisions more
convenient. For example, assume that you need to issue a 10 percent discount to any
customer whose age is 65 or greater, and charge full price to other customers. You can use
the greater-than-or-equal-to symbol to write the logic as follows:

Operator Name Discussion

= Equivalency operator Evaluates as true when its operands are equivalent. Because
the assignment operator in many languages is the equal
sign, those languages often use a double equal sign (==) as
the equivalency operator to avoid confusion with the
assignment operator.

> Greater-than
operator

Evaluates as true when the left operand is greater than the
right operand.

< Less-than operator Evaluates as true when the left operand is less than the right
operand.

>= Greater-than-or-
equal-to operator

Evaluates as true when the left operand is greater than or
equivalent to the right operand.

<= Less-than-or-equal-to
operator

Evaluates as true when the left operand is less than or
equivalent to the right operand.

<> Not-equal-to operator Evaluates as true when its operands are not equivalent.
Some languages use an exclamation point followed by an
equal sign (!=) as the not-equal-to operator. In a flowchart or
pseudocode, you might prefer to use the algebraic not-equal-
to symbol (≠) or to spell out the words “not equal to.”

132

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if customerAge >= 65 then
discount = 0.10

else
discount = 0

endif

As an alternative, or if the >= operator did not exist, you could express the same
logic by writing:
if customerAge < 65 then

discount = 0
else

discount = 0.10
endif

In any decision for which a >= b is true, then a < b is false. Conversely, if a >= b is false, then
a < b is true. By rephrasing the question and swapping the actions taken based on the
outcome, you can make the same decision in multiple ways. The clearest route is often to ask
a question so the positive or true outcome results in the action that was your motivation for
making the test. When your company policy is to “provide a discount for those who are 65
and older,” the phrase greater than or equal to 65 comes to mind, so it is the most natural to
use. Conversely, if your policy is to “provide no discount for those under 65,” then it is more
natural to use the less than 65 syntax. Either way, the same people receive a discount.

Comparing two amounts to decide if they are not equal to each other is the most confusing of
all the comparisons. Using not equal to in decisions involves thinking in double negatives,
which can make you prone to introducing logical errors into your programs. For example,
consider the flowchart segment in Figure 4-5.

In Figure 4-5, if the value of customerCode is equal to 1, the logical flow follows the false branch
of the selection. If customerCode <> 1 is true, the discount is 0.25; if customerCode <> 1 is not
true, it means the customerCode is 1, and the discount is 0.50. Even reading the phrase “if
customerCode is not equal to 1 is not true” is awkward.

No YescustomerCode
<> 1?

discount = 0.50 discount = 0.25

if customerCode <> 1 then
   discount = 0.25
else
   discount = 0.50
endif

Figure 4-5 Using a negative comparison
© 2015 Cengage Learning

133

Using Relational Comparison Operators

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 4-6 shows the same decision, this time asked using positive logic. Making the decision
based on what customerCode is is clearer than trying to determine what customerCode is not.

Although negative comparisons can be awkward to use, your meaning is sometimes clearest when using
them. Frequently, this occurs when you use an if without an else, taking action only when some
comparison is false. An example would be:

if customerZipCode <> LOCAL_ZIP_CODE then
total = total + deliveryCharge

endif

Avoiding a Common Error with Relational Operators
A common error that occurs when programming with relational operators is using the
wrong one and missing the boundary or limit required for a selection. If you use the >
symbol to make a selection when you should have used >=, all the cases that are equal will
go unselected. Unfortunately, people who request programs do not always speak as
precisely as a computer. If, for example, your boss says, “Write a program that selects all
employees over 65,” does she mean to include employees who are 65 or not? In other words,
is the comparison age > 65 or age >= 65? Although the phrase over 65 indicates greater
than 65, people do not always say what they mean, and the best course of action is to
double-check the intended meaning with the person who requested the program—for
example, the end user, your supervisor, or your instructor. Similar phrases that can cause
misunderstandings are no more than, at least, and not under.

No Yes
customerCode = 1?

discount = 0.25

if customerCode = 1 then
   discount = 0.50
else
   discount = 0.25
endif 

discount = 0.50

Figure 4-6 Using the positive equivalent of the negative comparison in Figure 4-5
© 2015 Cengage Learning

134

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Relational Comparison Operators

1. Usually, you can compare only values that are of the same data type.

2. A Boolean expression is defined as one that decides whether two values
are equal.

3. In any Boolean expression, the two values compared can be either variables
or constants.

Understanding AND Logic
Often, you need to evaluate more than one expression to determine whether an action should
take place. When you ask multiple questions before an outcome is determined, you create a
compound condition. For example, suppose you work for a cell phone company that charges
customers as follows:

The basic monthly service bill is $30.

An additional $20 is billed to customers who make more than 100 calls that last for a total
of more than 500 minutes.

The logic needed for this billing program includes an AND decision—a decision that tests a
condition with two parts that must both evaluate to true for an action to take place. In this
case, both a minimum number of calls must be made and a minimum number of minutes
must be used before the customer is charged the premium amount. A decision that uses an
AND condition can be constructed using a nested decision, or a nested if—that is, a
decision within the if-then or else clause of another decision. You first learned about
nesting structures in Chapter 3. You can always stack and nest any of the three basic
structures. A series of nested if statements is also called a cascading if statement. The
flowchart and pseudocode for the program that determines the charges for customers is
shown in Figure 4-7.

Thefalsestatementis#2.AlthoughdecidingwhethertwovaluesareequalisaBoolean
expression,soisdecidingwhetheroneisgreaterthanorlessthananother.ABoolean
expressionisonethatresultsinatrueorfalsevalue.

135

Understanding AND Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



YesNo

YesNo

detailLoop()

output customerId,
callsMade, " calls made;
used ", callMinutes, 
"minutes. Total bill $",
customerBill

return

stop

not
eof?

Yes

No

start

housekeeping()

finish()

detailLoop()

Declarations
   num customerId
   num callsMade
   num callMinutes
   num customerBill
   num CALLS = 100
   num MINUTES = 500
   num BASIC_SERVICE = 30.00
   num PREMIUM = 20.00

callsMade >
CALLS? 

callMinutes
> MINUTES?

customerBill =
customerBill +
PREMIUM

input customerId, 
callsMade, callMinutes

return

housekeeping()

return

output "Phone payment
calculator"

input customerId,
callsMade, callMinutes

output "Program ended"

finish()

customerBill =
BASIC_SERVICE

Figure 4-7 Flowchart and pseudocode for cell phone billing program (continues)

136

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The logic for the cell phone billing program assumes that the customer data is retrieved from a file. This
eliminates the need for prompts and keeps the program shorter so you can concentrate on the decision-
making process. If this were an interactive program, you would use a prompt before each input statement.
Chapter 7 covers file processing and explains a few additional steps you can take when working with files.

In Figure 4-7, the appropriate variables and constants are declared, and then the
housekeeping() module displays an introductory heading and gets the first set of input data.
After control returns to the mainline logic, the eof condition is tested, and if data entry is not

start
   Declarations
      num customerId
      num callsMade
      num callMinutes
      num customerBill
      num CALLS = 100
      num MINUTES = 500
      num BASIC_SERVICE = 30.00
      num PREMIUM = 20.00
   housekeeping()
   while not eof
      detailLoop()
   endwhile
   finish()
stop

housekeeping()
   output "Phone payment calculator"
   input customerId, callsMade, callMinutes
return

detailLoop()
   customerBill = BASIC_SERVICE
   if callsMade > CALLS then
      if callMinutes > MINUTES then
         customerBill = customerBill + PREMIUM
      endif
   endif
   output customerId, callsMade, " calls made; used ",
      callMinutes, " minutes. Total bill $", customerBill
   input customerId, callsMade, callMinutes
return

finish()
   output "Program ended"
return

Figure 4-7 Flowchart and pseudocode for cell phone billing program

(continued)

© 2015 Cengage Learning

137

Understanding AND Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



complete, the detailLoop() module executes. In the detailLoop() module, the customer’s
bill is set to the standard fee, and then the nested decision executes. In the nested if structure
in Figure 4-7, the expression callsMade > CALLS is evaluated first. If this expression is true,
only then is the second Boolean expression (callMinutes > MINUTES) evaluated. If that
expression is also true, then the $20 premium is added to the customer’s bill. If either of the
tested conditions is false, the customer’s bill value is never altered, retaining the initially
assigned BASIC_SERVICE value of $30.

Most languages allow you to use a variation of the selection structure called the case structure when you
must nest a series of decisions about a single variable or expression. Appendix D contains information about
the case structure.

Nesting AND Decisions for Efficiency
When you nest two decisions, you must choose which of the decisions to make first.
Logically, either expression in an AND decision can be evaluated first. However, you often
can improve your program’s performance by correctly choosing which of two selections
to make first.

For example, Figure 4-8 shows two ways to design the nested decision structure that
assigns a premium to customers’ bills if they make more than 100 cell phone calls and
use more than 500 minutes in a billing period. The program can ask about calls made
first, eliminate customers who have not made more than the minimum, and then ask
about the minutes used only for customers who pass (that is, are evaluated as true on)
the minimum calls test. Or, the program could ask about the minutes first, eliminate
those who do not qualify, and then ask about the number of calls only for customers
who pass the minutes test. Either way, only customers who exceed both limits must pay
the premium. Does it make a difference which question is asked first? As far as the
result goes, no. Either way, the same customers pay the premium—those who qualify on
the basis of both criteria. As far as program efficiency goes, however, it might make a
difference which question is asked first.

138

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assume that you know that out of 1000 cell phone customers, about 90 percent, or 900, make
more than 100 calls in a billing period. Assume that you also know that only about half the
1000 customers, or 500, use more than 500 minutes of call time.

If you use the logic shown first in Figure 4-8, and you need to produce 1000 phone bills, the
first question, callsMade > CALLS, will execute 1000 times. For approximately 90 percent of
the customers, or 900 of them, the answer is true, so 100 customers are eliminated from the

No

No

Yes

Yes

callsMade >
CALLS?

callMinutes
> MINUTES?

customerBill =
customerBill +
PREMIUM

No

No

Yes

YescallsMade >
CALLS?

callMinutes
> MINUTES?

customerBill =
customerBill +
PREMIUM

if callMinutes > MINUTES then
   if callsMade > CALLS then
      customerBill = customerBill + PREMIUM
   endif
endif

if callsMade > CALLS then
   if callMinutes > MINUTES then
      customerBill = customerBill + PREMIUM
   endif
endif

Figure 4-8 Two ways to produce cell phone bills using identical criteria
© 2015 Cengage Learning

139

Understanding AND Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



premium assignment, and 900 proceed to the next question about the minutes used. Only
about half the customers use more than 500 minutes, so 450 of the 900 pay the premium, and
it takes 1900 decisions to identify them.

Using the alternate logic shown second in Figure 4-8, the first question, callMinutes >
MINUTES, will also be asked 1000 times—once for each customer. Because only about half the
customers use the high number of minutes, only 500 will pass this test and proceed to the
question for number of calls made. Then, about 90 percent of the 500, or 450 customers, will
pass the second test and be billed the premium amount. In this case, it takes 1500 decisions to
identify the 450 premium-paying customers.

Whether you use the first or second decision order in Figure 4-8, the same 450 customers
who satisfy both criteria pay the premium. The difference is that when you ask about the
number of calls first, the program must make 400 more decisions than when you ask about
the minutes used first.

The 400-decision difference between the first and second arrangement in Figure 4-8 doesn’t
take much time on most computers. But it does take some time, and if a corporation has
hundreds of thousands of customers instead of only 1000, or if many such decisions have to
be made within a program, performance (execution time) can be significantly improved by
making decisions in the more efficient order.

Often when you must make nested decisions, you have no idea which event is more likely to
occur; in that case, you can legitimately ask either question first. However, if you do know the
probabilities of the conditions, or can make a reasonable guess, the general rule is: In an AND
decision, first ask the question that is less likely to be true. This eliminates as many instances of
the second decision as possible, which speeds up processing time.

Watch the video Writing Efficient Nested Selections.

Using the AND Operator
Most programming languages allow you to ask two or more questions in a single comparison
by using a conditional AND operator, or more simply, an AND operator that joins decisions in a
single expression. For example, if you want to bill an extra amount to cell phone customers
who make more than 100 calls that total more than 500 minutes in a billing period, you can
use nested decisions, as shown in the previous section, or you can include both decisions in a
single expression by writing the following question:

callsMade > CALLS AND callMinutes > MINUTES

When you use one or more AND operators to combine two or more Boolean expressions, each
Boolean expression must be true for the entire expression to be evaluated as true. For
example, if you ask, “Are you a native-born U.S. citizen and are you at least 35 years old?”, the
answer to both parts of the question must be yes before the response can be a single,
summarizing yes. If either part of the expression is false, then the entire expression is false.

140

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The conditional AND operator in Java, C++, and C# consists of two ampersands, with no spaces between
them (&&). In Visual Basic, you use the keyword And.

One tool that can help you understand the AND operator is a truth table. Truth tables are
diagrams used in mathematics and logic to help describe the truth of an entire expression
based on the truth of its parts. Quick Reference 4-3 contains a truth table that lists all the
possibilities with an AND operator. As the table shows, for any two expressions x and y, the
expression x AND y is true only if both x and y are individually true. If either x or y alone is
false, or if both are false, then the expression x AND y is false.

QUICK REFERENCE 4-3 Truth Table for the AND Operator

If the programming language you use allows an AND operator, you must realize that the question
you place first (to the left of the AND operator) is the one that will be asked first, and cases that
are eliminated based on the first question will not proceed to the second question. In other
words, each part of an expression that uses an AND operator is evaluated only as far as necessary
to determine whether the entire expression is true or false. This feature is called short-circuit
evaluation. The computer can ask only one question at a time; even when your pseudocode
looks like the first example in Figure 4-9, the computer will execute the logic shown in the
second example. Even when you use an AND operator, the computer makes decisions one at a
time, and makes them in the order you ask them. As you can see in the truth table, if the first
question in an AND expression evaluates to false, then the entire expression is false. In that
case, there is no point in evaluating the second Boolean expression. In other words, evaluating
an AND expression is interrupted as soon as part of it is determined to be false.

You are never required to use the AND operator because using nested if statements can
always achieve the same result. However, using the AND operator often makes your code more
concise, less error-prone, and easier to understand.

x? y? x AND y?

True True True
True False False
False True False
False False False

141

Understanding AND Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



There can be confusion between the terms conditional operator and logical operator. Conditional operator is
most often used when short-circuit evaluation is in effect, but you will sometimes hear programmers use the
two terms interchangeably. To complicate matters, some programmers call the operators conditional
logical operators.

if callsMade > CALLS AND callMinutes > MINUTES then
   customerBill = customerBill + PREMIUM
endif

if callsMade > CALLS then
   if callMinutes > MINUTES then
      customerBill = customerBill + PREMIUM
   endif
endif

No

No

Yes

Yes

callsMade >
CALLS?

callMinutes
> MINUTES?

customerBill =
customerBill +
PREMIUM

customerBill =
customerBill +
PREMIUM

No Yes
callsMade >
CALLS AND
callMinutes >
MINUTES?

Figure 4-9 Using an AND operator and the logic behind it
© 2015 Cengage Learning

142

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Avoiding Common Errors in an AND Selection
Make Sure Decisions that Should Be Nested are Nested
When you need to satisfy two or more criteria to initiate an event in a program, you must
make sure that the second decision is made entirely within the first decision. For example, if a
program’s objective is to add a $20 premium to the bill of cell phone customers who exceed
100 calls and 500 minutes in a billing period, then the program segment shown in Figure 4-10
contains three different types of logic errors.

The logic in Figure 4-10 shows that if a customer makes too many calls, $20 is added to his
bill. This customer should not necessarily be billed extra because the customer’s minutes
might be low. In addition, in Figure 4-10, a customer who has made few calls is not eliminated
from the second decision. Instead, all customers are subjected to the minutes question, and

No Yes

No Yes

callsMade >
CALLS?

callMinutes
> MINUTES?

customerBill =
customerBill +
PREMIUM

customerBill =
customerBill +
PREMIUM

if callsMade > CALLS then
   customerBill = customerBill + PREMIUM
endif
if callMinutes > MINUTES then
   customerBill = customerBill + PREMIUM
endif

Don’t Do It
Premium is added to the  
customer bill because
callsMade is high
enough, but 
callMinutes might be
too low.  

Don’t Do It
Premium is added to
customer bill because
callMinutes is high
enough, but callsMade
might be too low.

Don’t Do It
If customer has exceeded
both the call and minute
limits, the premium is
added to the customer’s
bill twice.

Figure 4-10 Incorrect logic to add a $20 premium to the bills of cell phone customers who meet
two criteria
© 2015 Cengage Learning

143

Understanding AND Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



some are assigned the premium even though they might have made only a few calls.
Additionally, any customer who passes both tests because his calls and minutes are both high
has the premium added to his bill twice. The decisions in Figure 4-10 are stacked when they
should be nested, so the logic they represent is not correct for this problem.

Make Sure that Boolean Expressions are Complete
When you use the AND operator in most languages, you must provide a complete Boolean
expression on each side of the operator. In other words, callMinutes > 100 AND
callMinutes < 200 would be a valid expression to find callMinutes between 100 and 200.
However, callMinutes > 100 AND < 200 would not be valid because the less-than sign and
200 that follow the AND operator do not constitute a complete Boolean expression.

For clarity, you can enclose each Boolean expression in a compound expression in its own set
of parentheses. This makes it easier for you to see that each of the AND operator’s operands is a
complete Boolean expression. Use this format if it is clearer to you. For example, you might
write the following:
if (callMinutes > MINUTES) AND (callsMade > CALLS) then

customerBill = customerBill + PREMIUM
endif

Make Sure that Expressions are not Inadvertently Trivial
When you use the AND operator, it is easy to inadvertently create trivial expressions that are
always true or always false. For example, suppose that you want to display a message if a cell
phone customer makes no calls and if the customer makes more than 2000 calls. You might
be tempted to write the following expression, but it would be incorrect:
if callsMade = 0 AND callsMade > 2000 then

output "Irregular usage"

endif

This if statement never results in a displayed message because both parts of the AND
expression can never be true at the same time. For example, if the value of callsMade is over
2000, its value is not 0, and if callsMade is 0, it is not over 2000. The programmer intended to
use the following code:
if callsMade = 0 then

output "Irregular usage"
else

if callsMade > 2000 then
output "Irregular usage"

endif
endif

Alternately, the programmer might use an OR operator, as you will see in the next section.

Don’t Do It
This AND expression is
always false.

144

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding AND Logic

1. When you nest selection structures because the resulting action requires
that two conditions be true, either decision logically can be made first
and the results will be the same.

2. When two selections are required for an action to take place, you often can
improve your program’s performance by appropriately choosing which
selection to make first.

3. To improve efficiency in a nested selection in which two conditions must be
true for some action to occur, you should first ask the question that is more
likely to be true.

Understanding OR Logic
Sometimes you want to take action when one or the other of two conditions is true. This is
called an OR decision because either one condition or some other condition must be met in
order for some action to take place. If someone asks, “Are you free for dinner Friday or
Saturday?,” only one of the two conditions has to be true for the answer to the whole question
to be yes; only if the answers to both halves of the question are false is the value of the entire
expression false.

For example, suppose the cell phone company has established a new fee schedule as follows:

The basic monthly service bill is $30.

An additional $20 is billed to customers who make more than 100 calls or send more
than 200 text messages.

Figure 4-11 shows the altered detailLoop() module of the billing program that accomplishes
this objective. Assume that new declarations have been made for the textsSent variable and
a TEXTS constant that has been assigned the value 200.

Thefalsestatementis#3.Forefficiencyinanestedselection,youshouldfirstaskthe
questionthatislesslikelytobetrue.

145

Understanding OR Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



No

No Yes

Yes

output customerId, callsMade, 
" calls made; ", textsSent,
" texts sent. Total bill $", 
customerBill

return

textsSent >
TEXTS?

detailLoop()

input customerId, 
callsMade, textsSent

detailLoop()
   customerBill = BASIC_SERVICE
   if callsMade > CALLS then
      customerBill = customerBill + PREMIUM
   else
      if textsSent > TEXTS then
         customerBill = customerBill + PREMIUM
      endif
   endif
   output customerId, callsMade, " calls made; ",
      textsSent, " texts sent. Total bill $", customerBill
   input customerId, callsMade, textsSent
return

customerBill =
BASIC_SERVICE

callsMade >
CALLS? 

customerBill =
customerBill +
PREMIUMcustomerBill =

customerBill +
PREMIUM

Figure 4-11 Flowchart and pseudocode for cell phone billing program in which a customer must meet
one or both of two criteria to be billed a premium
© 2015 Cengage Learning

146

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The detailLoop() in the program in Figure 4-11 tests the expression callsMade > CALLS,
and if the result is true, the premium amount is added to the customer’s bill. Because making
many calls is enough for the customer to incur the premium, there is no need for further
questioning. If the customer has not made more than 100 calls, only then does the program
need to ask whether textsSent > TEXTS is true. If the customer did not make over 100 calls,
but did send more than 200 text messages, then the premium amount is added to the
customer’s bill.

Writing OR Selections for Efficiency
As with an AND condition, when you use an OR condition, you can choose to ask either
question first. For example, you can add an extra $20 to the bills of customers who meet one
or the other of two criteria using the logic in either part of Figure 4-12.

if callsMade > CALLS then
   customerBill = customerBill + PREMIUM
else
   if textsSent > TEXTS then
      customerBill = customerBill + PREMIUM
   endif
endif

No Yes

No YescallsMade >
CALLS? 

customerBill = 
customerBill + 
PREMIUM

textsSent >
TEXTS? customerBill = 

customerBill + 
PREMIUM

Figure 4-12 Two ways to assign a premium to bills of customers who meet one of two
criteria (continues)

147

Understanding OR Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You might have guessed that one of these solutions is superior to the other when you have
some background information about the relative likelihood of each tested condition. For
example, let’s say you know that out of 1000 cell phone customers, about 90 percent, or 900,
make more than 100 calls in a billing period. Suppose that you also know that only about half
of the 1000 customers, or 500, send more than 200 text messages.

When you use the logic shown in the first half of Figure 4-12, you first ask about the calls
made. For 900 customers the answer is true, and you add the premium to their bills. Only
about 100 sets of customer data continue to the next question regarding the text messages,
where about 50 percent of the 100, or 50, are billed the extra amount. In the end, you have
made 1100 decisions to correctly add premium amounts for 950 customers.

If you use the OR logic in the second half of Figure 4-12, you ask about text messages first—
1000 times, once each for 1000 customers. The result is true for 50 percent, or 500 customers,
whose bill is increased. For the other 500 customers, you ask about the number of calls made.
For 90 percent of the 500, the result is true, so premiums are added for 450 additional people.
In the end, the same 950 customers are billed an extra $20—but this approach requires
executing 1500 decisions, 400 more decisions than when using the first decision logic.

if textsSent > TEXTS then
   customerBill = customerBill + PREMIUM
else
   if callsMade > CALLS then
      customerBill = customerBill + PREMIUM
   endif
endif

callsMade >
CALLS? 

No Yes

No Yes

customerBill = 
customerBill + 
PREMIUM

textsSent >
TEXTS?

customerBill = 
customerBill + 
PREMIUM

Figure 4-12 Two ways to assign a premium to bills of customers who meet one of two criteria
© 2015 Cengage Learning

(continued)

148

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The general rule is: In an OR decision, first ask the question that is more likely to be true. This
approach eliminates as many executions of the second decision as possible, and the time it
takes to process all the data is decreased. As with the AND situation, in an OR situation, it is
more efficient to eliminate as many extra decisions as possible.

Using the OR Operator
If you need to take action when either one or the other of two conditions is met, you can use
two separate, nested selection structures, as in the previous examples. However, most
programming languages allow you to make two or more decisions in a single comparison by
using a conditional OR operator (or simply the OR operator). For example, you can ask the
following question:
callsMade > CALLS OR textsSent > TEXTS

When you use the logical OR operator, only one of the listed conditions must be met for the
resulting action to take place. Quick Reference 4-4 contains the truth table for the OR
operator. As you can see in the table, the entire expression x OR y is false only when x and y

each are false individually.

QUICK REFERENCE 4-4 Truth Table for the OR Operator

If the programming language you use supports the OR operator, you still must realize that the
comparison you place first is the expression that will be evaluated first, and cases that pass the
test of the first comparison will not proceed to the second comparison. As with the AND
operator, this feature is called short-circuiting. The computer can ask only one question at a
time; even when you write code as shown at the top of Figure 4-13, the computer will execute
the logic shown at the bottom.

x? y? x OR y?

True True True
True False True
False True True
False False False

149

Understanding OR Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C#, C++, C, and Java use two pipe symbols ( || ) as the logical OR operator. In Visual Basic, the keyword used
for the operator is Or.

Avoiding Common Errors in an OR Selection
Make Sure that Boolean Expressions are Complete
As with the AND operator, most programming languages require a complete Boolean
expression on each side of the OR operator. For example, if you wanted to display a message
when customers make either 0 calls or more than 2000 calls, the expression callsMade = 0
OR callsMade > 2000 is appropriate but callsMade = 0 OR > 2000 is not, because the
expression to the right of the OR operator is not a complete Boolean expression.

if callsMade > CALLS then
   customerBill = customerBill + PREMIUM
else
   if textsSent > TEXTS then
      customerBill = customerBill + PREMIUM
   endif
endif

if callsMade > CALLS OR textsSent > TEXTS then
     customerBill = customerBill + PREMIUM
endif

No Yes
callsMade >
CALLS OR 
textsSent > 
TEXTS? 

customerBill = 
customerBill + 
PREMIUM

No Yes

No YescallsMade >
CALLS? 

customerBill = 
customerBill + 
PREMIUM

textsSent >
TEXTS? customerBill = 

customerBill + 
PREMIUM

Figure 4-13 Using an OR operator and the logic behind it
© 2015 Cengage Learning

150

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Also, as with the AND operator, you can enclose each simple comparison within parentheses
for clarity if you want, as in the following statement:
if (callsMade = 0) OR (callsMade > 2000) then

output "Irregular usage"
endif

Make Sure that Selections are Structured

You might have noticed that the assignment statement customerBill = customerBill +
PREMIUM appears twice in the decision-making processes in Figures 4-12 and 4-13. When you
create a flowchart, the temptation is to draw the logic to look like Figure 4-14. Logically, you
might argue that the flowchart in Figure 4-14 is correct because the correct customers are
billed the extra $20. However, this flowchart is not structured. The second question is not a
self-contained structure with one entry and exit point; instead, the flowline breaks out of the
inner selection structure to join the Yes side of the outer selection structure.

Make Sure that You Use OR Selections When They are Required
The OR selection has additional potential for errors due to the differences in the way people
and computers use language. When your boss wants to add an extra amount to the bills of
customers who make more than 100 calls or send more than 200 texts, she is likely to say,
“Add $20 to the bill of anyone who makes more than 100 calls and to anyone who sends more
than 200 texts.” Her request contains the word and between two types of people—those who
made many calls and those who sent many texts—placing the emphasis on the people.

No Yes

No YescallsMade >
CALLS? 

textsSent >
TEXTS?

customerBill = 
customerBill + 
PREMIUM

Don’t Do It
This flowchart is not
structured. This decision
is exited early.

Figure 4-14 Unstructured flowchart for determining customer cell phone bill
© 2015 Cengage Learning

151

Understanding OR Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



However, each decision you make is about the added $20 for a single customer who has met
one criterion or the other or both. In other words, the OR condition is between each
customer’s attributes, and not between different customers. Instead of the manager’s previous
statement, it would be clearer if she said, “Add $20 to the bill of anyone who has made more
than 100 calls or has sent more than 200 texts,” but you can’t count on people to speak like
computers. As a programmer, you have the job of clarifying what really is being requested.
Often, a casual request for A and B logically means a request for A or B.

Make Sure that Expressions are not Inadvertently Trivial
The way we use English can cause another type of error when you are required to find whether a value
falls between two other values. For example, a movie theater manager might say, “Provide a discount
to patrons who are under 13 years old and to those who are over 64 years old; otherwise, charge the
full price.” Because the manager has used the word and in the request, you might be tempted to create
the decision shown in Figure 4-15; however, this logic will not provide a discounted price for any
movie patron. You must remember that every time the decision is made in Figure 4-15, it is made for a
single movie patron. If patronAge contains a value lower than 13, then it cannot possibly contain a
value over 64. Similarly, if patronAge contains a value over 64, there is no way it can contain a lesser
value. Therefore, no value could be stored in patronAge for which both parts of the AND condition
could be true—and the price will never be set to the discounted price for any patron. In other words,
the decision made in Figure 4-15 is trivial. Figure 4-16 shows the correct logic.

No YespatronAge <
MIN_AGE AND
patronAge >
MAX_AGE?

price =
DISCOUNTED_PRICE

Significant declarations:
   num patronAge
   num price
   num MIN_AGE = 13
   num MAX_AGE = 64
   num FULL_PRICE = 8.50
   num DISCOUNTED_PRICE = 6.00

if patronAge < MIN_AGE AND patronAge > MAX_AGE then
   price = DISCOUNTED_PRICE
else
   price = FULL_PRICE
endif

price =
FULL_PRICE

Don’t Do It
It is impossible for a
patron to be both
under 13 and over 64.

Figure 4-15 Incorrect logic that attempts to provide a discount for young and old movie patrons
© 2015 Cengage Learning

152

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A similar error can occur in your logic if the theater manager says something like, “Don’t
give a discount—that is, do charge full price—if a patron is over 12 or under 65.” Because
the word or appears in the request, you might plan your logic to resemble Figure 4-17. No
patron ever receives a discount, because every patron is either over 12 or under 65.
Remember, in an OR decision, only one of the conditions needs to be true for the entire
expression to be evaluated as true. So, for example, because a patron who is 10 is under 65,
the full price is charged, and because a patron who is 70 is over 12, the full price also is
charged. Figure 4-18 shows the correct logic for this decision.

No Yes
patronAge <
MIN_AGE OR
patronAge >
MAX_AGE?

price = FULL_PRICE price = DISCOUNTED_PRICE

Significant declarations:
   num patronAge
   num price
   num MIN_AGE = 13
   num MAX_AGE = 64
   num FULL_PRICE = 8.50
   num DISCOUNTED_PRICE = 6.00

if patronAge < MIN_AGE OR patronAge > MAX_AGE then
   price = DISCOUNTED_PRICE
else
   price = FULL_PRICE
endif

Figure 4-16 Correct logic that provides a discount for young and old movie patrons
© 2015 Cengage Learning

153

Understanding OR Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



YesNo
patronAge >
MIN_AGE OR
patronAge <
MAX_AGE?

price = FULL_PRICE

Significant declarations:
   num patronAge
   num price
   num MIN_AGE = 12
   num MAX_AGE = 65
   num FULL_PRICE = 8.50
   num DISCOUNTED_PRICE = 6.00

if patronAge > MIN_AGE OR patronAge < MAX_AGE then
   price = FULL_PRICE
else
   price = DISCOUNTED_PRICE
endif

price = DISCOUNTED_PRICE

Don’t Do It
Every patron is over 12 or 
under 65. For example, a
90-year-old is over 12 and a
3-year-old is under 65.

Figure 4-17 Incorrect logic that attempts tocharge full price forpatronswhoseage isover12andunder65
© 2015 Cengage Learning

154

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Watch the video Looking in Depth at AND and OR Decisions.

TWO TRUTHS & A LIE

Understanding OR Logic

1. In an OR selection, two or more conditions must be met in order for an event
to take place.

2. When you use an OR selection, you can choose to ask either question first and
still achieve a usable program.

3. The general rule is: In an OR decision, first ask the question that is more likely
to be true.

YesNo

price =
DISCOUNTED_PRICE

price = FULL_PRICE

Significant declarations:
   num patronAge
   num price
   num MIN_AGE = 12
   num MAX_AGE = 65
   num FULL_PRICE = 8.50
   num DISCOUNTED_PRICE = 6.00

if patronAge > MIN_AGE AND patronAge < MAX_AGE then
   price = FULL_PRICE
else
   price = DISCOUNTED_PRICE
endif

patronAge >
MIN_AGE AND
patronAge <
MAX_AGE?

Figure 4-18 Correct logic that charges full price for patrons whose age is over 12 and under 65
© 2015 Cengage Learning

Thefalsestatementis#1.InanORselection,onlyoneoftwoconditionsmustbemetin
orderforaneventtotakeplace.

155

Understanding OR Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding NOT Logic
Besides AND and OR operators, most languages support a NOT operator. You use the logical NOT
operator to reverse the meaning of a Boolean expression. For example, the following
statement outputs Can register to vote when age is greater than or equal to 18:

if NOT (age < 18) then
output "Can register to vote"

endif

This example uses parentheses around the expression age < 18 to show that the NOT operator
applies to the entire Boolean expression age < 18. Without the parentheses, some languages
might try to evaluate the expression NOT age before testing the less-than comparison.
Depending on the programming language, the result would either be incorrect or the
statement would not execute at all.

Quick Reference 4-5 contains the truth table for the NOT operator. As you can see, any
expression that would be true without the operator becomes false with it, and any expression
that would be false without the operator becomes true with it.

QUICK REFERENCE 4-5 Truth Table for the NOT Operator

You have already learned that arithmetic operators such as + and –, and relational operators
such as > and <, are binary operators that require two operands. Unlike those operators, the
NOT operator is a unary operator, meaning it takes only one operand—that is, you do not use
it between two expressions, but you use it in front of a single expression.

As when using the binary not-equal-to comparison operator, using the unary NOT operator can
create confusing statements because negative logic is difficult to follow. For example, if your
intention is not to allow voter registration for those under 18, then either of the following two
statements will accomplish your goal, but the second one is easier to understand:
if NOT (age < 18) then

output "Can register to vote"
endif

if age >= 18 then
output "Can register to vote"

endif

x? NOT x?

True False
False True

156

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Avoiding a Common Error in a NOT Expression
Because thinking with negatives is hard, you need to be careful not to create trivial
expressions when using NOT logic. For example, suppose your boss tells you to display a
message for all employees except those in Departments 1 and 2. You might write the
following incorrect code:

if NOT employeeDept = 1 OR NOT employeeDept = 2 then
output "Employee is not in Department 1 or 2"

endif

Suppose that an employee is in Department 1, and therefore no message should be displayed.
The expression employeeDept = 1 is evaluated as false, so NOT employeeDept = 1 is true.
Because the OR operator’s left operand is true, the entire Boolean expression is true, and the
message is incorrectly displayed. The correct decision follows:
if NOT (employeeDept = 1 OR employeeDept = 2) then

output "Employee is not in Department 1 or 2"
endif

In C++, Java, and C#, the exclamation point is the symbol used for the NOT operator. In those languages,
the exclamation point can be used in front of an expression or combined with other comparison operators.
For example, the expression a not equal to b can be written as !(a = b) or as a != b. In Visual Basic,
the operator is the keyword Not.

TWO TRUTHS & A LIE

Understanding NOT Logic

1. The value of x <> 0 is the same as the value of NOT (x = 0).

2. The value of x > y is the same as the value of NOT (x < y).

3. The value of x = y OR x > 5 is the same as the value of x = y OR NOT (x <= 5).

Making Selections within Ranges
You often need to take action when a variable falls within a range of values. For example,
suppose your company provides various customer discounts based on the number of items
ordered, as shown in Figure 4-19.

Thefalsestatementis#2.Thevalueofx>yisnotthevalueofNOT(x<y)becausethe
firstexpressionisfalseandthesecondoneistruewhenxandyareequal.Thevalueof
x>yisthesameasthevalueofNOT(x<=y).

Don’t Do It
This logic does not
eliminate employees in
Departments 1 and 2.

157

Making Selections within Ranges

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you write the program that determines a
discount rate based on the number of items, you
could make hundreds of decisions, evaluating
itemQuantity = 1, itemQuantity = 2, and so
on. However, it is more convenient to find the
correct discount rate by using a range check.

When you use a range check, you compare a
variable to a series of values that mark the limiting
ends of ranges. To perform a range check, make
comparisons using either the lowest or highest
value in each range of values. For example, to find
each discount rate listed in Figure 4-19, you can
use one of the following techniques:

Make comparisons using the low ends of the
ranges.

You can ask: Is itemQuantity less
than 11? If not, is it less than 25? If
not, is it less than 51? (If it’s possible

the value is negative, you would also check for a value less than 0 and take
appropriate action if it is.)

You can ask: Is itemQuantity greater than or equal to 51? If not, is it greater than or
equal to 25? If not, is it greater than or equal to 11? (If it’s possible the value is
negative, you would also check for a value greater than or equal to 0 and take
appropriate action if it is not.)

Make comparisons using the high ends of the ranges.

You can ask: Is itemQuantity greater than 50? If not, is it greater than 24? If not, is it
greater than 10? (If there is a maximum allowed value for itemQuantity, you would
also check for a value greater than that limit and take appropriate action if it is.)

You can ask: Is itemQuantity less than or equal to 10? If not, is it less than or equal to
24? If not, is it less than or equal to 50? (If there is a maximum allowed value for
itemQuantity, you would also check for a value less than or equal to that limit and
take appropriate action if it is not.)

Figure 4-20 shows the flowchart and pseudocode that represent the logic for a program that
determines the correct discount for each order quantity. In the decision-making process,
itemsOrdered is compared to the high end of the lowest-range group (RANGE1). If
itemsOrdered is less than or equal to that value, then you know the correct discount,
DISCOUNT1; if not, you continue checking. If itemsOrdered is less than or equal to the high end
of the next range (RANGE2), then the customer’s discount is DISCOUNT2; if not, you continue
checking, and the customer’s discount eventually is set to DISCOUNT3 or DISCOUNT4. In the
pseudocode in Figure 4-20, notice how each associated if, else, and endif aligns vertically.

Items 
Ordered

Discount
Rate (%)

0 to 10 0

11 to 24 10

25 to 50 15

51 or  more 20

Figure 4-19 Discount rates based on
items ordered
© 2015 Cengage Learning

158

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In computer memory, a percent sign (%) is not stored with a numeric value that represents a percentage.
Instead, the mathematical equivalent is stored. For example, 15% is stored as 0.15. You can store a percent
value as a string, as in "15%", but then you cannot perform arithmetic with it.

For example, consider an order for 30 items. The expression itemsOrdered <= RANGE1

evaluates as false, so the else clause of the decision executes. There, itemsOrdered <=
RANGE2 also evaluates to false, so its else clause executes. The expression itemsOrdered <=

Yes

Yes

No

No

No

Yes

Significant declarations:
   num itemsOrdered
   num customerDiscount
   num RANGE1 = 10
   num RANGE2 = 24
   num RANGE3 = 50
   num DISCOUNT1 = 0
   num DISCOUNT2 = 0.10
   num DISCOUNT3 = 0.15
   num DISCOUNT4 = 0.20

itemsOrdered
<= RANGE2?

customerDiscount
= DISCOUNT1

itemsOrdered
<= RANGE3?

itemsOrdered <=
RANGE1?

customerDiscount
= DISCOUNT2

customerDiscount
= DISCOUNT3

customerDiscount
= DISCOUNT4

if itemsOrdered <= RANGE1 then
   customerDiscount = DISCOUNT1
else
   if itemsOrdered <= RANGE2 then
      customerDiscount = DISCOUNT2
   else
      if itemsOrdered <= RANGE3 then
         customerDiscount = DISCOUNT3
      else
         customerDiscount = DISCOUNT4
      endif
   endif
endif

Figure 4-20 Flowchart and pseudocode of logic that selects correct discount based on items ordered
© 2015 Cengage Learning

159

Making Selections within Ranges

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



RANGE3 is true, so customerDiscount becomes DISCOUNT3, which is 0.15. Walk through the
logic with other values for itemsOrdered and verify for yourself that the correct discount is
applied each time.

Avoiding Common Errors When Using Range Checks
To create well-written programs that include range checks, you should be careful to eliminate
dead paths and to avoid testing the same range limit multiple times.

Eliminate Dead Paths
When new programmers perform range checks, they are prone to including logic that has too
many decisions, entailing more work than is necessary.

Figure 4-21 shows a program segment that contains a range check in which the programmer
has asked one question too many—the shaded question in the figure. If you know that
itemsOrdered is not less than or equal to RANGE1, not less than or equal to RANGE2, and not
less than or equal to RANGE3, then itemsOrdered must be greater than RANGE3. The
comparison to RANGE3 is trivial, so asking whether itemsOrdered is greater than RANGE3 is a
waste of time; no customer order can ever travel the logical path on the far left of the
flowchart. You might say such a path is a dead or unreachable path, and that the statements
written there constitute dead or unreachable code. Although a program that contains
such logic will execute and assign the correct discount to customers who order more than
50 items, providing such a path is inefficient.

In Figure 4-21, it is easier to see the useless path in the flowchart than in the pseudocode
representation of the same logic. However, when you use an if without an else, you are
doing nothing when the question’s answer is false.

Sometimes there are good reasons to ask people questions for which you already know the answers. For
example, a good trial lawyer seldom asks a question in court if the answer will be a surprise. With computer
logic, however, such questions are an inefficient waste of time.

Avoid Testing the Same Range Limit Multiple Times
Another error that programmers make when writing the logic to perform a range check also
involves asking unnecessary questions. Figure 4-22 shows an inefficient range selection that
asks two unneeded questions. In the figure, if itemsOrdered is less than or equal to RANGE1,
customerDiscount is set to DISCOUNT1. If itemsOrdered is not less than or equal to RANGE1,
then it must be greater than RANGE1, so the next decision (shaded in the figure) is
unnecessary. The computer logic will never execute the shaded decision unless itemsOrdered
is already greater than RANGE1—that is, unless the logic follows the false branch of the first
selection. If you use the logic in Figure 4-22, you are wasting computer time with a trivial
decision that tests a range limit that has already been tested. The same logic applies to the

160

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yes

Yes

No

No

No

Yes

Significant declarations:
   num itemsOrdered
   num customerDiscount
   num RANGE1 = 10
   num RANGE2 = 24
   num RANGE3 = 50
   num DISCOUNT1 = 0
   num DISCOUNT2 = 0.10
   num DISCOUNT3 = 0.15
   num DISCOUNT4 = 0.20

itemsOrdered
<= RANGE2?

customerDiscount
= DISCOUNT1

itemsOrdered
<= RANGE3?

itemsOrdered <=
RANGE1?

customerDiscount
= DISCOUNT2

customerDiscount
= DISCOUNT3

customerDiscount
= DISCOUNT4

if itemsOrdered <= RANGE1 then
   customerDiscount = DISCOUNT1
else
   if itemsOrdered <= RANGE2 then
      customerDiscount = DISCOUNT2
   else
       if itemsOrdered <= RANGE3 then
          customerDiscount = DISCOUNT3
       else
          if itemsOrdered > RANGE3 then
             customerDiscount = DISCOUNT4
          endif
       endif
    endif
endif

YesNo
itemsOrdered
> RANGE3?

Don’t Do It
This is a dead path.

Don’t Do It
This decision can never be
false.

Figure 4-21 Inefficient range selection including unreachable path
© 2015 Cengage Learning

161

Making Selections within Ranges

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yes

Yes

No

No

No

Yes

Significant declarations:
   num itemsOrdered
   num customerDiscount
   num RANGE1 = 10
   num RANGE2 = 24
   num RANGE3 = 50
   num DISCOUNT1 = 0
   num DISCOUNT2 = 0.10
   num DISCOUNT3 = 0.15
   num DISCOUNT4 = 0.20

customerDiscount
= DISCOUNT1

itemsOrdered <=
RANGE1?

customerDiscount
= DISCOUNT2

customerDiscount
= DISCOUNT3

customerDiscount 
= DISCOUNT4

itemsOrdered
> RANGE1 AND
itemsOrdered
<= RANGE2?

if itemsOrdered <= RANGE1 then
   customerDiscount = DISCOUNT1
else
   if itemsOrdered > RANGE1 AND itemsOrdered <= RANGE2 then
      customerDiscount = DISCOUNT2
   else
      if itemsOrdered > RANGE2 AND itemsOrdered <= RANGE3 then
         customerDiscount = DISCOUNT3
      else
         customerDiscount = DISCOUNT4
      endif
   endif
endif

itemsOrdered
> RANGE2 AND
itemsOrdered
<= RANGE3?

Don’t Do It
There is no point to
asking the first part of
these questions.

Don’t Do It
There is no point to
asking the first part
of these questions.

Figure 4-22 Inefficient range selection including unnecessary questions
© 2015 Cengage Learning

162

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



second shaded decision in Figure 4-22. Beginning programmers sometimes justify their use of
unnecessary questions as “just making really sure.” Such caution is unnecessary when writing
computer logic.

TWO TRUTHS & A LIE

Making Selections within Ranges

1. When you perform a range check, you compare a variable to every value in a
series of ranges.

2. You can perform a range check by making comparisons using the lowest value
in each range of values you are using.

3. You can perform a range check by making comparisons using the highest value
in each range of values you are using.

Understanding Precedence When Combining
AND and OR Operators
Most programming languages allow you to combine as many AND and OR operators in an
expression as you need. For example, assume that you need to achieve a score of at least 75 on
each of three tests to pass a course. You can declare a constant MIN_SCORE equal to 75 and test
the multiple conditions with a statement like the following:
if score1 >= MIN_SCORE AND score2 >= MIN_SCORE AND score3 >= MIN_SCORE then

classGrade = "Pass"
else

classGrade = "Fail"
endif

On the other hand, if you need to pass only one of three tests to pass a course, then the logic is
as follows:
if score1 >= MIN_SCORE OR score2 >= MIN_SCORE OR score3 >= MIN_SCORE then

classGrade = "Pass"
else

classGrade = "Fail"
endif

The logic becomes more complicated when you combine AND and OR operators within the
same statement. When you do, the AND operators take precedence, meaning the Boolean
values of the AND expressions are evaluated first.

Thefalsestatementis#1.Whenyouusearangecheck,youcompareavariabletoa
seriesofvaluesthatrepresenttheendsofranges.Dependingonyourlogic,youcan
useeitherthehighorlowendofeachrange.

163

Understanding Precedence With AND and OR

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Chapter 2 you learned that in arithmetic statements, multiplication and division have precedence
over addition and subtraction. You also learned that precedence is sometimes referred to as order
of operations.

For example, consider a program that determines whether a movie theater patron can
purchase a discounted ticket. Assume that discounts are allowed for children and senior
citizens who attend G-rated movies. The following code looks reasonable, but it produces
incorrect results because the expression that contains the AND operator (see shading)
evaluates before the one that contains the OR operator.
if age <= 12 OR age >= 65 AND rating = "G" then

output "Discount applies"
endif

For example, assume that a movie patron is 10 years old and the movie rating is R. The patron
should not receive a discount (or be allowed to see the movie!). However, within the if

statement, the part of the expression that contains the AND operator, age >= 65 AND rating

= "G", is evaluated first. For a 10-year-old and an R-rated movie, the question is false (on both
counts), so the entire if statement becomes the equivalent of the following:
if age <= 12 OR aFalseExpression then

output "Discount applies"
endif

Because the patron is 10, age <= 12 is true, so the original if statement becomes the
equivalent of:
if aTrueExpression OR aFalseExpression then

output "Discount applies"
endif

The combination true OR false evaluates as true. Therefore, the string "Discount applies" is
output when it should not be.

Many programming languages allow you to use parentheses to correct the logic and force the
OR expression to be evaluated first, as shown in the following pseudocode:
if (age <= 12 OR age >= 65) AND rating = "G" then

output "Discount applies"
endif

With the added parentheses, if the patron’s age is 12 or under OR the age is 65 or over, the
expression is evaluated as:
if aTrueExpression AND rating = "G" then

output "Discount applies"
endif

In this statement, when the age value qualifies a patron for a discount, then the rating value
must also be acceptable before the discount applies. This was the original intention.

Don’t Do It
The shaded AND expression
evaluates first, which is not
the intention.

164

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You can use the following techniques to avoid confusion when mixing AND and OR operators:

You can use parentheses to override the default precedence (order of operations).

You can use parentheses for clarity even though they do not change what the order of operations
would be without them. For example, if a customer should be between 12 and 19 or have a school
ID to receive a high school discount, you can use the expression (age > 12 AND age < 19) OR
validId = "Yes", even though the evaluation would be the same without the parentheses.

You can use nested if statements instead of using AND and OR operators. With the
flowchart and pseudocode shown in Figure 4-23, it is clear which movie patrons receive
the discount. In the flowchart, you can see that the OR is nested entirely within the Yes
branch of the rating = "G" decision. Similarly, in the pseudocode in Figure 4-23, you can
see by the alignment that if the rating is not G, the logic proceeds directly to the last endif
statement, bypassing any checking of age at all.

YesNo

No Yes

YesNo

rating
= "G"?

age >=
65?

age <=
12?

output
"Discount
applies"

output
"Discount
applies"

Significant declarations:
   string rating
   num age

if rating = "G" then
   if age <= 12 then
      output "Discount applies"
   else
      if age >= 65 then
         output "Discount applies"
      endif
   endif
endif

Figure 4-23 Nested decisions that determine movie patron discount
© 2015 Cengage Learning

165

Understanding Precedence With AND and OR

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding Precedence When Combining AND and OR Operators

1. Most programming languages allow you to combine as many AND and OR

operators in an expression as you need.

2. When you combine AND and OR operators, the OR operators take precedence,
meaning their Boolean values are evaluated first.

3. You always can avoid the confusion of mixing AND and OR decisions by nesting
if statements instead of using AND and OR operators.

Chapter Summary
Computer program decisions are made by evaluating Boolean expressions. You can use
if-then-else or if-then structures to choose between two possible outcomes.

You can use relational comparison operators to compare two operands of the same data
type. The standard relational comparison operators are =, >, <, >=, <=, and <>.

In an AND decision, two conditions must be true for a resulting action to take place. An
AND decision requires a nested decision or the use of an AND operator. In an AND
decision, the most efficient approach is to start by asking the question that is less likely to
be true.

In an OR decision, at least one of two conditions must be true for a resulting action to take
place. In an OR decision, the most efficient approach is to start by asking the question that
is more likely to be true. Most programming languages allow you to ask two or more
questions in a single comparison by using a conditional OR operator.

The logical NOT operator reverses the meaning of a Boolean expression.

To perform a range check, make comparisons with either the lowest or highest value in
each range of comparison values. Common errors that occur when programmers perform
range checks include asking unnecessary and previously answered questions.

When you combine AND and OR operators in an expression, the AND operators take
precedence, meaning their Boolean values are evaluated first.

Thefalsestatementis#2.WhenyoucombineANDandORoperators,theANDoperators
takeprecedence,meaningtheBooleanvaluesoftheirexpressionsareevaluatedfirst.

166

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
A Boolean expression is one that represents only one of two states, usually expressed as true
or false.

An if-then decision structure contains a tested Boolean expression and an action that is
taken only when the expression is true.

An if-then clause of a decision holds the statements that execute when the tested Boolean
expression is true.

The else clause of a decision holds the statements that execute only when the tested
Boolean expression is false.

Relational comparison operators are the symbols that express Boolean comparisons.
Examples include =, >, <, >=, <=, and <>.

A trivial expression is one that always evaluates to the same value.

A compound condition is constructed when you need to ask multiple questions before
determining an outcome.

An AND decision contains two or more decisions; all conditions must be true for an action to
take place.

A nested decision, or a nested if, is a decision within either the if-then or else clause of
another decision.

A cascading if statement is a series of nested if statements.

A conditional AND operator (or, more simply, an AND operator) is a symbol that you use to
combine conditions when they all must be true for an action to occur.

Truth tables are diagrams used in mathematics and logic to help describe the truth of an
entire expression based on the truth of its parts.

Short-circuit evaluation is a logical feature in which expressions in each part of a larger
expression are evaluated only as far as necessary to determine the final outcome.

An OR decision contains two or more decisions; if at least one condition is met, the resulting
action takes place.

A conditional OR operator (or, more simply, an OR operator) is a symbol that you use to
combine conditions when at least one of them must be true for an action to occur.

The logical NOT operator is a symbol that reverses the meaning of a Boolean expression.

A unary operator is one that uses only one operand.

A range check determines where a variable falls arithmetically when compared to a series
of values that mark limiting ends.

A dead or unreachable path is a logical path that can never be traveled.

167

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises

Review Questions

1. A expression has one of two values: true or false.

a. Georgian
b. Boolean

c. Barbarian
d. Selective

2. In a selection, the else clause executes .

a. when the tested condition is true
b. when the tested condition is false
c. always
d. only after the if clause executes

3. The greater-than operator evaluates as true when .

a. the left operand is greater than the right operand
b. the right operand is greater than the left operand
c. the right operand is equal to the left operand
d. Both b and c are true.

4. A trivial Boolean expression is one that .

a. is not important
b. is complicated

c. is always false
d. always has the same value

5. If x <= y is true, then .

a. x = y is true
b. y <= x is true

c. x > y is false
d. x >= y is false

6. If j <> k is true, then .

a. j = k is true
b. j > k might be true

c. j < k might be true
d. Both b and c are true.

7. In an AND condition, the most efficient technique is to first ask the question
that .

a. mixes constants and variables
b. uses a less-than or less-than-or-equal-to operator
c. is least likely to be true
d. uses a named constant

8. If m is true and n is false, then .

a. m AND n is true
b. m AND n is false

c. m OR n is false
d. If m is true, then n must be true.

168

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9. If p is true and q is false, then .

a. p OR q is true
b. p OR q is false

c. p AND q is true
d. p is greater than q

10. Which of the lettered choices is equivalent to the following decision?

if x > 10 then

if y > 10 then

output "X"
endif

endif

a. if x > 10 OR y > 10 then output "X" endif

b. if x > 10 AND x > y then output "X" endif

c. if y > x then output "X" endif

d. if x > 10 AND y > 10 then output "X" endif

11. If conditionA is 30 percent likely to be true and conditionB is 10 percent likely to
be true, then it is most efficient to test conditionA first .

a. in an OR decision
b. in an AND decision

c. in any decision
d. never

12. Which of the following is a poorly written, trivial Boolean expression?

a. a > b AND b > c

b. d = 10 OR d > 20

c. e < f AND g < 100 AND g <> 5

d. h < 10 AND h = 4

13. Which of the following is a trivial Boolean expression?

a. k < b AND k > b

b. m = 10 OR m = 20

c. n > 12 OR p > 12

d. q > 10 AND q < 19

14. Which of the following is a trivial Boolean expression?

a. r < b AND f > b

b. r = 10 OR r < 0

c. f > 12 OR f < 19

d. r > f AND f < b

15. In the following pseudocode, what percentage raise will an employee in
Department 8 receive?
if department < 5 then

raise = SMALL_RAISE

else
if department < 14 then

raise = MEDIUM_RAISE

else
if department < 9 then

raise = BIG_RAISE

endif
endif

endif

169

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



a. SMALL_RAISE

b. MEDIUM_RAISE

c. BIG_RAISE

d. impossible to tell

16. In the following pseudocode, what percentage raise will an employee in
Department 10 receive?

if department < 2 then

raise = SMALL_RAISE

else
if department < 6 then

raise = MEDIUM_RAISE

else
if department < 10 then

raise = BIG_RAISE

endif
endif

endif
a. SMALL_RAISE

b. MEDIUM_RAISE

c. BIG_RAISE

d. impossible to tell

17. When you use a range check, you compare a variable to the value in
the range.

a. lowest
b. middle

c. highest
d. lowest or highest

18. If sales = 100, rate = 0.10, and expenses = 50, which of the following
expressions is true?

a. sales >= expenses AND rate < 1

b. sales < 200 OR expenses < 100

c. expenses = rate OR sales = rate

d. two of the above

19. If a is true, b is true, and c is false, which of the following expressions is true?

a. a OR b AND c

b. a AND b AND c

c. a AND b OR c

d. two of the above

20. If d is true, e is false, and f is false, which of the following expressions is true?

a. e OR f AND d

b. f AND d OR e

c. d OR e AND f

d. two of the above

170

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Exercises

1. Assume that the following variables contain the values shown:

numberBig = 300 numberMedium = 100 numberSmall = 5

wordBig = "Elephant" wordMedium = "Horse" wordSmall = "bug”

For each of the following Boolean expressions, decide whether the statement is
true, false, or illegal.
a. numberBig = numberSmall

b. numberBig > numberSmall

c. numberMedium < numberSmall

d. numberBig = wordBig

e. numberBig = "Big"

f. wordMedium = "Medium"

g. wordBig = "Elephant"

h. numberMedium <= numberBig / 3

i. numberBig >= 200

j. numberBig >= numberMedium + numberSmall

k. numberBig > numberMedium AND numberBig < numberSmall

l. numberBig = 100 OR numberBig > numberSmall

m. numberBig < 10 OR numberSmall > 10

n. numberBig = 30 AND numberMedium = 100 OR numberSmall = 100

2. Design a flowchart or pseudocode for a program that accepts two numbers from a
user and displays one of the following messages: First is larger, Second is larger,
Numbers are equal.

3. Design a flowchart or pseudocode for a program that accepts three numbers from
a user and displays a message if the sum of any two numbers equals the third.

4. Mortimer Life Insurance Company wants several lists of salesperson data. Design a
flowchart or pseudocode for the following:

a. A program that accepts one salesperson’s ID number and number of policies
sold in the last month, and displays the data only if the salesperson is a high
performer—a person who sells more than 25 policies in the month.

b. A program that accepts salesperson data continuously until a sentinel value is
entered and displays a list of high performers.

c. A program that accepts salesperson data continuously until a sentinel value is entered
and displays a list of salespeople who sold between 5 and 10 policies in the month.

171

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5. ShoppingBay is an online auction service that requires several reports. Data for each
auctioned item includes an ID number, item description, length of auction
in days, and minimum required bid. Design a flowchart or pseudocode for the following:

a. A program that accepts data for one auctioned item. Display data for an auction
only if the minimum required bid is over $100.00.

b. A program that continuously accepts auction item data until a sentinel value is
entered and displays all data for auctions in which the minimum required bid is
over $100.00.

c. A program that continuously accepts auction item data and displays data for
every auction in which there are no bids yet (in other words, the minimum bid
is $0.00) and the length of the auction is one day or less.

d. A program that continuously accepts auction data and displays data for every
auction in which the length is between 7 and 30 days inclusive.

e. A program that prompts the user for a maximum required bid, and then
continuously accepts auction data and displays data for every auction in which
the minimum bid is less than or equal to the amount entered by the user.

6. The Dash Cell Phone Company charges customers a basic rate of $5 per month to
send text messages. Additional rates are as follows:

The first 60 messages per month, regardless of message length, are included in
the basic bill.

An additional five cents is charged for each text message after the 60th message,
up to 180 messages.

An additional 10 cents is charged for each text message after the 180th message.

Federal, state, and local taxes add a total of 12 percent to each bill.

Design a flowchart or pseudocode for the following:
a. A program that accepts the following data about one customer’s messages: area code

(three digits), phone number (seven digits), and number of text messages sent. Display
all the data, including the month-end bill both before and after taxes are added.

b. A program that continuously accepts data about text messages until a sentinel
value is entered, and displays all the details.

c. A program that continuously accepts data about text messages until a sentinel
value is entered, and displays details only about customers who send more than
100 text messages.

d. A program that continuously accepts data about text messages until a sentinel
value is entered, and displays details only about customers whose total bill with
taxes is over $20.

e. A program that prompts the user for a three-digit area code from which to select
bills. Then the program continuously accepts text message data until a sentinel value
is entered, and displays data only for messages sent from the specified area code.

172

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7. The Drive-Rite Insurance Company provides automobile insurance policies for
drivers. Design a flowchart or pseudocode for the following:

a. A program that accepts insurance policy data, including a policy number,
customer last name, customer first name, age, premium due date (month, day,
and year), and number of driver accidents in the last three years. If an entered
policy number is not between 1000 and 9999 inclusive, set the policy number
to 0. If the month is not between 1 and 12 inclusive, or the day is not correct for
the month (for example, not between 1 and 31 for January or 1 and 29 for
February), set the month, day, and year to 0. Display the policy data after any
revisions have been made.

b. A program that continuously accepts policy holders’ data until a sentinel value
has been entered, and displays the data for any policy holder over 35 years old.

c. A program that continuously accepts policy holders’ data until a sentinel value has
been entered, and displays the data for any policy holder who is at least 21 years old.

d. A program that continuously accepts policy holders’ data and displays the data
for any policy holder no more than 30 years old.

e. A program that continuously accepts policy holders’ data and displays the data
for any policy holder whose premium is due no later than March 15 any year.

f. A program that continuously accepts policy holders’ data and displays the data
for any policy holder whose premium is due up to and including January 1, 2016.

g. A program that continuously accepts policy holders’ data and displays the data
for any policy holder whose premium is due by April 27, 2015.

h. A program that continuously accepts policy holders’ data and displays the data for
anyone who has a policy number between 1000 and 4000 inclusive, whose policy
comes due in April or May of any year, and who has had fewer than three accidents.

8. The Barking Lot is a dog day care center. Design a flowchart or pseudocode for the
following:

a. A program that accepts data for an ID number of a dog’s owner, and the name,
breed, age, and weight of the dog. Display a bill containing all the input data as
well as the weekly day care fee, which is $55 for dogs under 15 pounds, $75 for
dogs from 15 to 30 pounds inclusive, $105 for dogs from 31 to 80 pounds
inclusive, and $125 for dogs over 80 pounds.

b. A program that continuously accepts dogs’ data until a sentinel value is entered,
and displays billing data for each dog.

c. A program that continuously accepts dogs’ data until a sentinel value is entered,
and displays billing data for dog owners who owe more than $100.

d. A program that continuously accepts dogs’ data until a sentinel value is entered,
and displays billing data for dogs who weigh less than 20 pounds or more than
100 pounds.

173

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9. Mark Daniels is a carpenter who creates personalized house signs. He wants an
application to compute the price of any sign a customer orders, based on the
following factors:

The minimum charge for all signs is $30.

If the sign is made of oak, add $15. No charge is added for pine.

The first six letters or numbers are included in the minimum charge; there is a
$3 charge for each additional character.

Black or white characters are included in the minimum charge; there is an
additional $12 charge for gold-leaf lettering.

Design a flowchart or pseudocode for the following:

a. A program that accepts data for an order number, customer name, wood type,
number of characters, and color of characters. Display all the entered data and
the final price for the sign.

b. A program that continuously accepts sign order data and displays all the relevant
information for oak signs with five white letters.

c. A program that continuously accepts sign order data and displays all the relevant
information for pine signs with gold-leaf lettering and more than 10 characters.

10. Black Dot Printing is attempting to organize carpools to save energy. Each input
record contains an employee’s name and town of residence. Ten percent of the
company’s employees live in Wonder Lake; 30 percent live in the adjacent town of
Woodstock. Black Dot wants to encourage employees who live in either town to
drive to work together. Design a flowchart or pseudocode for the following:

a. A program that accepts an employee’s data and displays it with a message that
indicates whether the employee is a candidate for the carpool (because he lives in
one of the two cities).

b. A program that continuously accepts employee data until a sentinel value is
entered, and displays a list of all employees who are carpool candidates. Make
sure the decision-making process is as efficient as possible.

c. A program that continuously accepts employee data until a sentinel value is
entered, and displays a list of all employees who are ineligible to carpool because
they do not live in either Wonder Lake or Woodstock. Make sure the decision-
making process is as efficient as possible.

11. Amanda Cho, a supervisor in a retail clothing store, wants to acknowledge high-
achieving salespeople. Design a flowchart or pseudocode for the following:

a. A program that continuously accepts each salesperson’s first and last names, the
number of shifts worked in a month, number of transactions completed this
month, and the dollar value of those transactions. Display each salesperson’s
name with a productivity score, which is computed by first dividing dollars by
transactions and dividing the result by shifts worked. Display three asterisks after
the productivity score if it is 50 or higher.

174

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



b. A program that accepts each salesperson’s data and displays the name and a
bonus amount. The bonuses will be distributed as follows:

If the productivity score is 30 or less, the bonus is $25.

If the productivity score is 31 or more and less than 80, the bonus is $50.

If the productivity score is 80 or more and less than 200, the bonus
is $100.

If the productivity score is 200 or higher, the bonus is $200.

c. Modify Exercise 11b to reflect the following new fact, and have the program
execute as efficiently as possible:

Sixty percent of employees have a productivity score greater than 200.

Performing Maintenance

1. A file named MAINTENANCE04-01.jpg is included with your downloadable
student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 4 include DEBUG04-01.txt, DEBUG04-02.txt,
and DEBUG04-03.txt. Each file starts with some comments that describe the
problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must find
and correct.

2. Your downloadable files for Chapter 4 include a file named DEBUG04-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. In Chapter 2, you learned that many programming languages allow you to generate
a random number between 1 and a limiting value named limit by using a
statement similar to randomNumber = random(limit). Create the logic for a
guessing game in which the application generates a random number and the player

175

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



tries to guess it. Display a message indicating whether the player’s guess was
correct, too high, or too low. (After you finish Chapter 5, you will be able to modify
the application so that the user can continue to guess until the correct answer is
entered.)

2. Create a lottery game application. Generate three random numbers, each between
0 and 9. Allow the user to guess three numbers. Compare each of the user’s guesses
to the three random numbers and display a message that includes the user’s guess,
the randomly determined three digits, and the amount of money the user has won,
as shown in Figure 4-24.

Make certain that your application accommodates repeating digits. For example, if
a user guesses 1, 2, and 3, and the randomly generated digits are 1, 1, and 1, do not
give the user credit for three correct guesses—just one.

Up for Discussion

1. Computer programs can be used to make decisions about your insurability as well
as the rates you will be charged for health and life insurance policies. For example,
certain preexisting conditions may raise your insurance premiums considerably. Is
it ethical for insurance companies to access your health records and then make
insurance decisions about you? Explain your answer.

2. Job applications are sometimes screened by software that makes decisions about a
candidate’s suitability based on keywords in the applications. Is such screening fair
to applicants? Explain your answer.

3. Medical facilities often have more patients waiting for organ transplants than there
are available organs. Suppose you have been asked to write a computer program
that selects which candidates should receive an available organ. What data would
you want on file to be able to use in your program, and what decisions would you
make based on the data? What data do you think others might use that you would
choose not to use?

Matching Numbers Award ($)

Any one matching 10
Two matching 100
Three matching, not in order 1000
Three matching in exact order 1,000,000
No matches 0

Figure 4-24 Awards for matching numbers in lottery game

176

C H A P T E R 4 Making Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 5
Looping

In this chapter, you will learn about:

The advantages of looping

Using a loop control variable

Nested loops

Avoiding common loop mistakes

Using a for loop

Common loop applications

The similarities and differences between selections and loops

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding the Advantages of Looping
Although making decisions is what makes computers seem intelligent, looping makes
computer programming both efficient and worthwhile. When you use a loop, one set
of instructions can operate on multiple, separate sets of
data. Using fewer instructions results in less time
required for design and coding, fewer errors, and
shorter compile time.

Recall the loop structure that you learned about in
Chapter 3; it looks like Figure 5-1. As long as a Boolean
expression remains true, the body of a while loop
executes.

Quick Reference 5-1 shows the pseudocode
standards this book uses for the while statement.

QUICK REFERENCE 5-1 while Statement Pseudocode Standards

while condition

statements that execute when condition is true

endwhile

The while keyword starts
the statement and precedes
any statements that execute
when the tested condition is
true.

The tested condition is a Boolean expression. It might be a comparison
such as x > y, it might be a Boolean variable if the language supports 
that type, or it might be a call to a method that returns a Boolean value.
(Chapter 9 in the comprehensive version of this book describes methods 
that return values.)

The endwhile keyword ends the structure.
After endwhile, the condition is tested 
again.

Although many 
modern 
languages do 
not require 
indentation, 
the bodies of
while loops 
in this book 
are indented.

You have already learned that many programs use a loop to control repetitive tasks. For
example, Figure 5-2 shows the basic structure of many business programs. After some
housekeeping tasks are completed, the detail loop repeats once for every data record that
must be processed.

No

Yes

Figure 5-1 The loop structure
© 2015 Cengage Learning

178

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



For example, Figure 5-2 might represent the mainline logic of a typical payroll program.
The first employee’s data would be entered in the housekeeping() module, and while
the eof condition is not met, the detailLoop() module would perform such tasks
as determining regular and overtime pay and deducting taxes, insurance premiums,
charitable contributions, union dues, and other items. Then, after the employee’s
paycheck is output, the next employee’s data would be entered, and the detailLoop()

module would repeat. The advantage to having a computer produce payroll checks
is that the calculation instructions need to be written only once and can be repeated
indefinitely.

Watch the video A Quick Introduction to Loops.

stop

Yes

No

not eof?

start

housekeeping()

Declarations

endOfJob()

detailLoop()

start

  Declarations

  housekeeping()

  while not eof

     detailLoop()

  endwhile

  endOfJob()

stop

Figure 5-2 The mainline logic common to many business programs
© 2015 Cengage Learning

179

Understanding the Advantages of Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding the Advantages of Looping

1. When you use a loop, you can write one set of instructions that operates on
multiple, separate sets of data.

2. A major advantage of having a computer perform complicated tasks is the ability
to repeat them.

3. A loop is a structure that branches in two logical paths before continuing.

Using a Loop Control Variable
You can use a while loop to execute a body of statements continuously as long as some
condition continues to be true. The body of a loop might contain any number of statements,
including module calls, selection structures, and other loops. To make a while loop end
correctly, you can declare a loop control variable to manage the number of repetitions a loop
performs. Three separate actions should occur using a loop control variable:

The loop control variable is initialized before entering the loop.

The loop control variable’s value is tested, and if the result is true, the loop body is
entered.

The loop control variable is altered within the body of the loop so that the tested
condition that follows while eventually is false.

If you omit any of these actions or perform them incorrectly, you run the risk of creating an
infinite loop. Once your logic enters the body of a structured loop, the entire loop body must
execute. Your program can leave a structured loop only at the comparison that tests the loop
control variable. Commonly, you can control a loop’s repetitions in one of two ways:

Use a counter to create a definite, counter-controlled loop.

Use a sentinel value to create an indefinite loop.

Using a Definite Loop with a Counter
Figure 5-3 shows a loop that displays Hello four times. The variable count is the loop control
variable. This loop is a definite loop because it executes a definite, predetermined number of
times—in this case, four. The loop is a counted loop, or counter-controlled loop, because the
program keeps track of the number of loop repetitions by counting them.

Thefalsestatementis#3.Aloopisastructurethatrepeatsactionswhilesome
conditioncontinues.

180

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The loop in Figure 5-3 executes as follows:

The loop control variable, count, is initialized to 0.

The while expression compares count to 4.

The value of count is less than 4, and so the loop body executes. The loop body shown in
Figure 5-3 consists of two statements that display Hello and then add 1 to count.

The next time the condition count < 4 is evaluated, the value of count is 1, which
is still less than 4, so the loop body executes again. Hello is displayed a second
time and count is incremented to 2, Hello is displayed a third time and count
becomes 3, then Hello is displayed a fourth time and count becomes 4. Now
when the expression count < 4? evaluates, it is false, so the loop ends.

Within a loop’s body, you can change the value of the loop control variable in a number of
ways. For example:

You might simply assign a new value to the loop control variable.

You might retrieve a new value from an input device.

start

stop

No

Yes

Declarations
   num count = 0

count = count + 1

start
   Declarations
      num count = 0
   while count < 4
      output "Hello"
      count = count + 1
   endwhile
   output "Goodbye"
stopcount < 4?

output "Hello"
Loop control
variable is tested.

output "Goodbye"

Loop control
variable is initialized.

Loop control
variable is altered.

Figure 5-3 A counted while loop that outputs Hello four times
© 2015 Cengage Learning

181

Using a Loop Control Variable

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You might increment, or increase, the loop control variable, as in the logic in Figure 5-3.

You might reduce, or decrement, the loop control variable. For example, the loop in
Figure 5-3 could be rewritten so that count is initialized to 4, and reduced by 1 on each
pass through the loop. The loop would then continue while count remains greater than 0.

The terms increment and decrement usually refer to small changes; often the value used
to increase or decrease the loop control variable is 1. However, loops are also controlled
by adding or subtracting values other than 1. For example, to display company profits
at five-year intervals for the next 50 years, you would want to add 5 to a loop control variable
during each iteration.

Because you frequently need to increment a variable, many programming languages contain a shortcut
operator for incrementing. For example, in C++, C#, and Java, the expression ++value is a shortcut for
the expression value = value + 1. You will learn about these shortcut operators when you study
a programming language that uses them.

Watch the video Looping.

The looping logic shown in Figure 5-3 uses a counter. A counter is any numeric variable that
counts the number of times an event has occurred. In everyday life, people usually count
things starting with 1. Many programmers prefer starting their counted loops with a variable
containing 0 for two reasons:

In many computer applications, numbering starts with 0 because of the 0-and-1 nature of
computer circuitry.

When you learn about arrays in Chapter 6, you will discover that array manipulation
naturally lends itself to 0-based loops.

Using an Indefinite Loop with a Sentinel Value
Often, the value of a loop control variable is not altered by arithmetic, but instead is altered by
user input. For example, perhaps you want to keep performing some task while the user
indicates a desire to continue. In that case, you do not know when you write the program
whether the loop will be executed two times, 200 times, or at all. This type of loop is an
indefinite loop.

Consider an interactive program that displays Hello repeatedly as long as the user wants to
continue. The loop is indefinite because each time the program executes, the loop might be
performed a different number of times. The program appears in Figure 5-4.

182

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the program in Figure 5-4, the loop control variable is shouldContinue. The program
executes as follows:

The first input shouldContinue statement in the application in Figure 5-4 is a priming
input statement. In this statement, the loop control variable is initialized by the user’s first
response.

The while expression compares the loop control variable to the sentinel value Y.

If the user has entered Y, then Hello is output and the user is asked whether the program
should continue. In this step, the value of shouldContinue might change.

Loop control
variable is initialized.

Loop control
variable is altered.

Declarations
   string shouldContinue

shouldContinue
= "Y"?

start
   Declarations
      string shouldContinue
   output "Do you want to continue?
      Y or N >> "
   input shouldContinue
   while shouldContinue = "Y"
      output "Hello"
      output "Do you want to continue?
         Y or N >> "
      input shouldContinue
   endwhile
   output "Goodbye"
stop

output "Do you want to
continue? Y or N >> "

input
shouldContinue

start

stop

No

Yes

output "Hello"
Loop control
variable is tested.

output "Goodbye"

output "Do you want to
continue? Y or N >> "

input
shouldContinue

Figure 5-4 An indefinite while loop that displays Hello as long as the user wants to continue
© 2015 Cengage Learning

183

Using a Loop Control Variable

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



At any point, if the user enters any value other than Y, the loop ends. In most
programming languages, simple comparisons are case sensitive, so any entry other than Y,
including y, will end the loop.

Figure 5-5 shows how the program might look when it is executed at the command line
and in a GUI environment. The screens in Figure 5-5 show programs that perform exactly
the same tasks using different environments. In each environment, the user can continue
choosing to see Hello messages, or can choose to quit the program and display Goodbye.

Understanding the Loop in a Program’s Mainline Logic
The flowchart and pseudocode segments in Figure 5-4 contain three steps that should occur
in every properly functioning loop:

1. You must provide a starting value for the variable that will control the loop.

2. You must test the loop control variable to determine whether the loop body executes.

3. Within the loop, you must alter the loop control variable.

In Chapter 2 you learned that the mainline logic of many business programs follows a
standard outline that consists of housekeeping tasks, a loop that repeats, and finishing
tasks. The three crucial steps that occur in any loop also occur in standard mainline logic.
Figure 5-6 shows the flowchart for the mainline logic of the payroll program that you saw
in Figure 2-8. Figure 5-6 points out the three loop-controlling steps. In this case, the three
steps—initializing, testing, and altering the loop control variable—are in different modules.
However, the steps all occur in the correct places, showing that the mainline logic uses a
standard and correct loop.

Figure 5-5 Typical executions of the program in Figure 5-4 in two environments
© 2015 Cengage Learning

184

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



endOfJob()

output
REPORT_HEADING

input gross

deduct = gross *
RATE

net = gross -
deduct

The loop control
variable is tested
before each
execution of the
loop body.

The last action in housekeeping()
is the priming read that initializes the
loop control variable, name.

The last action in
detailLoop(), just
before the loop
control variable is
tested again, is
to alter the loop
control variable name.

detailLoop()

return

stop

name <>
QUIT?

No

Yes

start

housekeeping()

detailLoop()

input name

input name

housekeeping()

return

Declarations
   string name
   num gross
   num deduct
   num net   
   num RATE = 0.25   
   string QUIT = "XXX"
   string REPORT_HEADING = "Payroll Report"
   string COLUMN_HEADING = “Name  Gross
      Deductions  Net"
   string END_LINE = "**End of report"

output
COLUMN_HEADING

output name,
gross, deduct, net

endOfJob()

output END_LINE

return

Figure 5-6 A payroll program showing how the loop control variable is used
© 2015 Cengage Learning

185

Using a Loop Control Variable

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using a Loop Control Variable

1. To make a while loop execute correctly, a loop control variable must be set to 0
before entering the loop.

2. To make a while loop execute correctly, a loop control variable should be tested
before entering the loop body.

3. To make a while loop execute correctly, the body of the loop must take some
action that alters the value of the loop control variable.

Nested Loops
Program logic gets more complicated when you must use loops within loops, or nested
loops. When one loop appears inside another, the loop that contains the other loop is
called the outer loop, and the loop that is contained is called the inner loop. You need
to create nested loops when the values of two or more variables repeat to produce every
combination of values. Usually, when you create nested loops, each loop has its own
loop control variable.

For example, suppose you want to write a program that produces quiz answer sheets like
the ones shown in Figure 5-7. Each answer sheet has a unique heading followed by
five parts with three questions in each part, and you want a fill-in-the-blank line for each
question. You could write a program that uses 63 separate output statements to
produce three sheets (each sheet contains 21 printed lines), but it is more efficient to
use nested loops.

Thefalsestatementis#1.Aloopcontrolvariablemustbeinitialized,butnot
necessarilyto0.

186

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 5-8 shows the logic for the program that produces answer sheets. Three loop control
variables are declared for the program:

quizName controls the detailLoop() module that is called from the mainline logic.

partCounter controls the outer loop within the detailLoop() module; it keeps track of
the answer sheet parts.

questionCounter controls the inner loop in the detailLoop() module; it keeps track of
the questions and answer lines within each part section on each answer sheet.

Five named constants are also declared. Three of these constants (QUIT, PARTS, and
QUESTIONS) hold the sentinel values for each of the three loops in the program. The
other two constants hold the text that will be output (the word Part that precedes each
part number, and the period-space-underscore combination that forms a fill-in line for
each question).

When the program starts, the housekeeping() module executes and the user enters the
name to be output at the top of the first quiz. If the user enters the QUIT value, the program
ends immediately, but if the user enters anything else, such as Make-up Quiz, then the
detailLoop() module executes.

Chapter 1 Quiz
Part 1

1. _____
2. _____
3. _____

Part 2
1. _____
2. _____
3. _____

Part 3
1. _____
2. _____
3. _____

Part 4
1. _____
2. _____
3. _____

Part 5
1. _____
2. _____
3. _____

Extra Credit Quiz
Part 1

1. _____
2. _____
3. _____

Part 2
1. _____
2. _____
3. _____

Part 3
1. _____
2. _____
3. _____

Part 4
1. _____
2. _____
3. _____

Part 5
1. _____
2. _____
3. _____

Make-up Quiz
Part 1

1. _____
2. _____
3. _____

Part 2
1. _____
2. _____
3. _____

Part 3
1. _____
2. _____
3. _____

Part 4
1. _____
2. _____
3. _____

Part 5
1. _____
2. _____
3. _____

Figure 5-7 Quiz answer sheets
© 2015 Cengage Learning

187

Nested Loops

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the detailLoop() the quiz name is output at the top of the answer sheet. Then
partCounter is initialized to 1. The partCounter variable is the loop control variable for
the outer loop in this module. The outer loop continues while partCounter is less than
or equal to PARTS. The last statement in the outer loop adds 1 to partCounter. In other
words, the outer loop will execute when partCounter is 1, 2, 3, 4, and 5.

stop

quizName
<> QUIT?

Yes

No

start

housekeeping()

endOfJob()

detailLoop() return

housekeeping()

return

endOfJob()

Declarations
   string quizName
   num partCounter
   num questionCounter
   string QUIT = "ZZZ "
   num PARTS = 5
   num QUESTIONS = 3
   string PART_LABEL = "Part "
   string LINE = ". ___"

output "Enter quiz name
or ", QUIT, " to quit "

input quizName

Figure 5-8 Flowchart and pseudocode for AnswerSheet program (continues)

188

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



output PART_LABEL,
partCounter

partCounter = 1

partCounter = 
partCounter + 1

output
questionCounter,
LINE

output quizName

output "Enter
next quiz name
or ", QUIT, " to
quit "

Yes

Yes

No

No

detailLoop()

return

input quizName

partCounter
<= PARTS?

questionCounter
<= QUESTIONS?

questionCounter = 
questionCounter + 1

questionCounter = 1

Figure 5-8 Flowchart and pseudocode for AnswerSheet program (continues)

(continued)

189

Nested Loops

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 5-8, some output (the user prompt) would be sent to one output device, such as a monitor. Other output
(the quiz sheet) would be sent to another output device, such as a printer. The statements needed to send output
to separate devices differ among languages. The statements to set up the printer would be included in the
housekeeping() module, and the statements to disengage the printer would be included in the currently
empty endOfJob() module. Chapter 7 provides more details about sending output to separate files.

In the outer loop in the detailLoop() module in Figure 5-8, the word Part and the current
partCounter value are output. Then the following steps execute:

The loop control variable for the inner loop is initialized by setting questionCounter
to 1.

start
Declarations

string quizName
num partCounter
num questionCounter
string QUIT = "ZZZ "
num PARTS = 5
num QUESTIONS = 3
string PART_LABEL = "Part "
string LINE = ". _____"

housekeeping()
while quizName <> QUIT

detailLoop()
endwhile
endOfJob()

stop

housekeeping()
output "Enter quiz name or ", QUIT, " to quit "
input quizName

return

detailLoop()
output quizName
partCounter = 1
while partCounter <= PARTS

output PART_LABEL, partCounter
questionCounter = 1
while questionCounter <= QUESTIONS

output questionCounter, LINE
questionCounter = questionCounter + 1

endwhile
partCounter = partCounter + 1

endwhile
output "Enter next quiz name or ", QUIT, " to quit "
input quizName

return

endOfJob()
return

Figure 5-8 Flowchart and pseudocode for AnswerSheet program
© 2015 Cengage Learning

(continued)

190

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The loop control variable questionCounter is evaluated. While questionCounter does
not exceed QUESTIONS, the loop body executes: The value of questionCounter is output,
followed by a period and a fill-in-the-blank line.

At the end of the loop body, the loop control variable is altered by adding 1 to
questionCounter and the questionCounter comparison is made again.

In other words, when partCounter is 1, the part heading is output and underscore lines are
output for questions 1, 2, and 3. Then partCounter becomes 2, the part heading is output,
and underscore lines are created for another set of questions 1, 2, and 3. Then partCounter

becomes 3, 4, and 5 in turn, and three underscore lines numbered 1, 2, and 3 are created
for each part. In all, 15 underscore answer lines are created for each quiz.

In the program in Figure 5-8, it is important that questionCounter is reset to 1 within the
outer loop, just before entering the inner loop. If this step was omitted, Part 1 would contain
questions 1, 2, and 3, but subsequent parts would be empty because questionCounter would
never again be less than or equal to QUESTIONS.

Studying the answer sheet program reveals several facts about nested loops:

Nested loops never overlap. An inner loop is always completely contained within an outer
loop.

An inner loop goes through all of its iterations each time its outer loop goes through just
one iteration.

The total number of iterations executed by a nested loop is the number of inner loop
iterations times the number of outer loop iterations.

Watch the video Nested Loops.

TWO TRUTHS & A LIE

Nested Loops

1. When one loop is nested inside another, the loop that contains the other loop is
called the outer loop.

2. You need to create nested loops when the values of two or more variables repeat
to produce every combination of values.

3. The number of times a loop executes always depends on a constant.

Thefalsestatementis#3.Thenumberoftimesaloopexecutesmightdepend
onaconstant,butitmightalsodependonavaluethatvaries.

191

Nested Loops

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Avoiding Common Loop Mistakes
Programmers make the following common mistakes with loops:

Failing to initialize the loop control variable

Neglecting to alter the loop control variable

Using the wrong type of comparison when testing the loop control variable

Including statements inside the loop body that belong outside the loop

The following sections explain these common mistakes in more detail.

Mistake: Failing to Initialize the Loop Control Variable
Failing to initialize a loop’s control variable is a mistake. For example, consider the program
in Figure 5-9. It prompts the user for a name, and while the value of name continues not to
be the sentinel value ZZZ, the program outputs a greeting that uses the name and asks for
the next name. This program works correctly.

start
   Declarations
     string name
     string QUIT = "ZZZ"
  output "Enter name "
  input name
  while name <> QUIT
     output "Hello ", name
     output "Enter name "
     input name
  endwhile
  output "Goodbye"
stop

Yes

No

start

Declarations
   string name
   string QUIT = "ZZZ"

name <>
QUIT?

output
"Hello ", name

output
"Goodbye" input name

input name

output
"Enter name "

output
"Enter name " Loop control

variable is
initialized.

Loop control
variable is
tested.

Loop control
variable is
altered.

stop

Figure 5-9 Correct logic for greeting program
© 2015 Cengage Learning

192

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 5-10 shows an incorrect program in which the loop control variable is not assigned a
starting value. If the name variable is not set to a starting value, then when the eof condition is
tested, there is no way to predict whether it will be true. If the user does not enter a value for
name, the garbage value originally held by that variable might or might not be ZZZ. So, one of
two scenarios follows:

Most likely, the uninitialized value of name is not ZZZ, so the first greeting output will
include garbage—for example, Hello 12BGr5.

By a remote chance, the uninitialized value of name is ZZZ, so the program ends
immediately before the user can enter any names.

Mistake: Neglecting to Alter the Loop Control Variable
Different sorts of errors will occur if you fail to alter a loop control variable within the loop.
For example, in the program in Figure 5-9 that accepts and displays names, you create
such an error if you don’t accept names within the loop. Figure 5-11 shows the resulting
incorrect logic.

Yes

No

start

Declarations
   string name
   string QUIT = "ZZZ"

name <>
QUIT?

output
"Hello ", name

stop

start
   Declarations
      string name
      string QUIT = "ZZZ"

   while name <> QUIT
      output "Hello ", name
      input name
   endwhile
   output "Goodbye"
stop

Don’t Do It
Loop control variable
is not initialized.

output
"Goodbye"

input name

Figure 5-10 Incorrect logic for greeting program because the loop control variable initialization
is missing
© 2015 Cengage Learning

193

Avoiding Common Loop Mistakes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If you remove the input name instruction from the end of the loop in the program, no name
is ever entered after the first one. For example, assume that when the program starts, the
user enters Fred. The name will be compared to the sentinel value, and the loop will be
entered. After a greeting is output for Fred, no new name is entered, so when the logic returns
to the loop-controlling question, the name will still not be ZZZ, and greetings for Fred will
continue to be output infinitely. Under normal conditions, you never want to create a loop
that cannot terminate.

Mistake: Using the Wrong Type of Comparison When Testing
the Loop Control Variable
Programmers must be careful to use the correct type of comparison in the statement that
controls a loop. A comparison is correct only when the appropriate operands and operator
are used. For example, although only one keystroke differs between the original greeting
program in Figure 5-9 and the one in Figure 5-12, the original program correctly produces
named greetings and the second one does not.

Yes

No

start

Declarations
  string name
  string QUIT = "ZZZ"

name <>
QUIT?

output
"Hello ", name

stop

start
   Declarations
      string name
      string QUIT = "ZZZ"
   output "Enter name "
   input name
   while name <> QUIT
      output "Hello ", name

   endwhile
   output "Goodbye"
stop

output
"Goodbye"

input name

output
"Enter name "

Don’t Do It
Loop control variable
is never altered.

Figure 5-11 Incorrect logic for greeting program because the loop control variable is not altered
© 2015 Cengage Learning

194

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 5-12, a greater-than comparison (>) is made instead of a not-equal-to (<>)
comparison. Suppose that when the program executes, the user enters Fred as the first name.
In most programming languages, when the comparison between Fred and ZZZ is made, the
values are compared alphabetically. Fred is not greater than ZZZ, so the loop is never entered,
and the program ends.

start
   Declarations
      string name
      string QUIT = "ZZZ"
   output "Enter name "
   input name
   while name > QUIT
      output "Hello ", name
      output "Enter name "
      input name
   endwhile
   output "Goodbye"
stop  

Declarations
   string name
   string QUIT = "ZZZ"

start

stop

No

Yes

output
"Hello ", name

output "Goodbye"

output
"Enter name "

input
name

name >
QUIT?

output
"Enter name "

input
name

The wrong comparison
is made.

Don’t Do It

Figure 5-12 Incorrect logic for greeting program because the wrong test is made with the loop
control variable
© 2015 Cengage Learning

195

Avoiding Common Loop Mistakes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the wrong type of comparison in a loop can have serious effects. For example,
in a counted loop, if you use <= instead of < to compare a counter to a sentinel value,
the program will perform one loop execution too many. If the loop only displays greetings,
the error might not be critical, but if such an error occurred in a loan company application,
each customer might be charged a month’s additional interest. If the error occurred in
an airline’s application, it might overbook a flight. If the error occurred in a pharmacy’s
drug-dispensing application, each patient might receive one extra (and possibly harmful)
unit of medication.

Mistake: Including Statements Inside the Loop Body that
Belong Outside the Loop
Suppose that you write a program for a store manager who wants to discount every
item he sells by 30 percent. The manager wants 100 new price label stickers for each
item. The user enters a price, the new discounted price is calculated, 100 stickers are
printed, and the next price is entered. Figure 5-13 shows a program that performs
the job inefficiently because the same value, newPrice, is calculated 100 separate times
for each price that is entered.

196

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



stickerCount
< STICKERS?

No

Yes

stickerCount = 0

newPrice = price –
price * DISCOUNT

endOfJob()

endOfJob()

return

stop

price <>
0?

Yes

No

start

stickerCount = 
stickerCount + 1

housekeeping()

detailLoop()

detailLoop()

output "New
price! ",
newPrice

input price

input price

housekeeping()

return

Declarations
   num price
   num DISCOUNT = 0.30
   num newPrice
   num stickerCount
   num STICKERS = 100

output "Please enter
original price of
item or 0 to quit "

output "Please enter
original price of next
item or 0 to quit "return

output "Price 
sticker job 
complete "

This program works, but it is
inefficient because the same
value for newPrice is
calculated 100 separate
times for each price.

Don’t Do It

Figure 5-13 Inefficient way to produce 100 discount price stickers for differently
priced items (continues)

197

Avoiding Common Loop Mistakes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 5-14 shows the same program, in which the newPrice value that is output on the
sticker is calculated only once per new price; the calculation has been moved to a better
location. The programs in Figures 5-13 and 5-14 do the same thing, but the second program
does it more efficiently. As you become more proficient at programming, you will
recognize many opportunities to perform the same tasks in alternate, more elegant, and
more efficient ways.

When you describe people or events as elegant, you mean they possess a refined gracefulness. Similarly,
programmers use the term elegant to describe programs that are well designed and easy to understand
and maintain.

start
   Declarations
      num price
      num DISCOUNT = 0.30
      num newPrice
      num stickerCount
      num STICKERS = 100
   housekeeping()
   while price <> 0
      detailLoop()
   endwhile
   endOfJob()
stop  

housekeeping()
   output "Please enter original price of item or 0 to quit "
   input price
return

detailLoop()
   stickerCount = 0
   while stickerCount < STICKERS
      newPrice = price – price * DISCOUNT
      output "New price! ", newPrice
      stickerCount = stickerCount + 1
   endwhile
   output "Please enter original price of
      next item or 0 to quit "
   input price
return

endOfJob()
   output "Price sticker job complete"
return

This program works, but it is
inefficient because the same
value for newPrice is
calculated 100 separate
times for each price.

Don’t Do It

Figure 5-13 Inefficient way to produce 100 discount price stickers for differently priced items
© 2015 Cengage Learning

(continued)

198

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In this improved version of 
the program, the newPrice
value operation is calculated
just once, then 100 stickers
are output.

stickerCount
< STICKERS?

No

Yes

stickerCount = 0

endOfJob()

endOfJob()

return

stop

price <>
0?

Yes

No

start

stickerCount = 
stickerCount + 1

newPrice = price –
price * DISCOUNT

housekeeping()

detailLoop()

detailLoop()

output "New
price! ",
newPrice

input price

Declarations
   num price
   num DISCOUNT = 0.30
   num newPrice
   num stickerCount
   num STICKERS = 100

output "Please enter
original price of next
item or 0 to quit "

input price

housekeeping()

return

output "Please enter
original price of
item or 0 to quit "

return

output "Price 
sticker job 
complete"

Figure 5-14 Improved discount sticker-making program (continues)

199

Avoiding Common Loop Mistakes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Avoiding Common Loop Mistakes

1. In a loop, neglecting to initialize the loop control variable is a mistake.

2. In a loop, neglecting to alter the loop control variable is a mistake.

3. In a loop, comparing the loop control variable using >= or <= is a mistake.

start
   Declarations
      num price
      num DISCOUNT = 0.30
      num newPrice
      num stickerCount
      num STICKERS = 100
   housekeeping()
   while price <> 0
      detailLoop()
   endwhile
   endOfJob()
stop  

housekeeping()
   output "Please enter original price of item or 0 to quit "
   input price
return

detailLoop()
   newPrice = price – price * DISCOUNT
   stickerCount = 0
   while stickerCount < STICKERS
      output "New price! ", newPrice
      stickerCount = stickerCount + 1
   endwhile
   output "Please enter original price of next item or 0 to quit "
   input price
return 

endOfJob()
   output "Price sticker job complete"
return

In this improved version of 
the program, the newPrice
value operation is calculated
just once, then 100 stickers
are output.

Figure 5-14 Improved discount sticker-making program
© 2015 Cengage Learning

Thefalsestatementis#3.Manyloopsarecreatedcorrectlyusing<=or>=.

(continued)

200

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using a for Loop
Every high-level programming language contains a while statement that you can use to code
any loop, including both indefinite and definite loops. In addition to the while statement,
most computer languages support a for statement. You usually use the for statement, or
for loop, with definite loops—those that will loop a specific number of times—when you
know exactly how many times the loop will repeat. The for statement provides you with
three actions in one compact statement. In a for statement, a loop control variable is:

Initialized

Tested

Altered

Quick Reference 5-2 shows pseudocode standards for a for statement.

QUICK REFERENCE 5-2 for Statement Pseudocode Standards

for loopControlVariable = initialValue to finalValue step stepValue

statements that execute when loopControlVariable is in range

endfor

The for keyword
starts the statement.

The loop control 
variable is set to 
an initial value 
when the for
loop starts.

The endfor keyword ends the statement.

Although 
many 
modern 
languages 
do not 
require 
indentation, 
the bodies 
of for loops 
in this book 
are 
indented.

On every iteration, the loop 
control variable is compared to 
finalValue. When the loop 
control variable exceeds 
finalValue, the loop ends.

After each execution of the loop 
body, the loop control variable is 
altered (usually increased) by the
step value, just before the loop 
control variable is again 
compared to finalValue.        

The amount by which a for loop control variable changes is often called a step value. The
step value can be any number and can be either positive or negative; that is, it can increment
or decrement.

A for loop can express the same logic as a while statement, but in a more compact form. You
never are required to use a for statement for any loop; a while loop can always be used instead. For
example, to display Hello four times, you can write either of the sets of statements in Figure 5-15.

201

Using a for Loop

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The code segments in Figure 5-15 each accomplish the same tasks:

The variable count is initialized to 0.

The count variable is compared to the limit value 3; while count is less than or equal to 3,
the loop body executes.

As the last statement in the loop execution, the value of count increases by 1. After the
increase, the comparison to the limit value is made again.

A while loop can always be used instead of a for loop, but when a loop’s execution is based
on a loop control variable progressing from a known starting value to a known ending value in
equal steps, the for loop provides a convenient shorthand. It is easy for others to read, and
because the loop control variable’s initialization, testing, and alteration are all performed in
one location, you are less likely to leave out one of these crucial elements.

Although for loops are commonly used to control execution of a block of statements a fixed
number of times, the programmer doesn’t need to know the starting, final, or step value for
the loop control variable when the program is written. For example, any of the values might
be entered by the user, or might be the result of a calculation.

The for loop is particularly useful when processing arrays. You will learn about arrays in Chapter 6.

In Java, C++, and C#, a for loop that displays 21 values (0 through 20) might look similar to the following:

for(count = 0; count <= 20; count++)
{

output count;
}

The three actions (initializing, evaluating, and altering the loop control variable) are separated by semicolons
within a set of parentheses that follow the keyword for. The expression count++ increases count by 1.
In each of the three languages, the block of statements that depends on the loop sits between a pair of
curly braces, so the endfor keyword is not used. None of the three languages uses the keyword output,
but all of them end output statements with a semicolon.

count = 0
while count <= 3
   output "Hello"
   count = count + 1
endwhile

for count = 0 to 3 step 1
   output "Hello"
endfor

Figure 5-15 Comparable while and for statements that each output Hello four times
© 2015 Cengage Learning

202

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Both the while loop and the for loop are examples of pretest loops. In a pretest loop, the
loop control variable is tested before each iteration. That means the loop body might never
execute because the question controlling the loop might be false the first time it is asked.
Most languages allow you to use a variation of the looping structure known as a posttest loop,
which tests the loop control variable after each iteration. In a posttest loop, the loop body
executes at least one time because the loop control variable is not tested until after one
iteration. Appendix D contains more information about posttest loops.

Some books and flowchart programs use a symbol that looks like a hexagon to represent a for loop in a
flowchart. However, no special symbols are needed to express a for loop’s logic. A for loop is simply
a code shortcut, so this book uses standard flowchart symbols to represent initializing the loop control
variable, testing it, and altering it.

TWO TRUTHS & A LIE

Using a for Loop

1. The for statement provides you with three actions in one compact
statement: initializing, testing, and altering a loop control variable.

2. A for statement body always executes at least one time.

3. In most programming languages, you can provide a for loop with
any step value.

Common Loop Applications
Although every computer program is different, many techniques are common to a variety
of applications. Loops, for example, are frequently used to accumulate totals and to
validate data.

Using a Loop to Accumulate Totals
Business reports often include totals. The supervisor who requests a list of employees in the
company dental plan is often as interested in the number of participating employees as in who
they are. When you receive your telephone bill each month, you usually check the total as
well as charges for the individual calls.

Thefalsestatementis#2.Aforstatementbodymightnotexecutedependingon
theinitialvalueoftheloopcontrolvariable.

203

Common Loop Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assume that a real estate broker wants to see a list of all properties sold in the last
month as well as the total value for all the properties. A program might accept sales data
that includes the street address of each property sold and its selling price. The data
records might be entered by a clerk as each sale is made, and stored in a file until the
end of the month; then they can be used in a monthly report. Figure 5-16 shows an
example of such a report.

To create the sales report, you must output the address and price for each property sold and
add its value to an accumulator. An accumulator is a variable that you use to gather or
accumulate values, and is very similar to a counter that you use to count loop iterations.
However, usually you add just one to a counter, whereas you add some other value to
an accumulator. If the real estate broker wants to know how many listings the company
holds, you count them. When the broker wants to know the total real estate value, you
accumulate it.

To accumulate total real estate prices, you declare a numeric variable such as accumPrice
and initialize it to 0. As you get data for each real estate transaction, you output it and add
its value to the accumulator accumPrice, as shown shaded in Figure 5-17.

MONTH–END SALES REPORT

Address Price

287 Acorn St
12 Maple Ave
8723 Marie Ln
222 Acorn St
29 Bahama Way

150,000
310,000
 65,500
127,000
450,000

Total 1,102,500

Figure 5-16 Month-end real estate sales report
© 2015 Cengage Learning

204

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



getReady()

output "Total ",
accumPrice

stop

address
<> QUIT?

Yes

No

start

finishUp()

finishUp()

createReport()

Declarations
   string address
   num price
   num accumPrice = 0
   string HEADING1 = "MONTH-END SALES REPORT"
   string HEADING2 = "Address            Price"
   num QUIT = "ZZZ"

return

output 
HEADING1

output "Enter
address of
property "

getReady()

return

output 
HEADING2

input
address

createReport()

output "Enter
price of
property "

input
price

output "Enter
address of next
property "

output address,
price

accumPrice =
accumPrice + price

return

input
address

Figure 5-17 Flowchart and pseudocode for real estate sales report program (continues)

205

Common Loop Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Some programming languages assign 0 to a variable you fail to initialize explicitly, but many do not. When
you try to add a value to an uninitialized variable, most languages will issue an error message; worse,
some languages, such as C and C++, will let you incorrectly start with an accumulator that holds garbage.
All of the examples in this book assign the value 0 to each accumulator before using it.

In earlier program examples in this chapter, the modules were named housekeeping(),
detailLoop(), and endOfJob(). In the program in Figure 5-17, they are named getReady(),
createReport(), and finishUp(). You can assign modules any names that make sense to you,
as long as you are consistent with the names within a program.

start
   Declarations
      string address
      num price
      num accumPrice = 0
      string HEADING1 = "MONTH-END SALES REPORT"
      string HEADING2 = "Address            Price"
      num QUIT = "ZZZ"
   getReady()
   while address <> QUIT
      createReport()
   endwhile
   finishUp()
stop

getReady()
   output HEADING1
   output HEADING2
   output "Enter address of property "
   input address
return

createReport()
   output "Enter price of property "
   input price
   output address, price
   accumPrice = accumPrice + price
   output "Enter address of next property "
   input address
return

finishUp()
   output "Total ", accumPrice
return

Figure 5-17 Flowchart and pseudocode for real estate sales report program
© 2015 Cengage Learning

(continued)

206

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



After the program in Figure 5-17 gets and displays the last real estate transaction, the user
enters the sentinel value and loop execution ends. At that point, the accumulator will hold
the grand total of all the real estate values. The program displays the word Total and the
accumulated value accumPrice. Then the program ends.

Figure 5-17 highlights the three actions you usually must take with accumulators:

Accumulators are initialized to 0.

Accumulators are altered, usually once for every data set processed, and most often are
altered through addition.

At the end of processing, accumulators are output.

After outputting the value of accumPrice, new programmers often want to reset it to 0. Their
argument is that they are “cleaning up after themselves.” Although you can take this step
without harming the execution of the program, it serves no useful purpose. You cannot set
accumPrice to 0 in anticipation of having it ready for the next program, or even for the next
time you execute the same program. Variables exist only during an execution of the program,
and even if a future application happens to contain a variable named accumPrice, the variable
will not necessarily occupy the same memory location as this one. Even if you run the same
application a second time, the variables might occupy physical memory locations different
from those during the first run. At the beginning of any module, it is the programmer’s
responsibility to initialize all variables that must start with a specific value. There is no benefit
to changing a variable’s value when it will never be used again during the current execution.

Some business reports are summary reports—they contain only totals with no data for
individual records. In the example in Figure 5-17, suppose that the broker did not care about
details of individual sales, but only about the total for all transactions. You could create a
summary report by omitting the step that outputs address and price from the createReport()
module. Then you could simply output accumPrice at the end of the program.

Using a Loop to Validate Data
When you ask a user to enter data into a computer program, you have no assurance that the
data will be accurate. Incorrect user entries are by far the most common source of computer
errors. The programs you write will be improved if you employ defensive programming,
which means trying to prepare for all possible errors before they occur. Loops are frequently
used to validate data—that is, to make sure it is meaningful and useful. For example, validation
might ensure that a value is the correct data type or that it falls within an acceptable range.

Suppose that part of a program you are writing asks a user to enter a number that represents
his or her birth month. If the user types a number lower than 1 or greater than 12, you must
take some sort of action. For example:

You could display an error message and stop the program.

You could choose to assign a default value for the month (for example, 1) before proceeding.

You could reprompt the user for valid input.

207

Common Loop Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If you choose this last course of action, you could then take at least two approaches. You
could use a selection, and if the month is invalid, you could ask the user to reenter a number,
as shown in Figure 5-18.

The problem with the logic in Figure 5-18 is that the comparisons of month to LOW_MONTH and
HIGH_MONTH are made only once, and the user still might not enter valid data on the second
attempt. Of course, you could add a third decision, but you still couldn’t control what the
user enters.

The superior solution is to use a loop to continuously prompt a user for a month until the
user enters it correctly. Figure 5-19 shows this approach.

No Yes

output "Enter
birth month... "

input month

input month

Significant declarations:
   num month
   num HIGH_MONTH = 12
   num LOW_MONTH = 1

month <
LOW_MONTH OR
month >
HIGH_MONTH?

output "Enter birth month... "
input month
if month < LOW_MONTH OR month > HIGH_MONTH then
   output "Enter birth month... "
   input month
endif

output "Enter
birth month... "

Don’t Do It
User is reprompted here,
but there is no guarantee
that month will be valid
this time.

Figure 5-18 Reprompting a user once after an invalid month is entered
© 2015 Cengage Learning

208

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Most languages provide a built-in way to check whether an entered value is numeric. When you rely on user
input, you frequently accept each piece of input data as a string and then attempt to convert it to a number.
The procedure for accomplishing numeric checks varies slightly in different programming languages.

Of course, data validation doesn’t prevent all errors; just because a data item is valid does
not mean that it is correct. For example, a program can determine that 5 is a valid birth
month, but not that your birthday actually falls in month 5. Programmers employ the
acronym GIGO for garbage in, garbage out. It means that if your input is incorrect, your
output is worthless.

Limiting a Reprompting Loop
Reprompting a user is a good way to try to ensure valid data, but it can be frustrating to a user
if it continues indefinitely. For example, suppose the user must enter a valid birth month, but

No

Yes

output "Enter
birth month... "

input month

input month

Significant declarations:
   num month
   num HIGH_MONTH = 12
   num LOW_MONTH = 1

month <
LOW_MONTH OR
month >
HIGH_MONTH?

output "Enter birth month... "
input month
while month < LOW_MONTH OR month > HIGH_MONTH
   output "Enter birth month... "
   input month
endwhile

output "Enter
birth month... "

The loop continues as
long as the user’s month
is invalid.

Figure 5-19 Reprompting a user continuously after an invalid month is entered
© 2015 Cengage Learning

209

Common Loop Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



has used another application in which January was month 0, and keeps entering 0 no matter
how many times you repeat the prompt. One helpful addition to the program would be to use
the limiting values as part of the prompt. In other words, instead of the statement output
"Enter birth month… ", the following statement might be more useful:

output "Enter birth month between ", LOW_MONTH, ", and " HIGH_MONTH, " ... "

The user would see Enter birth month between 1 and 12 …. Still, the user might not
understand the prompt or not read it carefully, and might continue to enter unacceptable
values, so you might want to employ the tactic used in Figure 5-20, in which the program
maintains a count of the number of reprompts. In this example, a constant named ATTEMPTS

is set to 3. While a count of the user’s attempts at correct data entry remains below this limit,
and the user enters invalid data, the user continues to be reprompted. If the user exceeds
the limited number of allowed attempts, the loop ends.

No

Yes

output "Enter
birth month... "

count = 0

input month

input month

Significant declarations:
   num month
   num HIGH_MONTH = 12
   num LOW_MONTH = 1
   num count
   num ATTEMPTS = 3

count < ATTEMPTS
AND (month <
LOW_MONTH OR
month >
HIGH_MONTH)?

count = 0
output "Enter birth month... "
input month
while count < ATTEMPTS AND (month < LOW_MONTH OR month > HIGH_MONTH)

                       count = count + 1
   output "Enter birth month... "
   input month
endwhile

output "Enter
birth month... "

count = count + 1

Figure 5-20 Limiting user reprompts
© 2015 Cengage Learning

210

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The action that follows the loop in Figure 5-20 depends on the application. If count equals
ATTEMPTS after the data-entry loop ends, you might want to force the invalid data to a default
value. Forcing a data item means you override incorrect data by setting the variable to a
specific, predetermined value. For example, you might decide that if a month value does not
fall between 1 and 12, you will force the month to 0 or to the current month. In a different
application, you might just choose to end the program. Ending a program prematurely can
frustrate users, and can result in lost revenue for a company. For example, if it is difficult to
complete a transaction on a company’s Web site, users might give up and not do business
with the organization. In an interactive, Web-based program, if a user is having trouble
providing valid data, you might choose to have a customer service representative start a chat
session with the user to offer help.

Validating a Data Type
The data you use within computer programs is varied. It stands to reason that validating data
requires a variety of methods. For example, some programming languages allow you to check
data items to make sure they are the correct data type. Although this technique varies from
language to language, you can often make a statement like the one shown in Figure 5-21.
In this program segment, isNumeric() represents a call to a module; it is used to check
whether the entered employee salary falls within the category of numeric data. You check to
ensure that a value is numeric for many reasons—an important one is that only numeric
values can be used correctly in arithmetic statements. A module such as isNumeric() is
most often provided with the language translator you use to write your programs. Such
a module operates as a black box; in other words, you can use the module’s results without
understanding its internal statements.

211

Common Loop Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Besides allowing you to check whether a value is numeric, some languages contain methods
such as isChar(), which checks whether a value is a character data type; isWhitespace(),
which checks whether a value is a nonprinting (whitespace) character, such as a space or tab;
and isUpper(), which checks whether a value is a capital letter.

In many languages, you accept all user data as a string of characters, and then use built-in
methods to attempt to convert the characters to the correct data type for your application.
When the conversion methods succeed, you have useful data. When the conversion methods
fail because the user has entered the wrong data type, you can take appropriate action, such as
issuing an error message, reprompting the user, or forcing the data to a default value.

Validating Reasonableness and Consistency of Data
Data items can be the correct type and within range, but still be incorrect. You have
experienced this problem yourself if anyone has ever misspelled your name or overbilled you.
The data might have been the correct type—for example, alphabetic letters were used in
your name—but the name itself was incorrect. Many data items cannot be checked for
reasonableness; for example, the names Catherine, Katherine, and Kathryn are equally
reasonable, but only one spelling is correct for a particular woman.

No

Yes

output "Enter
salary"

input salary

input salary

isNumeric
(salary)?

output "Enter salary"
input salary
while not isNumeric(salary)
   output "Invalid entry - try again "
   input salary
endwhile

output "Invalid
entry – try
again "

Figure 5-21 Checking data for correct type
© 2015 Cengage Learning

212

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



However, many data items can be checked for reasonableness. If you make a purchase on
May 3, 2015, then the payment cannot possibly be due prior to that date. Perhaps within your
organization, you cannot make more than $20.00 per hour if you work in Department 12.
If your zip code is 90201, your state of residence cannot be New York. If your store’s cash on
hand was $3000 when it closed on Tuesday, the amount should not be different when the
store opens on Wednesday. If a customer’s title is Ms., the customer’s gender should be F.
Each of these examples involves comparing two data items for reasonableness or consistency.
You should consider making as many such comparisons as possible when writing your
own programs.

Frequently, testing for reasonableness and consistency involves using additional data files. For
example, to check that a user has entered a valid county of residence for a state, you might use
a file that contains every county name within every state in the United States, and check the
user’s county against those contained in the file.

Good defensive programs try to foresee all possible inconsistencies and errors. The more
accurate your data, the more useful information you will produce as output from your programs.

When you become a professional programmer, you want your programs to work correctly as a source of
professional pride. On a more basic level, you do not want to be called in to work at 3:00 a.m. when the
overnight run of your program fails because of errors you created.

TWO TRUTHS & A LIE

Common Loop Applications

1. An accumulator is a variable that you use to gather or accumulate values.

2. An accumulator typically is initialized to 0.

3. An accumulator is typically reset to 0 after it is output.

Comparing Selections and Loops
New programmers sometimes struggle when determining whether to use a selection or a loop
to solve some programming problems. Much of the confusion occurs because decisions
and loops both start by testing conditions and continue by taking action based on the
outcome of the test.

However, an important difference between a selection and a loop is that in the selection
structure, the two logical paths that emerge from the decision join together following their

Thefalsestatementis#3.Thereistypicallynoneedtoresetanaccumulatorafter
itisoutput.

213

Comparing Selections and Loops

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



actions. In the loop structure, the paths that emerge from the decision do not join together.
Instead, with a loop, one of the logical branches that emerges from the structure-controlling
decision eventually returns to the same decision. Figure 5-22 compares flowcharts for a
selection structure and a loop structure.

When a client describes a programming need, you can listen for certain words to help you
decide whether to use a selection or a loop structure. For example, when program requirements
contain words like if, else, unless, and otherwise, the necessary logic might be a selection
structure. On the other hand, when program requirements contain words like while, until, as
long as, during, for each, repeat, and continue, the necessary logic might include a loop.
However, as you learned with AND and OR logic in the previous chapter, clients do not always
use language as precisely as computers, so listening for such keywords is only a guideline.

When you find yourself repeating selection structures that are very similar, you should
consider using a loop. For example, suppose your supervisor says, “If you don’t reach the end
of the file when you are reading an employee record, display the record and read another one.

No

Single-alternative 
selection structure

Loop structure

Both structures 
start with a 
Boolean 
expression.

Yes

YesNo

Both structures have a 
body that executes when 
the evaluated Boolean 
expression is true.

In the selection structure,
whether the body of steps in the
Yes branch execute or the body
of steps in the No branch
execute, the same subsequent
steps follow.

In the loop structure, if the body of
steps in the Yes branch execute, the
logic returns to the original
question. This does not happen
when the steps in the No branch
execute.

Figure 5-22 Comparing a selection and a loop
© 2015 Cengage Learning

214

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Keep doing this until you run out of records.” Because the supervisor used the word if to start
the request, your first inclination might be to create logic that looks like Figure 5-23.

No Yes

not eof? 

input a record

input a record

display a record

No Yes

not eof? 

input a record

display a record

No Yes

not eof? 

input a record

display a record

...and so on

Don’t Do It
This logic is 
unnecessarily repetitive.

Figure 5-23 Inefficient logic for reading and displaying employee records

215

Comparing Selections and Loops

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The logic in Figure 5-23 works—each time an employee record is input and the eof

condition is not met, the data is displayed and another record is input. However, the
logic in Figure 5-23 is flawed. First, if you do not know how many input records there
are, the logic might never end. After each record is input, it is always necessary to check
again for the eof condition. Second, even if you do know the number of input records,
the logic becomes very unwieldy after three or four records. When you examine
Figure 5-23, you see that the same set of steps is repeated. Actions that are repeated
are best handled in a loop. Figure 5-24 shows a better solution to the problem.
In Figure 5-24, the first employee record is input, and as long as the eof condition is
not met, the program continuously displays and reads additional records.

TWO TRUTHS & A LIE

Comparing Selections and Loops

1. Selection and loop structures differ in that selection structures only take
action when a test condition is true.

2. Selection and loop structures are similar in that the tested condition that
begins either structure always has two possible outcomes.

3. One difference between selection and loop structures is that the
structure-controlling question is repeated in a loop structure.

Yes

No

not eof?

input a record

display a record input a record

Figure 5-24 Efficient and structured logic for getting and displaying employee records

Thefalsestatementis#1.Selectionstructurescantakedifferentactionswhen
atestconditionistrueandwhenitisfalse.

216

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter Summary
A loop contains one set of instructions that operates on multiple, separate sets of data.

Three actions are taken with a loop control variable in every while loop: You must
initialize a loop control variable, compare the variable to some value that controls
whether the loop continues or stops, and alter the variable that controls the loop.

Nested loops are loops that execute within the confines of other loops. When nesting
loops, you maintain two separate loop control variables and alter each at the
appropriate time.

Common mistakes that programmers make when writing loops include failing to initialize
the loop control variable, neglecting to alter the loop control variable, using the wrong
comparison expression with the loop control variable, and including statements inside the
loop that belong outside the loop.

Most computer languages support a for statement or for loop that you can use with
definite loops when you know how many times a loop will repeat. The for statement uses
a loop control variable that it automatically initializes, tests, and alters.

Loops are used in many applications—for example, to accumulate totals in business
reports. Loops also are used to ensure that user data entries are valid by repeatedly
reprompting the user.

In the selection structure, the two logical paths that emerge from a test join together
following their actions. In the loop structure, the paths that emerge from the test do not
join together; instead, one of the paths eventually returns to the same test.

Key Terms
A loop control variable is a variable that determines whether a loop will continue.

A definite loop is one for which the number of repetitions is a predetermined value.

A counted loop, or counter-controlled loop, is a loop whose repetitions are managed by a
counter.

To increment a variable is to add a constant value to it, frequently 1.

To decrement a variable is to decrease it by a constant value, frequently 1.

A counter is any numeric variable you use to count the number of times an event has
occurred.

An indefinite loop is one for which you cannot predetermine the number of executions.

Nested loops occur when a loop structure exists within another loop structure.

An outer loop contains another loop when loops are nested.

217

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An inner loop is contained within another loop when loops are nested.

A for statement, or for loop, can be used to code definite loops and has a loop control
variable that it automatically initializes, tests, and alters.

A step value is a number by which a loop control variable is altered on each pass through
a loop.

A pretest loop tests its controlling condition before each iteration, meaning that the loop
body might never execute.

A posttest loop tests its controlling condition after each iteration, meaning that the loop
body executes at least one time.

An accumulator is a variable that you use to gather or accumulate values, such as
a running total.

A summary report lists only totals, without individual detail records.

Defensive programming is a technique with which you try to prepare for all possible errors
before they occur.

To validate data is to ensure that data items are meaningful and useful—for example,
by ensuring that values are the correct data type, fall within an acceptable range, or are
reasonable.

GIGO (garbage in, garbage out) means that if your input is incorrect, your output is worthless.

Forcing a data item means you override incorrect data by setting it to a specific, default
value.

Exercises

Review Questions
1. The structure that allows you to write one set of instructions that operates on

multiple, separate sets of data is the .

a. sequence
b. loop

c. selection
d. case

2. The loop that frequently appears in a program’s mainline logic .

a. always depends on whether a variable equals 0
b. is an example of an infinite loop
c. is an unstructured loop
d. works correctly based on the same logic as other loops

218

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Which of the following is not a step that must occur with every correctly working loop?

a. Initialize a loop control variable before the loop starts.
b. Compare the loop control value to a sentinel during each iteration.
c. Set the loop control value equal to a sentinel during each iteration.
d. Alter the loop control variable during each iteration.

4. The statements executed within a loop are known collectively as the .

a. loop body
b. loop controls

c. sequences
d. sentinels

5. A counter keeps track of .

a. the number of times an event has occurred
b. the number of machine cycles required by a segment of a program
c. the number of loop structures within a program
d. the number of times software has been revised

6. Adding 1 to a variable is also called it.

a. digesting
b. resetting

c. decrementing
d. incrementing

7. Which of the following is a definite loop?

a. a loop that executes as long as a user continues to enter valid data
b. a loop that executes 1000 times
c. both of the above
d. none of the above

8. Which of the following is an indefinite loop?

a. a loop that executes exactly 10 times
b. a loop that follows a prompt that asks a user how many repetitions to make

and uses the value to control the loop
c. both of the above
d. none of the above

9. When you decrement a variable, you .

a. set it to 0
b. reduce it by one-tenth

c. subtract a value from it
d. remove it from a program

10. When two loops are nested, the loop that is contained by the other is
the loop.

a. captive
b. unstructured

c. inner
d. outer

219

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11. When loops are nested, .

a. they typically share a loop control variable
b. one must end before the other begins
c. both must be the same type—definite or indefinite
d. none of the above

12. Most programmers use a for loop .

a. for every loop they write
b. when they know the exact number of times a loop will repeat
c. when a loop must repeat many times
d. when a loop will not repeat

13. A report that lists only totals, with no details about individual records,
is a(n) report.

a. accumulator
b. final

c. group
d. summary

14. Typically, the value added to a counter variable is .

a. 0
b. 1

c. the same for each iteration
d. different in each iteration

15. Typically, the value added to an accumulator variable is .

a. 0
b. 1

c. the same for each iteration
d. different in each iteration

16. After an accumulator or counter variable is displayed at the end of a program, it is
best to .

a. delete the variable from the program
b. reset the variable to 0
c. subtract 1 from the variable
d. none of the above

17. When you , you make sure data items are the correct type and fall
within the correct range.

a. validate data
b. employ offensive programming

c. use object orientation
d. count loop iterations

18. Overriding a user’s entered value by setting it to a predetermined value is
known as .

a. forcing
b. accumulating

c. validating
d. pushing

220

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



19. To ensure that a user’s entry is the correct data type, frequently you .

a. prompt the user to verify that the type is correct
b. use a method built into the programming language
c. include a statement at the beginning of the program that lists the data

types allowed
d. all of the above

20. A variable might hold an incorrect value even when it is .

a. the correct data type
b. within a required range
c. a constant coded by the programmer
d. all of the above

Programming Exercises

1. What is output by each of the pseudocode segments in Figure 5-25?

2. Design the logic for a program that outputs every number from 1 through 20.

a = 1
b = 2
c = 5
while a < c
   a = a + 1
   b = b + c
endwhile
output a, b, c

a.

j = 2
k = 5
n = 9
while j < k
   m = 6
   while m < n
      output "Goodbye"
      m = m + 1
   endwhile
   j = j + 1
endwhile 

d. j = 2
k = 5
m = 6
n = 9
while j < k
   while m < n
      output "Hello"
      m = m + 1
   endwhile
   j = j + 1
endwhile 

e. p = 2
q = 4
while p < q
   output "Adios"
   r = 1
   while r < q
      output "Adios"
      r = r + 1
   endwhile
   p = p + 1
endwhile 

f.

d = 4
e = 6
f = 7
while d > f
   d = d + 1
   e = e – 1
endwhile
output d, e, f

b.

g = 4
h = 6
while g < h
   g = g + 1
endwhile
output g, h

c.

Figure 5-25 Pseudocode segments for Exercise 1

221

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Design the logic for a program that outputs every number from 1 through 20 along
with its value doubled and tripled.

4. Design the logic for a program that outputs every even number from 2 through 100.

5. Design the logic for a program that outputs numbers in reverse order from 25
down to 0.

6. Design the logic for a program that allows a user to enter a number. Display the
sum of every number from 1 through the entered number.

7. Design the logic for a program that allows a user to continuously enter numbers
until the user enters 0. Display the sum of the numbers entered.

8. Design a program that allows a user to enter any quantity of numbers until a
negative number is entered. Then display the highest number and the lowest
number.

9. a. Design an application for the Homestead Furniture Store that gets sales
transaction data, including an account number, customer name, and purchase
price. Output the account number and name, then output the customer’s
payment each month for the next 12 months. Assume that there is no finance
charge, that the customer makes no new purchases, and that the customer pays
off the balance with equal monthly payments.

b. Modify the Homestead Furniture Store application so it executes continuously
for any number of customers until a sentinel value is supplied for the account
number.

10. a. Design an application for Domicile Designs that gets sales transaction data,
including an account number, customer name, and purchase price. The store
charges 1.25 percent interest on the balance due each month. Output the account
number and name, then output the customer’s projected balance each month for
the next 12 months. Assume that when the balance reaches $25 or less, the
customer can pay off the account. At the beginning of every month, 1.25 percent
interest is added to the balance, and then the customer makes a payment equal to
7 percent of the current balance. Assume that the customer makes no new
purchases.

b. Modify the Domicile Designs application so it executes continuously for any
number of customers until a sentinel value is supplied for the account number.

11. a. Design a program for Hunterville College. The current tuition is $15,000 per
year, and tuition is expected to increase by 4 percent each year. Display the
tuition each year for the next 10 years.

b. Modify the Hunterville College program so that the user enters the rate of
tuition increase instead of having it fixed at 4 percent.

c. Modify the Hunterville College program so that the user enters the rate of
tuition increase for the first year. The rate then increases by 0.5 percent each
subsequent year.

222

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12. Yabe Online Auctions requires its sellers to post items for sale for a six-week period
during which the price of any unsold item drops 12 percent each week. For
example, an item that costs $10.00 during the first week costs 12 percent less, or
$8.80, during the second week. During the third week, the same item is 12 percent
less than $8.80, or $7.74. Design an application that allows a user to input prices
until an appropriate sentinel value is entered. Program output is the price of each
item during each week, one through six.

13. Design a retirement planning calculator for Skulling Financial Services. Allow a
user to enter a number of working years remaining in the user’s career and the
annual amount of money the user can save. Assume that the user earns three
percent simple interest on savings annually. Program output is a schedule that lists
each year number in retirement starting with year 0 and the user’s savings at the
start of that year. Assume that the user spends $50,000 per year in retirement and
then earns three percent interest on the remaining balance. End the list after
40 years, or when the user’s balance is 0 or less, whichever comes first.

14. Ellison Private Elementary School has three classrooms in each of nine grades,
kindergarten (grade 0) through grade 8, and allows parents to pay tuition over
the nine-month school year. Design the application that outputs nine tuition
payment coupons for each of the 27 classrooms. Each coupon should contain the
grade number (0 through 8), the classroom number (1 through 3), the month
(1 through 9), and the amount of tuition due. Tuition for kindergarten is $80 per
month. Tuition for the other grades is $60 per month times the grade level.

15. a. Design a program for the Hollywood Movie Rating Guide, which can be
installed in a kiosk in theaters. Each theater patron enters a value from 0 to 4
indicating the number of stars that the patron awards to the Guide’s featured
movie of the week. If a user enters a star value that does not fall in the correct
range, reprompt the user continuously until a correct value is entered. The
program executes continuously until the theater manager enters a negative
number to quit. At the end of the program, display the average star rating for
the movie.

b. Modify the movie-rating program so that a user gets three tries to enter a valid
rating. After three incorrect entries, the program issues an appropriate message
and continues with a new user.

16. Design a program for the Café Noir Coffee Shop to provide some customer market
research data. When a customer places an order, a clerk asks for the customer’s zip
code and age. The clerk enters that data as well as the number of items the
customer orders. The program operates continuously until the clerk enters a 0 for
zip code at the end of the day. When the clerk enters an invalid zip code (more
than 5 digits) or an invalid age (defined as less than 10 or more than 110), the
program reprompts the clerk continuously. When the clerk enters fewer than 1 or
more than 12 items, the program reprompts the clerk two more times. If the clerk
enters a high value on the third attempt, the program accepts the high value, but if
the clerk enters a negative value on the third attempt, an error message is displayed

223

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



and the order is not counted. At the end of the program, display a count of the
number of items ordered by customers from the same zip code as the coffee shop
(54984), and a count from other zip codes. Also display the average customer age
as well as counts of the number of items ordered by customers under 30 and by
customers 30 and older.

Performing Maintenance
1. A file named MAINTENANCE05-01.txt is included with your downloadable

student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 5 include DEBUG05-01.txt, DEBUG05-02.txt,
and DEBUG05-03.txt. Each file starts with some comments that describe the
problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must find
and correct.

2. Your downloadable files for Chapter 5 include a file named DEBUG05-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. In Chapter 2, you learned that in many programming languages you can generate a
random number between 1 and a limiting value named LIMIT by using a statement
similar to randomNumber = random(LIMIT). In Chapter 4, you created the logic for
a guessing game in which the application generates a random number and the
player tries to guess it. Now, create the guessing game itself. After each guess,
display a message indicating whether the player’s guess was correct, too high, or
too low. When the player eventually guesses the correct number, display a count of
the number of guesses that were required.

2. Create the logic for a game that simulates rolling two dice by generating two
random numbers between 1 and 6 inclusive. The player chooses a number between
2 and 12 (the lowest and highest totals possible for two dice). The player then
“rolls” two dice up to three times. If the number chosen by the user comes up, the
user wins and the game ends. If the number does not come up within three rolls,
the computer wins.

224

C H A P T E R 5 Looping

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Create the logic for the dice game Pig, in which a player can compete with the
computer. The object of the game is to be the first to score 100 points. The user
and computer take turns “rolling” a pair of dice following these rules:

On a turn, each player rolls two dice. If no 1 appears, the dice values are added
to a running total for the turn, and the player can choose whether to roll again
or pass the turn to the other player. When a player passes, the accumulated
turn total is added to the player’s game total.

If a 1 appears on one of the dice, the player’s turn total becomes 0; in other
words, nothing more is added to the player’s game total for that turn, and it
becomes the other player’s turn.

If a 1 appears on both of the dice, not only is the player’s turn over, but the
player’s entire accumulated total is reset to 0.

When the computer does not roll a 1 and can choose whether to roll again,
generate a random value from 1 to 2. The computer will then decide to
continue when the value is 1 and decide to quit and pass the turn to the player
when the value is not 1.

Up for Discussion

1. Suppose you wrote a program that you suspect contains an infinite loop because it
keeps running for several minutes with no output and without ending. What would
you add to your program to help you discover the origin of the problem?

2. Suppose you know that every employee in your organization has a seven-digit ID
number used for logging on to the computer system. A loop would be useful to
guess every combination of seven digits in an ID. Are there any circumstances in
which you should try to guess another employee’s ID number?

3. If every employee in an organization had a seven-digit ID number, guessing all
the possible combinations would be a relatively easy programming task. Describe
how you would write a program that guesses all the combinations, and then
discuss how you could alter the format of employee IDs to make them more
difficult to guess.

225

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 6
Arrays

In this chapter, you will learn about:

Storing data in arrays

How an array can replace nested decisions

Using constants with arrays

Searching an array for an exact match

Using parallel arrays

Searching an array for a range match

Remaining within array bounds

Using a for loop to process an array

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Storing Data in Arrays
An array is a series or list of values in computer memory. All the values must be the same
data type. Usually, all the values in an array have something in common; for example, they
might represent a list of employee ID numbers or prices for items sold in a store.

Whenever you require multiple storage locations for objects, you can use a real-life
counterpart of a programming array. If you store important papers in a series of file folders
and label each folder with a consecutive letter of the alphabet, then you are using the
equivalent of an array. If you keep receipts in a stack of shoe boxes and label each box with a
month, you are also using the equivalent of an array. Similarly, when you plan courses for the
next semester at your school by looking down a list of course offerings, you are using an array.

The arrays discussed in this chapter are single-dimensional arrays, which are similar to lists. Arrays with
multiple dimensions are covered in Chapter 8 of the Comprehensive version of this book.

Each of these real-life arrays helps you organize objects or information. You could store all your
papers or receipts in one huge cardboard box, or find courses if they were printed randomly in one
large book. However, using an organized storage and display system makes your life easier in each
case. Similarly, an array provides an organized storage and display system for a program’s data.

How Arrays Occupy Computer Memory
When you declare an array, you declare a structure that contains multiple data items; each data
item is one element of the array. Each element has the same data type, and each element occupies
an area in memory next to, or contiguous to, the others. You can indicate the number of elements
an array will hold—the size of the array—when you declare the array along with your other
variables and constants. For example, you might declare an uninitialized, three-element numeric
array named prices and an uninitialized string array of 10 employee names as follows:

num prices[3]

string employeeNames[10]

When naming arrays, programmers follow the same rules as when naming variables. That is,
array names must start with a letter and contain no embedded spaces. Additionally, many
programmers observe one of the following conventions when naming arrays to make it more
obvious that the name represents a group of items:

Arrays are often named using a plural noun such as prices or employeeNames.

Arrays are often named by adding a final word that implies a group, such as priceList,
priceTable, or priceArray.

Each array element is differentiated from the others with a unique subscript, also called an
index, which is a number that indicates the position of a particular item within an array. All
array elements have the same group name, but each individual element also has a unique

227

Storing Data in Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



subscript indicating how far away it is from the first element. For example, a five-element
array uses subscripts 0 through 4, and a ten-element array uses subscripts 0 through 9. In all
languages, subscript values must be sequential integers (whole numbers). In most modern
languages, such as Visual Basic, Java, C++, and C#, the first array element is accessed using
subscript 0, and this book follows that convention.

To use an array element, you place its subscript within square brackets or parentheses
(depending on the programming language) after the group name. This book will use square
brackets to hold array subscripts so that you don’t mistake array names for method names.
Many newer programming languages such as C++, Java, and C# also use the square bracket
notation.

After you declare an array, you can assign values to some or all of the elements individually.
Providing array values sometimes is called populating the array. The following code shows a
three-element array declaration, followed by three separate statements that populate the
array:

Declarations
num prices[3]

prices[0] = 25.00
prices[1] = 36.50
prices[2] = 47.99

Figure 6-1 shows an array named prices

that contains three elements, so the
elements are prices[0], prices[1], and
prices[2]. The array elements have been
assigned the values 25.00, 36.50, and 47.99,
respectively. The element prices[0] is
zero numbers away from the beginning of
the array. The element prices[1] is one
number away from the beginning of the
array and prices[2] is two numbers
away.

When programmers refer to array
element prices[0], they say
“prices sub 0” or simply “prices
zero.”

If appropriate, you can declare and initialize array elements in one statement. Most
programming languages use a statement similar to the following to declare a three-element
array and assign a list of values to it:

num prices[3] = 25.00, 36.50, 47.99

25.00 36.50 47.99

prices[0]

prices[1]

prices[2]

Figure 6-1 Appearance of a three-element array
in computer memory
© 2015 Cengage Learning

228

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You have learned that you can declare multiple variables of the same data type in a single statement, such as
the following:

num testScore = 0, age

If you want to declare single variables and an array of the same data type in the same statement, you can
achieve better clarity by using notation such as curly braces to set off array element values, as in the
following:

num prices[3] = { 25.00, 36.50, 47.99 }, testScore = 0, age

When you use a list of values to initialize an array, the first value you list is assigned to
the first array element (element 0), and the subsequent values are assigned to the
remaining elements in order. Many programming languages allow you to initialize an
array with fewer starting values than there are array elements declared, but no language
allows you to initialize an array using more starting values than positions available.
When starting values are supplied for an array in this book, each element will be
provided with a value.

After an array has been declared and appropriate values have been assigned to specific
elements, you can use an individual element in the same way you would use any other data
item of the same type. For example, you can input values to array elements and you can
output the values, and if the elements are numeric, you can perform arithmetic with them.
Quick Reference 6-1 summarizes the characteristics of arrays.

QUICK REFERENCE 6-1 Characteristics of Arrays

An array is a list of data items in contiguous memory locations.

Each data item in an array is an element.

Each array element is the same data type; by default, this means that each element is the same
size.

Each element is differentiated from the others by a subscript, which is a whole number.

Usable subscripts for an array range from 0 to one less than the number of elements in an array.

Each array element can be used in the same way as a single item of the same data type.

Watch the video Understanding Arrays.

229

Storing Data in Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Storing Data in Arrays

1. In an array, each element has the same data type.

2. Each array element is accessed using a subscript, which can be a number or a
string.

3. Array elements always occupy adjacent memory locations.

How an Array Can Replace Nested Decisions
Consider an application requested by a company’s
human resources department to produce statistics
on employees’ claimed dependents. The
department wants a report that lists the number of
employees who have claimed 0, 1, 2, 3, 4, or 5
dependents. (Assume that you know that no
employees have more than five dependents.) For
example, Figure 6-2 shows a typical report.

Without using an array, you could write the
application that produces counts for the six
categories of dependents (0 through 5) by using
a series of decisions. Figure 6-3 shows the
pseudocode and flowchart for the decision-
making part of such an application. Although
this logic works, its length and complexity are
unnecessary once you understand how to use an array.

Thefalsestatementis#2.Anarraysubscriptmustbeawholenumber.Itcanbea
namedconstant,anunnamedconstant,oravariable.

Dependents Count
0
1
2
3
4
5

43
35
24
11
5
7

Figure 6-2 Typical Dependents report
© 2015 Cengage Learning

230

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Significant declarations:
num dep
num count0 = 0
num count1 = 0
num count2 = 0
num count3 = 0
num count4 = 0
num count5 = 0

if dep = 0 then
   count0 = count0 + 1
else
   if dep = 1 then
      count1 = count1 + 1
   else
      if dep = 2 then
         count2 = count2 + 1
      else
         if dep = 3 then
            count3 = count3 + 1
         else
            if dep = 4 then
               count4 = count4 + 1
            else
               count5 = count5 + 1
            endif
         endif
      endif
   endif
endif

count0 =
count0 + 1

dep = 0?

count1 =
count1 + 1

dep = 1?

count2 =
count2 + 1

dep = 2?

count3 =
count3 + 1

dep = 3?

count4 =
count4 + 1

dep = 4?

count5 =
count5 + 1

YesNo

No

No

No

No

Yes

Yes

Yes

Yes

Don’t Do It
Although this logic
works, the decision-
making process is
cumbersome.

Figure 6-3 Flowchart and pseudocode of decision-making process using a series of decisions—the
hard way
© 2015 Cengage Learning

231

How an Array Can Replace Nested Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The decision-making process in Figure 6-3 accomplishes its purpose, and the logic is correct, but the
process is cumbersome and certainly not recommended. Follow the logic here so that you understand how
the application works. In the next pages, you will see how to make the application more elegant.

In Figure 6-3, the variable dep is compared to 0. If it is 0, 1 is added to count0. If it is not 0,
then dep is compared to 1. Based on the result, 1 is added to count1 or dep is compared to 2,
and so on. Each time the application executes this decision-making process, 1 ultimately is
added to one of the six variables that acts as a counter. The dependent-counting logic in
Figure 6-3 works, but even with only six categories of dependents, the decision-making
process is unwieldy. What if the number of dependents might be any value from 0 to 10, or 0
to 20? With either of these scenarios, the basic logic of the program would remain the same;
however, you would need to declare many additional variables to hold the counts, and you
would need many additional decisions.

Using an array provides an alternate approach to this programming problem and greatly
reduces the number of statements you need. When you declare an array, you provide a group
name for a number of associated variables in memory. For example, the six dependent count
accumulators can be redefined as a single array named counts. The individual elements
become counts[0], counts[1], counts[2], counts[3], counts[4], and counts[5], as shown
in the revised decision-making process in Figure 6-4.

232

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Significant declarations:
   num dep
   num counts[6] = 0, 0, 0, 0, 0, 0

counts[0] =
counts[0] + 1

dep = 0?

counts[1] =
counts[1] + 1

dep = 1?

counts[2] =
counts[2] + 1

dep = 2?

counts[3] =
counts[3] + 1

dep = 3?

counts[4] =
counts[4] + 1

dep = 4?

counts[5] =
counts[5] + 1

YesNo

No

No

No

No

Yes

Yes

Yes

Yes

if dep = 0 then
   counts[0] = counts[0] + 1
else
   if dep = 1 then
      counts[1] = counts[1] + 1
   else
      if dep = 2 then
         counts[2] = counts[2] + 1
      else
         if dep = 3 then
            counts[3] = counts[3] + 1
         else
            if dep = 4 then
               counts[4] = counts[4] + 1
            else
               counts[5] = counts[5] + 1
            endif
         endif
      endif
   endif
endif

Don’t Do It
The decision-making
process is still
cumbersome.

Figure 6-4 Flowchart and pseudocode of decision-making process—but still the hard way
© 2015 Cengage Learning

233

How an Array Can Replace Nested Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The shaded statement in Figure 6-4 shows that when dep is 0, 1 is added to counts[0]. You
can see similar statements for the rest of the counts array elements; when dep is 1, 1 is
added to counts[1], when dep is 2, 1 is added to counts[2], and so on. When the dep value
is 5, this means it was not 1, 2, 3, or 4, so 1 is added to counts[5]. In other words, 1 is added
to one of the elements of the counts array instead of to an individual variable named
count0, count1, count2, count3, count4, or count5. Is this version a big improvement over
the original in Figure 6-3? Of course it isn’t. You still have not taken advantage of the
benefits of using the array in this application.

The true benefit of using an array lies in your ability to use a variable as a subscript to the
array, instead of using a literal constant such as 0 or 5. Notice in the logic in Figure 6-4 that
within each decision, the value compared to dep and the constant that is the subscript in the
resulting Yes process are always identical. That is, when dep is 0, the subscript used to add 1
to the counts array is 0; when dep is 1, the subscript used for the counts array is 1, and so on.
Therefore, you can just use dep as a subscript to the array. You can rewrite the decision-
making process as shown in Figure 6-5.

234

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Significant declarations:
   num dep
   num counts[6] = 0, 0, 0, 0, 0, 0

counts[dep] =
counts[dep] + 1

counts[dep] =
counts[dep] + 1

counts[dep] =
counts[dep] + 1

counts[dep] =
counts[dep] + 1

counts[dep] =
counts[dep] + 1

counts[dep] =
counts[dep] + 1

dep = 0?

dep = 1?

dep = 2?

dep = 3?

dep = 4?

YesNo

No

No

No

No

Yes

Yes

Yes

Yes

if dep = 0 then
   counts[dep] = counts[dep] + 1
else
   if dep = 1 then
      counts[dep] = counts[dep] + 1
   else
      if dep = 2 then
         counts[dep] = counts[dep] + 1
      else
         if dep = 3 then
            counts[dep] = counts[dep] + 1
         else
            if dep = 4 then
               counts[dep] = counts[dep] + 1
            else
               counts[dep] = counts[dep] + 1
            endif
         endif
      endif
   endif
endif

Don’t Do It
The decision-making
process has not
improved.

Figure 6-5 Flowchart and pseudocode of decision-making process using an array—but still a
hard way
© 2015 Cengage Learning

235

How an Array Can Replace Nested Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The code segment in Figure 6-5 looks no more efficient than the one in Figure 6-4. However,
notice the shaded statements in Figure 6-5—the process that occurs after each decision is
exactly the same. In each case, no matter what the value of dep is, you always add 1 to counts

[dep]. If you always will take the same action no matter what the answer to a question is,
there is no need to ask the question. Instead, you can rewrite the decision-making process as
shown in Figure 6-6.

The single statement in Figure 6-6 eliminates the entire decision-making process that was the
original highlighted section in Figure 6-5! When dep is 2, 1 is added to counts[2]; when dep

is 4, 1 is added to counts[4], and so on. Now you have significantly improved the original
logic. What’s more, this process does not change whether there are 20, 30, or any other
number of possible categories. To use more than five accumulators, you would declare
additional counts elements in the array, but the categorizing logic would remain the same as
it is in Figure 6-6.

Figure 6-7 shows an entire program that takes advantage of the array to produce the
report that shows counts for dependent categories. Variables and constants are declared and,
in the getReady() module, a first value for dep is entered into the program. In the
countDependents() module, 1 is added to the appropriate element of the count array and the
next value is input. The loop in the mainline logic in Figure 6-7 is an indefinite loop; it
continues as long as the user does not enter the sentinel value. When data entry is complete,
the finishUp() module displays the report. First, the heading is output, then dep is reset to 0,
and then each dep and counts[dep] are output in a loop. The first output statement contains
0 (as the number of dependents) and the value stored in counts[0]. Then, 1 is added to dep
and the same set of instructions is used again to display the counts for each number of
dependents. The loop in the finishUp() module is a definite loop; it executes precisely
six times.

Significant declarations:
num dep
num counts[6]= 0, 0, 0, 0, 0, 0

counts[dep] = 
counts[dep] + 1

counts[dep] = counts[dep] + 1

Figure 6-6 Flowchart and pseudocode of efficient decision-making process using an array
© 2015 Cengage Learning

236

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



dep <>
QUIT? countDependents()

countDependents()finishUp()

finishUp()

counts[dep] = 
counts[dep] + 1

input dep

return

stop

dep < 6?

No

Yes

start

dep = dep + 1

getReady()

getReady()

dep = 0

output 
"Dependents Count"

output dep,
counts[dep]

Yes

No

return

Declarations
   num dep
   num counts[6] = 0, 0, 0, 0, 0, 0
   num QUIT = 999

output "Enter
dependents or ",
QUIT, " to quit "

return

output "Enter
dependents or ",
QUIT, " to quit "

input dep

Figure 6-7 Flowchart and pseudocode for Dependents report program (continues)

237

How an Array Can Replace Nested Decisions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The program in Figure 6-7 could be improved by making sure that the value of the subscript dep is within
range before adding 1 to counts[dep]. Later in this chapter, you learn more about ensuring that a
subscript falls within the valid range for an array.

The dependent-counting program would have worked if it contained a long series of decisions
and output statements, but the program is easier to write when you use an array and access its
values using the number of dependents as a subscript. Additionally, the new program is more
efficient, easier for other programmers to understand, and easier to maintain. Arrays are
never mandatory, but often they can drastically cut down on your programming time and
make your logic easier to understand.

Learning to use arrays properly can make many programming tasks far more efficient and
professional. When you understand how to use arrays, you will be able to provide elegant
solutions to problems that otherwise would require tedious programming steps.

start
   Declarations
      num dep
      num counts[6] = 0, 0, 0, 0, 0, 0
      num QUIT = 999
   getReady()
   while dep <> QUIT
      countDependents()
   endwhile
   finishUp()
stop

getReady()
   output "Enter dependents or ", QUIT, " to quit "
   input dep
return

countDependents()
   counts[dep] = counts[dep] + 1
   output "Enter dependents or ", QUIT, " to quit "
   input dep
return

finishUp()
   output "Dependents Count"
   dep = 0
   while dep < 6
      output dep, counts[dep]
      dep = dep + 1
   endwhile
return

Figure 6-7 Flowchart and pseudocode for Dependents report program
© 2015 Cengage Learning

(continued)

238

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Watch the video Accumulating Values in an Array.

TWO TRUTHS & A LIE

How an Array Can Replace Nested Decisions

1. You can use an array to replace a long series of decisions.

2. You experience a major benefit of arrays when you use an unnamed numeric
constant as a subscript as opposed to using a variable.

3. The process of displaying every element in a 10-element array is basically no
different from displaying every element in a 100-element array.

Using Constants with Arrays
In Chapter 2, you learned that named constants hold values that do not change during a
program’s execution. When working with arrays, you can use constants in several ways:

To hold the size of an array

As the array values

As subscripts

Using a Constant as the Size of an Array
The program in Figure 6-7 still contains one minor flaw. Throughout this book you have
learned to avoid magic numbers—that is, unnamed constants. As the totals are output in the
loop at the end of the program in Figure 6-7, the array subscript is compared to the constant 6.
The program can be improved if you use a named constant instead. Using a named constant
makes your code easier to modify and understand. In most programming languages you can
take one of two approaches:

Thefalsestatementis#2.Youexperienceamajorbenefitofarrayswhenyouusea
variableasasubscriptasopposedtousingaconstant.

239

Using Constants with Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You can declare a named numeric constant such as ARRAY_SIZE = 6. Then you can use
this constant every time you access the array, always making sure any subscript you use
remains less than the constant value.

In many languages, a value that represents the array size is automatically provided for
each array you create. For example, in Java, after you declare an array named counts,
its size is stored in a field named counts.length. In both C# and Visual Basic, the
array size is counts.Length, with an uppercase L. No automatically created value exists
in C or C++.

Using Constants as Array Element Values
Sometimes the values stored in arrays should be constants because they are not changed
during program execution. For example, suppose that you create an array that holds names
for the months of the year. When declaring an array of named constants, programmers
conventionally use all uppercase letters with underscores separating words. Don’t confuse the
array identifier with its contents—the convention in this book is to use all uppercase letters in
constant identifiers, but not necessarily in array values. An array named MONTHS that holds
constant values might be declared as follows:

string MONTHS[12] = "January", "February", "March", "April",

"May", "June", "July", "August", "September", "October",

"November", "December"

Using a Constant as an Array Subscript
Occasionally you will want to use an unnamed numeric constant as a subscript to an array.
For example, to display the first value in an array named salesArray, you might write a
statement that uses an unnamed literal constant as a subscript, as follows:

output salesArray[0]

You might also have occasion to use a named constant as a subscript. For example, if
salesArray holds sales values for each of 20 states covered by your company, and Indiana is
state 5, you could output the value for Indiana using an unnamed constant as follows:

output salesArray[5]

However, if you declare a named constant as num INDIANA = 5, then you can display the same
value using this statement:

output salesArray[INDIANA]

An advantage to using a named constant in this case is that the statement becomes self-
documenting—anyone who reads your statement more easily understands that your intention
is to display the sales value for Indiana.

240

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Constants with Arrays

1. If you create a named constant equal to an array size, you can use it as a
subscript to the array.

2. If you create a named constant equal to an array size, you can use it as a limit
against which to compare subscript values.

3. When you declare an array in Java, C#, or Visual Basic, a constant that represents
the array size is automatically provided.

Searching an Array for an Exact Match
In the dependent-counting application in this chapter, the array’s subscript variable
conveniently held small whole numbers—the number of dependents allowed was 0 through
5—and the dep variable directly accessed the array. Unfortunately, real life doesn’t always
happen in small integers. Sometimes you don’t have a variable that conveniently holds an
array position; sometimes you have to search through an array to find a value you need.

Consider a mail-order business in which customers place orders that contain a name, address,
item number, and quantity ordered. Assume that the item numbers from which a customer
can choose are three-digit numbers, but perhaps they are not consecutively numbered 001
through 999. For example, let’s say that you offer six items: 106, 108, 307, 405, 457, and 688, as
shown in the shaded VALID_ITEMS array declaration in Figure 6-8. The array is declared as
constant because the item numbers do not change during program execution. When a
customer orders an item, a clerical worker can tell whether the order is valid by looking down
the list and manually verifying that the ordered item number is on it. In a similar fashion, a
computer program can use a loop to test the ordered item number against each VALID_ITEMS

element, looking for an exact match. When you search through a list from one end to the
other, you are performing a linear search.

Thefalsestatementis#1.Iftheconstantisequaltothearraysize,thenitislarger
thananyvalidarraysubscript.

241

Searching an Array for an Exact Match

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



getReady()

getReady()

No

Yesitem <>
FINISH? findItem()

output "Enter item
number or ", FINISH, 
" to quit "

finishUp()

finishUp()

output badItemCount,
" items had invalid
numbers"

Declarations
   num item
   num SIZE = 6
   num VALID_ITEMS[SIZE] = 106, 108, 307,
      405, 457, 688
   num sub
   string foundIt
   num badItemCount = 0
   string MSG_YES = "Item available"
   string MSG_NO = "Item not found"
   num FINISH = 999

stop

start

input item

return

return

Figure 6-8 Flowchart and pseudocode for program that verifies item availability (continues)

242

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



No

sub <
SIZE?

item = 
VALID_ITEMS[sub]?

sub = sub + 1

sub = 0

foundIt
= "Y"?

output
MSG_YES

output
MSG_NO

findItem()

input item

return

output "Enter next item
number or ", FINISH, 
" to quit "

foundIt = "N"

Yes

Yes
Yes

No

No

foundIt = "Y"

badItemCount = 
badItemCount + 1

Figure 6-8 Flowchart and pseudocode for program that verifies item availability (continues)

(continued)

243

Searching an Array for an Exact Match

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start
   Declarations
      num item
      num SIZE = 6
      num VALID_ITEMS[SIZE] = 106, 108, 307,
         405, 457, 688
      num sub
      string foundIt
      num badItemCount = 0
      string MSG_YES = "Item available"
      string MSG_NO = "Item not found"
      num FINISH = 999
   getReady()
   while item <> FINISH
      findItem()
   endwhile
   finishUp()
stop

getReady()
   output "Enter item number or ", FINISH, " to quit "
   input item
return

findItem()
   foundIt = "N"
   sub = 0
   while sub < SIZE
      if item = VALID_ITEMS[sub] then
         foundIt = "Y"
      endif
      sub = sub + 1
   endwhile
   if foundIt = "Y" then
      output MSG_YES
   else
      output MSG_NO
      badItemCount = badItemCount + 1
   endif
   output "Enter next item number or ", FINISH, " to quit "
   input item
return

finishUp()
   output badItemCount, " items had invalid numbers"
return 

Figure 6-8 Flowchart and pseudocode for program that verifies item availability
© 2015 Cengage Learning

(continued)

244

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To determine if an ordered item number is valid, you could use a series of six decisions to
compare the number to each of the six allowed values. However, the superior approach
shown in Figure 6-8 is to create an array that holds the list of valid item numbers and then to
search through the array for an exact match to the ordered item. If you search through the
entire array without finding a match for the item the customer ordered, it means the ordered
item number is not valid.

The findItem() module in Figure 6-8 takes the following steps to verify that an item number
exists:

A flag variable named foundIt is set to "N". A flag is a variable that is set to indicate
whether some event has occurred. In this example, N indicates that the item number has
not yet been found in the list. (See the first shaded statement in the findItem() method in
Figure 6-8.)

A subscript, sub, is set to 0. This subscript will be used to access each VALID_ITEMS

element.

A loop executes, varying sub from 0 through one less than the size of the array. Within
the loop, the customer’s ordered item number is compared to each item number in the
array. If the customer-ordered item matches any item in the array, the flag variable is
assigned "Y". (See the last shaded statement in the findItem() method in Figure 6-8.)
After all six valid item numbers have been compared to the ordered item, if the customer
item matches none of them, then the flag variable foundIt will still hold the value "N".

If the flag variable’s value is "Y" after the entire list has been searched, it means that the
item is valid and an appropriate message is displayed, but if the flag has not been assigned
"Y", the item was not found in the array of valid items. In this case, an error message is
output and 1 is added to a count of bad item numbers.

As an alternative to using the string foundIt variable in the method in Figure 6-8, you might prefer to use a
numeric variable that you set to 1 or 0. Most programming languages also support a Boolean data type that
you can use for foundIt; when you declare a variable to be Boolean, you can set its value to true or false.

TWO TRUTHS & A LIE

Searching an Array for an Exact Match

1. Only whole numbers can be stored in arrays.

2. Only whole numbers can be used as array subscripts.

3. A flag is a variable that indicates whether some event has occurred.

Thefalsestatementis#1.Wholenumberscanbestoredinarrays,butsocanmany
otherobjects,includingstringsandnumberswithdecimalplaces.

245

Searching an Array for an Exact Match

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using Parallel Arrays
When you accept an item number into a mail-order company program, you usually
want to accomplish more than simply verifying the item’s existence. For example, you
might want to determine the name, price, or available quantity of the ordered item.
Tasks like these can be completed efficiently using parallel arrays. Parallel arrays are
two or more arrays in which each element in one array is associated with the element
in the same relative position in the other array. Although any array can contain just
one data type, each array in a set of parallel arrays might be a different type.

Suppose that you have a list of item numbers and their associated prices. One array
named VALID_ITEMS contains six elements; each element is a valid item number. Its
parallel array also has six elements. The array is named VALID_PRICES; each element is a
price of an item. Each price in the VALID_PRICES array is conveniently and purposely
stored in the same position as the corresponding item number in the VALID_ITEMS array.
Figure 6-9 shows how the parallel arrays might look in computer memory.

When you use parallel arrays:

Two or more arrays contain related data.

A subscript relates the arrays. That is, elements at the same position in each array are
logically related.

VALID_ITEMS[5]

106 108 307

VALID_ITEMS[0]

VALID_ITEMS[1]

VALID_ITEMS[2]

405 457 688

VALID_ITEMS[3]

VALID_ITEMS[4]

0.59 0.99 4.50 15.99 17.50 39.00

VALID_PRICES[0]

VALID_PRICES[1]

VALID_PRICES[2]

VALID_PRICES[3] VALID_PRICES[4]

VALID_PRICES[5]

Figure 6-9 Parallel arrays in memory
© 2015 Cengage Learning

246

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 6-10 shows a program that declares parallel arrays. The VALID_PRICES array is shaded;
each element in it corresponds to a valid item number.

Declarations
   num item
   num price
   num SIZE = 6
   num VALID_ITEMS[SIZE] = 106, 108, 307,
      405, 457, 688
   num VALID_PRICES[SIZE] = 0.59, 0.99,
      4.50, 15.99, 17.50, 39.00
   num sub
   string foundIt
   num badItemCount = 0
   string MSG_YES = "Item available"
   string MSG_NO = "Item not found"
   num FINISH = 999

getReady()

getReady()

No

Yesitem <>
FINISH? findItem()

output "Enter item
number or ", FINISH, 
" to quit "

finishUp()

finishUp()

output badItemCount,
" items had invalid
numbers"

stop

start

input item

return

return

Figure 6-10 Flowchart and pseudocode of program that finds an item price using
parallel arrays (continues)

247

Using Parallel Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



price = 
VALID_PRICES[sub]

No

sub <
SIZE?

item = 
VALID_ITEMS[sub]?

sub = sub + 1

sub = 0

foundIt
= "Y"?

output
MSG_YES

output
MSG_NO

findItem()

input item

return

output "Enter next item
number or ", FINISH, 
" to quit "

foundIt = "N"

Yes

Yes
Yes

No

No

foundIt = "Y"

badItemCount = 
badItemCount + 1

output "The
price of ", item,
" is ", price 

Figure 6-10 Flowchart and pseudocode of program that finds an item price using
parallel arrays (continues)

(continued)

248

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start
   Declarations
       num item
       num price
       num SIZE = 6
       num VALID_ITEMS[SIZE] = 106, 108, 307,
          405, 457, 688
       num VALID_PRICES[SIZE] = 0.59, 0.99,
          4.50, 15.99, 17.50, 39.00
      num sub
      string foundIt
      num badItemCount = 0
      string MSG_YES = "Item available"
      string MSG_NO = "Item not found"
      num FINISH = 999
   getReady()
   while item <> FINISH
      findItem()
   endwhile
   finishUp()
stop 

getReady()
   output "Enter item number or ", FINISH, " to quit "
   input item
return

findItem()
   foundIt = "N"
   sub = 0
   while sub < SIZE
      if item = VALID_ITEMS[sub] then
         foundIt = "Y"
         price = VALID_PRICES[sub]
      endif
      sub = sub + 1
   endwhile
   if foundIt = "Y" then
      output MSG_YES
      output "The price of ", item, " is ", price
   else
      output MSG_NO
      badItemCount = badItemCount + 1
   endif
   output "Enter next item number or ", FINISH, " to quit "
   input item
return

finishUp()
   output badItemCount, " items had invalid numbers"
return

Figure 6-10 Flowchart and pseudocode of program that finds an item price using parallel arrays
© 2015 Cengage Learning

(continued)

249

Using Parallel Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Some programmers object to using a cryptic variable name for a subscript, such as sub in Figure 6-10,
because such names are not descriptive. These programmers would prefer a name like priceIndex.
Others approve of short names when the variable is used only in a limited area of a program, as it is used
here, to step through an array. Programmers disagree on many style issues like this one. As a programmer,
it is your responsibility to find out what conventions are used among your peers in an organization.

As the program in Figure 6-10 receives a customer’s order, it looks through each of the
VALID_ITEMS values separately by varying the subscript sub from 0 to the number of items
available. When a match for the item number is found, the program pulls the corresponding
parallel price out of the list of VALID_PRICES values and stores it in the price variable. (See
shaded statements in Figure 6-10.)

The relationship between an item’s number and its price is an indirect relationship. That
means you don’t access a price directly by knowing the item number. Instead, you determine
the price by knowing an item number’s array position. Once you find a match for the ordered
item number in the VALID_ITEMS array, you know that the price of the item is in the same
position in the other array, VALID_PRICES. When VALID_ITEMS[sub] is the correct item,
VALID_PRICES[sub] must be the correct price, so sub links the parallel arrays.

Parallel arrays are most useful when value pairs have an indirect relationship. If values in your
program have a direct relationship, you probably don’t need parallel arrays. For example, if
items were numbered 0, 1, 2, 3, and so on consecutively, you could use the item number as a
subscript to the price array instead of using a parallel array to hold item numbers. Even if the
items were numbered 200, 201, 202, and so on consecutively, you could subtract a constant
value (200) from each and use that as a subscript instead of using a parallel array.

Suppose that a customer orders item 457. Walk through the logic yourself to see if you come
up with the correct price per item, $17.50. Then, suppose that a customer orders item 458.
Walk through the logic and see whether the appropriate Item not found message is displayed.

Improving Search Efficiency
The mail-order program in Figure 6-10 is still a little inefficient. When a customer orders
item 106 or 108, a match is found on the first or second pass through the loop, and
continuing to search provides no further benefit. However, even after a match is made, the
program in Figure 6-10 continues searching through the item array until sub reaches the
value SIZE. One way to stop the search when the item has been found and foundIt is set to
"Y" is to change the loop-controlling question. Instead of simply continuing the loop while
the number of comparisons does not exceed the highest allowed array subscript, you should
continue the loop while the searched item is not found and the number of comparisons has
not exceeded the maximum. Leaving the loop as soon as a match is found improves the
program’s efficiency. The larger the array, the more beneficial it becomes to exit the searching
loop as soon as you find the desired value.

250

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 6-11 shows the improved version of the findItem() module with the altered loop-
controlling question shaded.

sub < SIZE AND
foundIt = "N"?

price = 
VALID_PRICES[sub]

No

item = 
VALID_ITEMS[sub]?

sub = sub + 1

sub = 0

foundIt
= "Y"?

output
MSG_YES

output
MSG_NO

findItem()

input item

return

output "Enter next item
number or ", FINISH, 
" to quit "

foundIt = "N"

Yes

Yes

Yes

No
No

foundIt = "Y"

badItemCount = 
badItemCount + 1

output "The
price of ", item,
" is ", price 

Figure 6-11 Flowchart and pseudocode of the module that finds an item price and exits the loop as
soon as it is found (continues)

251

Using Parallel Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Notice that the price-finding program offers the greatest efficiency when the most frequently
ordered items are stored at the beginning of the array, so that only the seldom-ordered items
require many loops before finding a match. Often, you can improve search efficiency by
rearranging array elements.

As you study programming, you will learn other search techniques. For example, a binary search starts
looking in the middle of a sorted list, and then determines whether it should continue higher or lower.

Watch the video Using Parallel Arrays.

findItem()
   foundIt = "N"
   sub = 0
   while sub < SIZE AND foundIt = "N"
      if item = VALID_ITEMS[sub] then
         foundIt = "Y"
         price = VALID_PRICES[sub]
      endif
      sub = sub + 1
   endwhile
   if foundIt = "Y" then
      output MSG_YES
      output "The price of ", item, " is ", price
   else
      output MSG_NO
      badItemCount = badItemCount + 1
   endif
   output "Enter next item number or ", FINISH, " to quit "
   input item
return

Figure 6-11 Flowchart and pseudocode of the module that finds an item price and exits the loop as
soon as it is found
© 2015 Cengage Learning

(continued)

252

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Parallel Arrays

1. Parallel arrays must be the same data type.

2. Parallel arrays usually contain the same number of elements.

3. You can improve the efficiency of searching through parallel arrays by using an
early exit.

Searching an Array for a Range Match
Customer order item numbers need to match available item numbers exactly to determine
the correct price of an item. Sometimes, however, programmers want to work with ranges of
values in arrays. In Chapter 4, you learned that a range of values is any series of values—for
example, 1 through 5 or 20 through 30.

Suppose that a company decides to offer quantity
discounts when a customer orders multiple
items, as shown in Figure 6-12.

You want to be able to read in customer order
data and determine a discount percentage based
on the quantity ordered. For example, if a
customer has ordered 20 items, you want to be
able to output Your discount is 15 percent. One
ill-advised approach might be to set up an array
with as many elements as any customer might
ever order, and store the appropriate discount
for each possible number, as shown in Figure 6-13. This array is set up to contain the
discount for 0 items, 1 item, 2 items, and so on. This approach has at least three drawbacks:

Thefalsestatementis#1.Parallelarraysdonotneedtobethesamedatatype.For
example,youmightlookupanameinastringarraytofindeachperson’sageina
parallelnumericarray.

Quantity

0–8

9–12

13–25

26 or more

Discount %

 0

10

15

20

Figure 6-12 Discounts on orders by
quantity
© 2015 Cengage Learning

253

Searching an Array for a Range Match

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



It requires a very large array that uses a lot of memory.

You must store the same value repeatedly. For example, each of the first nine elements
receives the same value, 0, and each of the next four elements receives the same value, 10.

How do you know you have enough array elements? Is a customer order quantity of 75
items enough? What if a customer orders 100 or 1000 items? No matter how many
elements you place in the array, there’s always a chance that a customer will order more.

A better approach is to create two
parallel arrays, each with four
elements, as shown in Figure 6-14.
Each discount rate is listed once in the
DISCOUNTS array, and the low end of
each quantity range is listed in the
QUAN_LIMITS array.

To find the correct discount for any
customer’s ordered quantity, you can start with the last quantity range limit (QUAN_LIMITS[3]).
If the quantity ordered is at least that value, 26, the loop is never entered and the customer gets
the highest discount rate (DISCOUNTS[3], or 20 percent). If the quantity ordered is not at least
QUAN_LIMITS[3]—that is, if it is less than 26—then you reduce the subscript and check to see if
the quantity is at least QUAN_LIMITS[2], or 13. If so, the customer receives DISCOUNTS[2], or 15
percent, and so on. Figure 6-15 shows a program that accepts a customer’s quantity ordered and
determines the appropriate discount rate.

num DISCOUNTS[76]
 = 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0.10, 0.10, 0.10, 0.10,
   0.15, 0.15, 0.15, 0.15, 0.15,
   0.15, 0.15, 0.15, 0.15, 0.15,
   0.15, 0.15, 0.15,
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20, 
   0.20, 0.20, 0.20, 0.20, 0.20

Don’t Do It
Although this array is
usable, it is repetitious,
prone to error, and 
difficult to use.

Figure 6-13 Usable—but inefficient—discount array
© 2015 Cengage Learning

num DISCOUNTS[4] =   0, 0.10, 0.15, 0.20
num QUAN_LIMITS[4] = 0,    9,   13,   26

Figure 6-14 Parallel arrays to use for determining
discount
© 2015 Cengage Learning

254

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declarations
   num quantity
   num SIZE = 4
   num DISCOUNTS[4]   = 0, 0.10, 0.15, 0.20
   num QUAN_LIMITS[4] = 0,    9,   13,   26
   num x
   num QUIT = -1

quantity <>
QUIT?

housekeeping()

housekeeping()

No

Yes
determineDiscount()

output "Enter 
quantity ordered or ",
QUIT, " to quit "

finish()

finish()

stop

start

output "End of
job"

input quantity

return

return

quantity < 
QUAN_LIMITS[x]?

x = SIZE – 1

output "Your 
discount rate is ",
DISCOUNTS[x]

determineDiscount()

output "Enter
quantity ordered
or ", QUIT, " to
quit "

input quantity

Yes

No x = x – 1

return

Figure 6-15 Program that determines discount rate (continues)

255

Searching an Array for a Range Match

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An alternate approach to the one taken in Figure 6-15 is to store the high end of every range
in an array. Then you start with the lowest element and check for values less than or equal to
each array element value.

When using an array to store range limits, you use a loop to make a series of comparisons that
would otherwise require many separate decisions. The program that determines customer
discount rates in Figure 6-15 requires fewer instructions than one that does not use an array,
and modifications to the program will be easier to make in the future.

start
   Declarations
      num quantity
      num SIZE = 4
      num DISCOUNTS[4] =   0, 0.10, 0.15, 0.20
      num QUAN_LIMITS[4] = 0,    9,   13,   26
      num x
      num QUIT = -1
   housekeeping()
   while quantity <> QUIT
     determineDiscount()
   endwhile
   finish()
stop

housekeeping()
   output "Enter quantity ordered or ", QUIT, " to quit "
   input quantity
return

determineDiscount()
   x = SIZE - 1
   while quantity < QUAN_LIMITS[x]
      x = x - 1
   endwhile
   output "Your discount rate is ", DISCOUNTS[x]
   output "Enter quantity ordered or ", QUIT, " to quit "
   input quantity
return

finish()
   output "End of job"
return

Figure 6-15 Program that determines discount rate
© 2015 Cengage Learning

(continued)

256

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Searching an Array for a Range Match

1. To help locate a range within which a value falls, you can store the highest value in
each range in an array.

2. To help locate a range within which a value falls, you can store the lowest value in
each range in an array.

3. When using an array to store range limits, you use a series of comparisons that
would otherwise require many separate loop structures.

Remaining within Array Bounds
To ensure that valid subscripts are used with an array, you must understand two related
concepts:

The array’s size

The bounds of usable subscripts

Understanding Array Size
Every array has a finite size. You can think of an array’s size in one of two ways—either by the
number of elements in the array or by the number of bytes in the array. Arrays are always
composed of elements of the same data type, and elements of the same data type always
occupy the same number of bytes of memory, so the number of bytes in an array is always a
multiple of the number of elements in an array. For example, in Java, integers occupy 4 bytes
of memory, so an array of 10 integers occupies exactly 40 bytes.

For a complete discussion of bytes and how they measure computer memory, read Appendix A.

Understanding Subscript Bounds
In every programming language, when you access data stored in an array you must use a
subscript containing a value that accesses memory occupied by the array. If you do, your
subscript is in bounds; if you do not, your subscript is out of bounds.

Thefalsestatementis#3.Whenusinganarraytostorerangelimits,youusealoop
tomakeaseriesofcomparisonsthatwouldotherwiserequiremanyseparate
decisions.

257

Remaining within Array Bounds

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A subscript accesses an array element using arithmetic. An array name is a memory address
and a subscript indicates the value that should be multiplied by the data type size to calculate
the subscript’s element address. For example, assume that a prices array is stored at memory
location 4000, as shown in Figure 6-16, and assume that your computer stores numeric
variables using four bytes each. As the figure shows, element 0 is at memory location 4000 + 0 * 4,
or 4000, element 1 is at memory location 4000 + 1 * 4, or 4004, and element 2 is at memory
location 4000 + 2 * 4, or 4008. If you use a subscript that is out of bounds, your program will
attempt to access an address that is not part of the array’s space.

A common error by beginning programmers is to forget that array subscripts start with 0. If you
assume that an array’s first subscript is 1, you will always be “off by one” in your array manipulation.
For example, if you try to manipulate a 10-element array using subscripts 1 through 10, you will
commit two errors: You will fail to access the first element that uses subscript 0, and you will attempt
to access an extra element at position 10 when the highest usable subscript is 9.

For example, examine the program in Figure 6-17. The program accepts a numeric value for
monthNum and displays the name associated with that month. The logic in Figure 6-17 makes a
questionable assumption: that every number entered by the user is a valid month number.

25.00 36.50 47.99

prices[0]

(4000 + 2 * 4)

prices[1]

Declaration
   num prices[3] = 25.00, 36.50, 47.99

prices[2]

Don’t Do It
prices[3] points to
address 4012 (4000 + 3 * 4),
which is out of bounds.

Memory address: 4000
(4000 + 0 * 4) (4000 + 1 * 4)

4004 4008

Figure 6-16 An array and its associated memory addresses
© 2015 Cengage Learning

258

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the program in Figure 6-17, notice that 1 is subtracted from monthNum before it is used as a subscript.
Although January is the first month in the year, its name occupies the location in the array with the 0
subscript. With values that seem naturally to start with 1, like month numbers, some programmers would
prefer to create a 13-element array and simply never use the zero-position element. That way, each “natural”
month number would be the correct value to access its data without subtracting. Other programmers dislike
wasting memory by creating an extra, unused array element. Although workable programs can be created
with or without the extra array element, professional programmers should follow the conventions and
preferences of their colleagues and managers.

In Figure 6-17, if the user enters a number that is too small or too large, one of two things will
happen depending on the programming language you use. When you use a subscript value
that is negative or higher than the highest allowed subscript:

Some programming languages will stop execution of the program and issue an error
message.

Other programming languages will not issue an error message but will access a value in a
memory location that is outside the area occupied by the array. That area might contain
garbage, or worse, it accidentally might contain the name of an incorrect month.

Declarations
   num monthNum
   string MONTHS[12] = "January", "February",
      "March", "April", "May", "June", "July",
      "August", "September", "October",
      "November", "December"

input
monthNum

output
MONTHS[monthNum]

start
   Declarations
      num monthNum
      string MONTHS[12] = "January", "February",
         "March", "April", "May", "June", "July",
         "August", "September", "October",
         "November", "December"
   input monthNum
   monthNum = monthNum - 1
   output MONTHS[monthNum]
stop

stop

monthNum = 
monthNum - 1

start

The subscript monthNum
might be out of bounds
for the MONTHS array.

Don’t Do It

Figure 6-17 Determining the month string from a user’s numeric entry
© 2015 Cengage Learning

259

Remaining within Array Bounds

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Either way, a logical error occurs. Users enter incorrect data frequently; a good program
should be able to handle the mistake and not allow the subscript to be out of bounds.

A user might enter an invalid number or might not enter a number at all. In Chapter 5, you learned that many
languages have a built-in method with a name like isNumeric() that can test for such mistakes.

You can improve the program in Figure 6-17 by adding a test that ensures the subscript used
to access the array is within the array bounds. If you find that the input value is not between 1
and 12 inclusive, you might take one of the following approaches:

Display an error message and end the program.

Use a default value for the month. For example, when an entered month is invalid, you
might want to assume that it is December.

Continuously reprompt the user for a new value until it is valid.

The way you handle an invalid month depends on the requirements of your program as
spelled out by your user, supervisor, or company policy.

TWO TRUTHS & A LIE

Remaining within Array Bounds

1. Elements in an array frequently are different data types, so calculating the amount
of memory the array occupies is difficult.

2. If you attempt to access an array with a subscript that is too small, some
programming languages will stop execution of the program and issue an error
message.

3. If you attempt to access an array with a subscript that is too large, some
programming languages access an incorrect memory location outside the array
bounds.

Thefalsestatementis#1.Arrayelementsarealwaysthesamedatatype,and
elementsofthesamedatatypealwaysoccupythesamenumberofbytesof
memory,sothenumberofbytesinanarrayisalwaysamultipleofthenumberof
elementsinanarray.

260

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using a for Loop to Process an Array
In Chapter 5, you learned about the for loop—a loop that, in a single statement, initializes a
loop control variable, compares it to a limit, and alters it. The for loop is a particularly
convenient tool when working with arrays because you frequently need to process every
element of an array from beginning to end. As with a while loop, when you use a for loop,
you must be careful to stay within array bounds, remembering that the highest usable array
subscript is one less than the size of the array. Figure 6-18 shows a for loop that correctly
displays all of a company’s department names that are stored in an array declared as DEPTS.
Notice that dep is incremented through one less than the number of departments because
with a five-item array, the subscripts you can use are 0 through 4.

The loop in Figure 6-18 is slightly inefficient because, as it executes five times, the
subtraction operation that deducts 1 from SIZE occurs each time. Five subtraction
operations do not consume much computer power or time, but in a loop that processes
thousands or millions of array elements, the program’s efficiency would be compromised.
Figure 6-19 shows a superior solution. A new constant called ARRAY_LIMIT is calculated
once, then used repeatedly in the comparison operation to determine when to stop
cycling through the array.

start
   Declarations
      num dep
      num SIZE = 5
      num ARRAY_LIMIT = SIZE – 1
      string DEPTS[SIZE] = "Accounting", "Personnel",
         "Technical", "Customer Service", "Marketing"
   for dep = 0 to ARRAY_LIMIT step 1
      output DEPTS[dep]
   endfor
stop

Figure 6-19 Pseudocode that uses a more efficient for loop to output department names
© 2015 Cengage Learning

start
   Declarations
      num dep
      num SIZE = 5
      string DEPTS[SIZE] = "Accounting", "Personnel",
         "Technical", "Customer Service", "Marketing"
   for dep = 0 to SIZE – 1 step 1
      output DEPTS[dep]
   endfor
stop

Figure 6-18 Pseudocode that uses a for loop to display an array of department names
© 2015 Cengage Learning

261

Using a for Loop to Process an Array

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using a for Loop to Process an Array

1. The for loop is a particularly convenient tool when working with arrays because
initializing, testing, and altering a loop control variable are coded together.

2. You frequently need to process every element of an array from beginning to end
in a linear fashion.

3. One advantage to using a for loop to process array elements is that you need not
be concerned with array bounds.

Chapter Summary
An array is a named series or list of values in computer memory, all of which have the
same data type but are differentiated with subscripts. Each array element occupies an area
in memory next to, or contiguous to, the others.

You often can use a variable as a subscript to an array, which allows you to replace
multiple nested decisions with many fewer statements.

Constants can be used to hold an array’s size, to represent its values, or as subscripts.
Using named constants can make programs easier to understand and maintain.

Searching through an array to find a value you need involves initializing a subscript, using
a loop to test each array element, and setting a flag when a match is found.

With parallel arrays, each element in one array is associated with the element in the same
relative position in the other array.

When you need to compare a value to a range of values in an array, you can store either
the low- or high-end value of each range for comparison.

When you access data stored in an array, it is important to use a subscript containing a
value that accesses memory within the array bounds.

The for loop is a particularly convenient tool when processing every element of an array
sequentially.

Thefalsestatementis#3.Aswithawhileloop,whenyouuseaforloop,youmust
becarefultostaywithinarraybounds.

262

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
An array is a series or list of values in computer memory, all of which have the same name
but are differentiated with special numbers called subscripts.

An element is a single data item in an array.

The size of the array is the number of elements it can hold.

A subscript, also called an index, is a number that indicates the position of a particular item
within an array.

Populating an array is the act of assigning values to the array elements.

A linear search is a search through a list from one end to the other.

A flag is a variable that indicates whether some event has occurred.

In parallel arrays, each element in one array is associated with the element in the same
relative position in the other array(s).

An indirect relationship describes the relationship between parallel arrays in which
an element in the first array does not directly access its corresponding value in the
second array.

A binary search is one that starts in the middle of a sorted list, and then determines whether
it should continue higher or lower to find a target value.

In bounds describes an array subscript that is within the range of acceptable subscripts for
its array.

Out of bounds describes an array subscript that is not within the range of acceptable
subscripts for its array.

Exercises

Review Questions

1. A subscript is a(n) .

a. element in an array
b. alternate name for an array
c. number that represents the highest value stored within an array
d. number that indicates the position of an array element

263

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2. Each element in an array must have the same as the others.

a. data type
b. subscript
c. value
d. memory location

3. Suppose that you have declared a numeric array named values that has
13 elements. Which of the following must be true?

a. values[0] is smaller than values[1]

b. values[2] is stored adjacent to values[4]

c. values[13] is out of bounds
d. values[12] is the largest value in the array

4. The subscripts of any array are always .

a. integers
b. fractions

c. characters
d. strings of characters

5. Suppose that you have declared a numeric array named numbers, and two of its
elements are numbers[1] and numbers[4]. You know that .

a. the two elements hold the same value
b. the array holds exactly four elements
c. there are exactly two elements between those two elements
d. the two elements are at the same memory location

6. Suppose that you have declared a numeric array named numbers, and two of its
elements are numbers[1] and numbers[4]. You know that .

a. numbers[4] is larger than numbers[1]

b. the array has at least five elements
c. the array has been initialized
d. the two elements are three bytes apart in memory

7. Suppose that you want to write a program that inputs customer data and displays a
summary of the number of customers who owe more than $1000 each, in each of
12 sales regions. Customer data variables include name, zipCode, balanceDue, and
regionNumber. At some point during record processing, you would add 1 to an
array element whose subscript would be represented by .

a. name

b. zipCode

c. balanceDue

d. regionNumber

264

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8. A program contains a seven-element array that holds the names of the days of the
week. At the start of the program, you display the day names using a subscript
named dayNum. You display the same array values again at the end of the program,
where you as a subscript to the array.

a. must use dayNum

b. can use dayNum, but can also use another variable
c. must not use dayNum

d. must use a numeric constant instead of a variable

9. Suppose that you have declared an array as follows: num values[4] = 0, 0, 0, 0.
Which of the following is an allowed operation?

a. values[2] = 17

b. input values[0]

c. values[3] = values[0] + 10

d. all of the above

10. Suppose that you have declared an array as follows: num values[4] = 0, 0, 0, 0.
Which of the following is an allowed operation?

a. values[4] = 80

b. values[2] = values[4] – values[0]

c. output values[3]

d. all of the above

11. Filling an array with values during a program’s execution is known as
the array.

a. executing
b. colonizing

c. populating
d. declaring

12. A is a variable that can be set to indicate whether some event has
occurred.

a. subscript
b. banner

c. counter
d. flag

13. What do you call two arrays in which each element in one array is associated with
the element in the same relative position in the other array?

a. cohesive arrays
b. parallel arrays

c. hidden arrays
d. perpendicular arrays

14. In most modern programming languages, the highest subscript you should use
with a 12-element array is .

a. 10
b. 11

c. 12
d. 13

265

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15. Parallel arrays .

a. frequently have an indirect relationship
b. never have an indirect relationship
c. must be the same data type
d. must not be the same data type

16. Each element in a seven-element array can hold value(s).

a. one
b. seven

c. at least seven
d. an unlimited number of

17. After the annual dog show in which the Barkley Dog Training Academy awards
points to each participant, the academy assigns a status to each dog based on the
criteria in Table 6-1.

The academy needs a program that compares a dog’s points earned with the
grading scale, so that each dog can receive a certificate acknowledging the
appropriate level of achievement. Of the following, which set of values would be
most useful for the contents of an array used in the program?

a. 0, 6, 9, 10
b. 5, 7, 8, 10

c. 5, 7, 9, 10
d. any of the above

18. When you use a subscript value that is negative or higher than the number of
elements in an array, .

a. execution of the program stops and an error message is issued
b. a value in a memory location that is outside the area occupied by the array will

be accessed
c. a value in a memory location that is outside the area occupied by the array will

be accessed, but only if the value is the correct data type
d. the resulting action depends on the programming language used

Points Earned Level of Achievement

0–5 Good

6–7 Excellent

8–9 Superior

10 Unbelievable

Table 6-1 Barkley Dog Training Academy achievement levels

266

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



19. In every array, a subscript is out of bounds when it is .

a. negative
b. 0

c. 1
d. 999

20. You can access every element of an array using a .

a. while loop
b. for loop

c. both of the above
d. none of the above

Programming Exercises

1. a. Design the logic for a program that allows a user to enter 12 numbers, then
displays them in the reverse order of entry.

b. Modify the reverse-display program so that the user can enter any amount of
numbers up to 12 until a sentinel value is entered.

2. a. Design the logic for a program that allows a user to enter 12 numbers, then
displays each number and its difference from the numeric average of the
numbers entered.

b. Modify the program in Exercise 2a so that the user can enter any amount of
numbers up to 12 until a sentinel value is entered.

3. a. Design the logic for a program that allows a user to enter 12 numbers, then
displays all of the numbers, the largest number, and the smallest.

b. Modify the program in Exercise 3a so that the user can enter any amount of
numbers up to 12 until a sentinel value is entered.

4. a. Registration workers at a conference for authors of children’s books have
collected data about conference participants, including the number of books
each author has written and the target age of their readers. The participants have
written from 1 to 40 books each, and target readers’ ages range from 0 through 16.
Design a program that continuously accepts an author’s name, number of books
written, and target reader age until a sentinel value is entered. Then display a list of
how many participants have written each number of books (1 through 40).

b. Modify the author registration program so that the output is a list of how many
participants have written 1 to 5 books, 6 to 12 books, and 13 or more books.

c. Modify the author registration program so that the output is a count of the
number of books written for each of the following age groups: under 3, 3 through
7, 8 through 10, 11 through 13, and 14 and older.

267

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5. a. The Downdog Yoga Studio offers five
types of classes, as shown in Table 6-2.
Design a program that accepts a
number representing a class and then
displays the name of the class.

b. Modify the Downdog Yoga Studio
program so that numeric class requests
can be entered continuously until a
sentinel value is entered. Then display
each class number, name, and a count
of the number of requests for each class.

6. a. Watson Elementary School contains 30 classrooms numbered 1 through 30.
Each classroom can contain any number of students up to 35. Each student
takes an achievement test at the end of the school year and receives a score
from 0 through 100. Write a program that accepts data for each student in the
school—student ID, classroom number, and score on the achievement test.
Design a program that lists the total points scored for each of the 30 classrooms.

b. Modify the Watson Elementary School program so that the average of the test
scores is output for each classroom, rather than total scores for each classroom.

7. The Jumpin’ Jive coffee shop
charges $2.00 for a cup of
coffee and offers the add-ins
shown in Table 6-3.

Design the logic for an
application that allows a user to
enter ordered add-ins conti-
nuously until a sentinel value is
entered. After each item, display
its price or the message Sorry,
we do not carry that as output.
After all items have been entered,
display the total price for the order.

8. Design the application logic for a
company that wants a report con-
taining a breakdown of payroll by
department. Input includes each
employee’s department number,
hourly salary, and number of hours
worked. The output is a list of the
seven departments in the company
and the total gross payroll (rate

Class Number Class Name

1 Yoga 1
2 Yoga 2
3 Children’s Yoga
4 Prenatal Yoga
5 Senior Yoga

Table 6-2 Downdog Yoga Studio classes

Product Price ($)

Whipped cream 0.89
Cinnamon 0.25
Chocolate sauce 0.59
Amaretto 1.50
Irish whiskey 1.75

Table 6-3 Add-in list for Jumpin’ Jive coffee shop

Department
Number

Department
Name

1 Personnel
2 Marketing
3 Manufacturing
4 Computer Services
5 Sales
6 Accounting
7 Shipping

Table 6-4 Department numbers and names

268

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



times hours) for each
department. The department
names are shown in Table 6-4.

9. Design a program that com-
putes pay for employees.
Allow a user to continuously
input employees’ names until
an appropriate sentinel value
is entered. Also input each
employee’s hourly wage and
hours worked. Compute each employee’s gross pay (hours times rate), withholding
tax percentage (based on Table 6-5), withholding tax amount, and net pay
(gross pay minus withholding tax). Display all the results for each employee.
After the last employee has been entered, display the sum of all the hours
worked, the total gross payroll, the total withholding for all employees, and the
total net payroll.

10. Countrywide Tours conducts
sightseeing trips for groups from its
home base in Iowa. Create an
application that continuously
accepts tour data, including a
three-digit tour number; the
numeric month, day, and year
values representing the tour start
date; the number of travelers taking
the tour; and a numeric code that
represents the destination. As data is
entered for each tour, verify that the
month, day, year, and destination code
are valid; if any of these is not valid, con-
tinue to prompt the user until valid data is
entered. The valid destination codes are
shown in Table 6-6.

Design the logic for an application that
outputs each tour number, validated
start date, destination code, destination
name, number of travelers, gross total
price for the tour, and price for the tour after discount. The gross total price is
the tour price per guest times the number of travelers. The final price includes a
discount for each person in larger tour groups, based on Table 6-7.

Number of Tourists
Discount per
Tourist ($)

1–5 0
6–12 75
13–20 125
21–50 200
51 and over 300

Table 6-7 Countrywide Tours discounts

Weekly Gross
Pay ($)

Withholding
Percentage (%)

0.00–300.00 10
300.01–550.00 13
550.01–800.00 16
800.01 and up 20

Table 6-5 Withholding percentage based on gross pay

Code Destination
Price per
Person ($)

1 Chicago 300.00
2 Boston 480.00
3 Miami 1050.00
4 San Francisco 1300.00

Table 6-6 Countrywide Tours codes and prices

269

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11. a. Daily Life Magazine wants an analysis of the demographic characteristics of its
readers. The marketing department has collected reader survey records
containing the age, gender, marital status, and annual income of readers.
Design an application that allows a user to enter reader data and, when data
entry is complete, produces a count of readers by age groups as follows: under
20, 20–29, 30–39, 40–49, and 50 and older.

b. Modify the Daily Life Magazine program so that it produces a count of
readers by gender within age group—that is, under-20 females, under-20 males,
and so on.

c. Modify the Daily Life Magazine program so that it produces a count of readers
by income groups as follows: under $30,000, $30,000–$49,999, $50,000–
$69,999, and $70,000 and up.

12. Glen Ross Vacation Property Sales employs seven salespeople, as shown in Table 6-8.

When a salesperson makes a sale, a
record is created, including the date,
time, and dollar amount of the sale. The
time is expressed in hours and minutes,
based on a 24-hour clock. The sale
amount is expressed in whole dollars.
Salespeople earn a commission that
differs for each sale, based on the rate
schedule in Table 6-9.

Design an application that produces each
of the following:

a. A list of each salesperson number,
name, total sales, and total
commissions

b. A list of each month of the year as
both a number and a word (for
example, 01 January), and the total
sales for the month for all
salespeople

c. A list of total sales as well as total
commissions earned by all
salespeople for each of the
following time frames, based on
hour of the day: 00–05, 06–12,
13–18, and 19–23

ID Number
Salesperson
Name

103 Darwin
104 Kratz
201 Shulstad
319 Fortune
367 Wickert
388 Miller
435 Vick

Table 6-8 Glen Ross salespeople

Sale Amount ($)
Commission
Rate (%)

0–50,999 4
51,000–125,999 5
126,000–200,999 6
201,000 and up 7

Table 6-9 Glen Ross commission schedule

270

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



13. a. Design an application in which the number of days for each month in the year is
stored in an array. (For example, January has 31 days, February has 28, and so on.
Assume that the year is not a leap year.) Display 12 sentences in the same format for
each month; for example, the sentence displayed for January is Month 1 has 31 days.

b. Modify the months and days program to contain a parallel array that stores
month names. Display 12 sentences in the same format; for example, the first
sentence is January has 31 days.

c. Modify the months and days program to prompt the user for a month number
and display the corresponding sentence in the same format as in Exercise 13b.

d. Prompt a user to enter a birth month and day, and continue to prompt until the
day entered is in range for the month. Compute the day’s numeric position in
the year. (For example, February 2 is day 33.) Then, using parallel arrays, find
and display the traditional Zodiac sign for the date. For example, the sign for
February 2 is Aquarius.

Performing Maintenance

1. A file named MAINTENANCE06-01.txt is included with your downloadable
student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 6 include DEBUG06-01.txt, DEBUG06-02.txt,
and DEBUG06-03.txt. Each file starts with some comments that describe the
problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must find
and correct.

2. Your downloadable files for Chapter 6 include a file named DEBUG06-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. Create the logic for a Magic 8 Ball game in which the user enters a question such as
What does my future hold? The computer randomly selects one of eight possible
vague answers, such as It remains to be seen.

2. Create the logic for an application that contains an array of 10 multiple-choice
questions related to your favorite hobby. Each question contains three answer

271

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



choices. Also create a parallel array that holds the correct answer to each
question—A, B, or C. Display each question and verify that the user enters only
A, B, or C as the answer—if not, keep prompting the user until a valid response is
entered. If the user responds to a question correctly, display Correct!; otherwise,
display The correct answer is and the letter of the correct answer. After the user
answers all the questions, display the number of correct and incorrect answers.

3. a. Create the logic for a dice game. The application randomly “throws” five dice
for the computer and five dice for the player. After each random throw, store
the results in an array. The application displays all the values, which can be
from 1 to 6 inclusive for each die. Decide the winner based on the following
hierarchy of die values. Any higher combination beats a lower one; for example,
five of a kind beats four of a kind.

Five of a kind

Four of a kind

Three of a kind

A pair

For this game, the numeric dice values do not count. For example, if both players
have three of a kind, it’s a tie, no matter what the values of the three dice are.
Additionally, the game does not recognize a full house (three of a kind plus two of a
kind). Figure 6-20 shows how the game might be played in a command-line
environment.

b. Improve the dice game so that when both players have the same number of
matching dice, the higher value wins. For example, two 6s beats two 5s.

4. Design the logic for the game Hangman, in which the user guesses letters in a
hidden word. Store the letters of a word in an array of characters. Display a dash for
each missing letter. Allow the user to continuously guess a letter until all the letters
in the word are guessed correctly. As the user enters each guess, display the word
again, filling in the guessed letter if it was correct. For example, if the hidden word

Figure 6-20 Typical execution of the dice game

272

C H A P T E R 6 Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



is computer, first display a series of eight dashes: - - - - - - - -. After the user guesses
p, the display becomes - - -p- - - -. Make sure that when a user makes a correct
guess, all the matching letters are filled in. For example, if the word is banana and
the user guesses a, all three a characters should be filled in.

5. Create two parallel arrays that represent a standard deck of 52 playing cards. One
array is numeric and holds the values 1 through 13 (representing Ace, 2 through
10, Jack, Queen, and King). The other array is a string array that holds suits (Clubs,
Diamonds, Hearts, and Spades). Create the arrays so that all 52 cards are repre-
sented. Then, create a War card game that randomly selects two cards (one for the
player and one for the computer) and declares a winner or a tie based on the
numeric value of the two cards. The game should last for 26 rounds and use a full
deck with no repeated cards. For this game, assume that the lowest card is the Ace.
Display the values of the player’s and computer’s cards, compare their values, and
determine the winner. When all the cards in the deck are exhausted, display a
count of the number of times the player wins, the number of times the computer
wins, and the number of ties.

Here are some hints:

Start by creating an array of all 52 playing cards.

Select a random number for the deck position of the player’s first card and
assign the card at that array position to the player.

Move every higher-positioned card in the deck “down” one to fill in the gap. In
other words, if the player’s first random number is 49, select the card at
position 49 (both the numeric value and the string), move the card that was in
position 50 to position 49, and move the card that was in position 51 to position
50. Only 51 cards remain in the deck after the player’s first card is dealt, so the
available-card array is smaller by one.

In the same way, randomly select a card for the computer and “remove” the
card from the deck.

Up for Discussion

1. A train schedule is an everyday, real-life example of an array. Identify at least four
more.

2. Every element in an array always has the same data type. Why is this necessary?

273

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 7
File Handling
and Applications

In this chapter, you will learn about:

Computer files

The data hierarchy

Performing file operations

Control break logic

Merging files

Master and transaction file processing

Random access files

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Computer Files
In Chapter 1, you learned that computer memory, or random access memory (RAM), is
volatile, temporary storage. When you write a program that stores a value in a variable, you
are using temporary storage; the value you store is lost when the program ends or the
computer loses power.

Permanent, nonvolatile storage, on the other hand, is not lost when a computer loses power.
When you write a program and save it to a disk, you are using a permanent storage device.
Permanent storage can be a hard drive on your computer or a hard drive on the cloud that
you access remotely through the Internet. Other examples include such media as DVDs, USB
drives that you insert and remove from your computer, and tape libraries and optical
jukeboxes that are accessed by robotic arms.

When discussing computer storage, temporary and permanent refer to volatility, not length of time. For
example, a temporary variable might exist for several hours in a very large program or one that runs in an
infinite loop, but a permanent piece of data might be saved and then deleted by a user within a few seconds.
Because you can erase data from files, some programmers prefer the term persistent storage to permanent
storage. In other words, you can remove data from a file stored on a device such as a disk drive, so it is not
technically permanent. However, the data remains in the file even when the computer loses power, so, unlike
in RAM, the data persists.

A computer file is a collection of data stored on a nonvolatile device in a computer system.
The two broad categories of files are:

Text files, which contain data that can be read in a text editor because the data has been
encoded using a scheme such as ASCII or Unicode. Text files might include facts and
figures used by business programs, such as a payroll file that contains employee numbers,
names, and salaries. The programs in this chapter will use text files.

Binary files, which contain data that has not been encoded as text. Examples include
images and music.

Although their contents vary, files have many common characteristics, as follows:

Each has a name. The name often includes a dot and a file extension that describes the
type of the file. For example, the extension .txt indicates a plain text file, .dat is a common
extension for a data file, and .jpg is used as an extension on image files in Joint
Photographic Experts Group format.

Each file has specific times associated with it—for example, its creation time and the time
it was last modified.

275

Understanding Computer Files

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Each file occupies space on a section of a storage device; that is, each file has a size. Sizes
are measured in bytes. A byte is a small unit of storage; for example, in a simple text file, a
byte holds only one character. Because a byte is so small, file sizes usually are expressed in
kilobytes (thousands of bytes), megabytes (millions of bytes), gigabytes (billions of
bytes), or even larger groupings. Appendix A contains more information on bytes and
how file sizes are expressed.

Figure 7-1 shows how some files look when you view them in Microsoft Windows.

Watch the video Understanding Files.

Organizing Files
Computer files on a storage device are the electronic equivalent of paper files stored in
file cabinets. With a paper file, the easiest way to store a document is to toss it into a file
cabinet drawer without a folder. However, for better organization, most office clerks
place paper documents in folders—and most computer users organize their files into
folders or directories. Directories and folders are organization units on storage devices;
each can contain multiple files as well as additional directories. The combination of the
disk drive plus the complete hierarchy of directories in which a file resides is its path.
For example, in the Windows operating system, the following line would be the
complete path for a file named PayrollData.dat on the C drive in a folder named
SampleFiles within a folder named Logic:

C:\Logic\SampleFiles\PayrollData.dat

Figure 7-1 Three stored files showing their names, dates of modification, types, and sizes

276

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The terms directory and folder are used synonymously to mean an entity that organizes files. Directory is the
more general term; the term folder came into use in graphical systems. For example, Microsoft began
calling directories folders with the introduction of Windows 95.

TWO TRUTHS & A LIE

Understanding Computer Files

1. Temporary storage is volatile.

2. Computer files exist on permanent storage devices, such as RAM.

3. A file’s path is the hierarchy of folders in which it is stored.

Understanding the Data Hierarchy
When businesses store data items on computer systems, they are often stored in a framework
called the data hierarchy that describes the relationships between data components. The data
hierarchy consists of the following:

Characters are letters, numbers, and special symbols, such as A, 7, and $. Anything you
can type from the keyboard in one keystroke is a character, including seemingly “empty”
characters such as spaces and tabs. Computers also recognize characters you cannot enter
from a standard keyboard, such as foreign-alphabet characters like or . Characters are
made up of smaller elements called bits, but just as most human beings can use a pencil
without caring whether atoms are flying around inside it, most computer users store
characters without thinking about these bits.

Fields are data items that each represent a single attribute of a record; fields are composed
of one or more characters. Fields include items such as lastName, middleInitial,
streetAddress, or annualSalary.

Records are groups of fields that go together for some logical reason. A random name,
address, and salary aren’t very useful, but if they’re your name, your address, and your salary,
then that’s your record. An inventory record might contain fields for item number, color, size,
and price; a student record might contain an ID number, grade point average, and major.

Files are groups of related records. The individual records of each student in your class
might go together in a file called Students.dat. Similarly, records of each person at your
company might be in a file called Personnel.dat. Some files can have just a few records. For

Thefalsestatementis#2.Computerfilesexistonpermanentstoragedevices,suchas
harddisks,DVDs,USBdrives,andreelsofmagnetictape.

277

Understanding the Data Hierarchy

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



example, a student file for a college seminar might have only 10 records. Others, such as a
student file for a university or a file of policy holders for a large insurance company, can
contain thousands or even millions of records.

Quick Reference 7-1 provides a concise overview of the components of the data hierarchy.

QUICK REFERENCE 7-1 The Components of the Data Hierarchy

A file can contain
many records.

Smith   Henrietta   20.32   1975   Y   N   NY

Brown   Charles     10.40    1989   N   N    VA 

Mitchell   Denise   16.50   1982    Y   Y     WI

Andrews Michael   25.00     1961   Y   N    NJ

DeniseMitchell 16.5 1982 Y Y WI

A record can contain
many fields.

D e esin

A field can contain
many characters.

n

A database holds groups of files or tables that together serve the information needs of an organization.
Database software establishes and maintains relationships between fields in these tables, so that
users can pull related data items together in a format that allows businesspeople to make managerial
decisions efficiently. Chapter 14 of the comprehensive version of this text covers database creation.

278

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding the Data Hierarchy

1. In the data hierarchy, a field is a single data item, such as lastName,
streetAddress, or annualSalary.

2. In the data hierarchy, fields are grouped together to form a record; records are
groups of fields that go together for some logical reason.

3. In the data hierarchy, related records are grouped together to form a field.

Performing File Operations
To use data files in your programs, you need to understand several file operations:

Declaring a file identifier

Opening a file

Reading from a file and processing the data

Writing to a file

Closing a file

Declaring a File Identifier
Most languages support several types of files, but one way of categorizing files is by whether
they can be used for input or for output. Just as variables and constants have data types such as
num and string, each file has a data type that is defined in the language you are using. For
example, a file’s type might be InputFile. Just like variables and constants, files are declared by
giving each a data type and an identifier. As examples, you might declare two files as follows:
InputFile employeeData
OutputFile updatedData

The InputFile and OutputFile types are capitalized in this book because their equivalents
are capitalized in most programming languages. This approach helps to distinguish these
complex types from simple types such as num and string. The identifiers given to files, such
as employeeData and updatedData, are internal to the program, just as variable names are. To
make a program read a file’s data from a storage device, you also need to associate the
program’s internal filename with the operating system’s name for the file. Often, this
association is accomplished when you open the file.

Thefalsestatementis#3.Relatedrecordsformafile.

279

Performing File Operations

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Opening a File
In most programming languages, before an application can use a data file, it must open the
file. Opening a file locates it on a storage device and associates a variable name within your
program with the file. For example, if the identifier employeeData has been declared as type
InputFile, then you might make a statement similar to the following:

open employeeData "EmployeeData.dat"

This statement associates the file named EmployeeData.dat on the storage device with the
program’s internal name employeeData. Usually, you also can specify a more complete path
when the data file is not in the same directory as the program, as in the following:

open employeeData "C:\CompanyFiles\CurrentYear\EmployeeData.dat"

Reading Data from a File and Processing it
Before you can use stored data within a program, you must load the data into computer
memory. You never use the data values that are stored on a storage device directly. Instead,
you use a copy that is transferred into memory. When you copy data from a file on a storage
device into RAM, you read from the file.

Especially when data items are stored on a hard disk, their location might not be clear to you—data just
seems to be “in the computer.” To a casual computer user, the lines between permanent storage and
temporary memory are often blurred because many newer programs automatically save data for you
periodically without asking your permission. However, at any moment in time, the version of a file in memory
might differ from the version that was last saved to a storage device.

Once the program’s identifier employeeData has been associated with the stored file, you can
write separate programming statements to input each field, as in the following example:
input name from employeeData
input address from employeeData
input payRate from employeeData

Most languages also allow you to write a single statement in the following format:

input name, address, payRate from employeeData

As a further simplification, many programming languages allow you to declare a group item
when you declare other variables, as in the following example:
EmployeeRecord

string name
string address
num payRate

In this example, EmployeeRecord is a group name for the values stored in the three fields
name, address, and payRate. After the group is defined, you can input all the data items in a
record with a single instruction, such as the following:

input EmployeeRecord from employeeData

280

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You usually do not want to input several items in a single statement when you read data from
a keyboard, because you want to prompt the user for each item separately as you input it.
However, when you retrieve data from a file, prompts are not needed. Instead, each item is
retrieved in sequence and stored in memory at the appropriate named location.

Programming languages have different ways of determining how much data to input when a
command is issued to read a variable’s value from a file. In many languages, a delimiter such
as a comma, semicolon, or tab character is stored between data fields. Sometimes data items
are stored in a compact form so that they are not decipherable when the file is opened in a
text editor, but sometimes data items are stored in a readable format. For example, Figure 7-2
shows what a readable comma-delimited data file of employee names, addresses, and pay
rates might look like in a text reader. The amount of data retrieved depends on the data types
of the variables in the input statement. For example, reading a numeric value might imply that
four bytes will be read. When you learn to program in a specific language, you will learn how
data items are stored and retrieved in that language.

Figure 7-3 shows an example of how a statement gets data from a file. When the input
statement executes, each field stored in the file is copied and placed in the appropriate
variable in computer memory. Nothing on the disk indicates a field name associated with any
of the data; the variable names exist within the program only. For example, although this
program uses the variable names name, address, and payRate, another program could use the
same file as input and call the fields surname, street, and salary.

Matthews,47 Maple,17.00
Smith,212 Oak,14.35
Zimmerman,6218 Pine,20.10
Garcia,2018 Ash,15.85

name field
comma
delimiter

address field

comma
delimiter

pay rate
field

There are
four
records in
this file.

Records might be
separated by commas,
or by some other
character such as a
line break, as
shown here.

Figure 7-2 How employee data in a readable comma-delimited file might appear in a text reader
© 2015 Cengage Learning

281

Performing File Operations

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you read data from a file, you usually must read all the fields that are stored even
though you might not want to use all of them. For example, suppose that you want to read an
employee data file that contains names, addresses, and pay rates for each employee, and you
want to output a list of names. Even though you are not concerned with the address or pay
rate fields for each employee, you typically read them into your program before you can get to
the name for the next employee.

A computer program can read records from a file sequentially or randomly. When a program
uses a sequential file, it reads all the records in the file from beginning to end, processing
them one at a time. Frequently, although not always, records in a sequential file have been
sorted based on the contents of one or more fields. Sorting is the process of placing records in
order by the value in a specific field or fields. Records in a file can be sorted manually before
they are entered and saved, or records can be entered in any order and a program can sort
them. Later in this chapter you will learn about random access files, in which the records can
be accessed in any order.

You can learn about sorting techniques in Chapter 8 of the comprehensive version of this book. In this
chapter, it is assumed that if a file needs to be sorted, the sorting process has already been completed.

Examples of sorted, sequential files include the following:

A file of employees whose data is stored in order by ID number

A file of parts for a manufacturing company whose data is stored in order by part number

A file of customers for a business whose data is stored in alphabetical order by name

input name, address, payRate

address

Matthews

47 Maple

17.00

name

payRate

Memory

Matthews    47 Maple      17.00       Sm
ith       212 Oak     14.35

Figure 7-3 Reading three data items from a storage device into memory
© 2015 Cengage Learning

282

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



After data fields have been read into memory, you can process them. Depending on the
application, examples of processing the data might include performing arithmetic with some of
the numeric fields or altering some of the string fields by adding or removing characters.
Changes made to the fields in memory do not affect the original data stored on the input device.
Typically, after the data is processed, you want to output it. If the processed information only
needs to be visible to people, you might display it on a screen. However, if the information will be
used by another program, then you want to write the processed information to a file.

Writing Data to a File
When you store data in a computer file on a persistent storage device, you write to the file.
This means you copy data from RAM to the file. When you write data to a file, you write the
contents of the fields using a statement such as the following:

output name, address, payRate to employeeData

When you write data to a file, you usually do not include explanations that make data easier for
humans to interpret; you just write facts and figures. For example, you do not include explanations
such as The pay rate is, nor do you include commas, dollar signs, or percent signs in numeric values.
Those embellishments are appropriate for output on a monitor or on paper, but not for storage.

Closing a File
When you finish using a file, the program should close the file—a closed file is no longer
available to your application. Failing to close an input file (a file from which you are reading
data) usually does not present serious consequences; the data still exists in the file. However, if
you fail to close an output file (a file to which you are writing data), the data might not be
saved correctly and might become inaccessible. You should always close every file you open,
and you should close the file as soon as you no longer need it. When you leave a file open for
no reason, you use computer resources, and your computer’s performance suffers. Also,
within a network, another program might be waiting to use the file.

Although you open and close files on storage devices such as disks, most programming languages allow you
to read data from a keyboard or write it to the display monitor without having to issue open or close
commands because the keyboard and monitor are the default input and output devices, respectively.

A Program that Performs File Operations
Figure 7-4 contains a program that opens two files—an input file and an output file. The
program reads each employee record from the input file, alters the employee’s pay rate, and
writes the updated record to an output file. After all the records have been processed, the
program closes the files. The statements that use the files are shaded. When creating
flowcharts, some programmers place file open and close statements in a process box
(rectangle), but the convention in this book is to place file open and close statements in
parallelograms, because they are operations closely related to input and output.

283

Performing File Operations

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



No

Yes

start

open employeeData
"EmployeeData.dat"

payRate = payRate
+ RAISE

output name,
address, payRate
to updatedData

close
employeeData

close
updatedData

stop

housekeeping()

not
eof?

return

detailLoop()

finish()

input name,
address, payRate
from
employeeData

return

housekeeping()

finish()

return

detailLoop()

Declarations
   InputFile employeeData
   OutputFile updatedData
   string name
   string address
   num payRate
   num RAISE = 2.00

open updatedData
"UpdatedData.dat"

input name,
address, payRate 
from
employeeData

Figure 7-4 Flowchart and pseudocode for program that uses files (continues)

284

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the program in Figure 7-4, after each employee’s pay rate is read into memory, it is
increased by $2.00. The value of the pay rate on the input storage device is not altered. When
processing is complete, the input file retains the original data for each employee, and the
output file contains the revised data. Many organizations would keep the original file as a
backup file. A backup file is a copy that is kept in case values need to be restored to their
original state. The backup copy is called a parent file and the newly revised copy is a child file.

Logically, the verbs print, write, and display mean the same thing—all produce output. However, in
conversation, programmers usually reserve the word print for situations in which they mean produce hard
copy output. Programmers are more likely to use write when talking about sending records to a data file and
display when sending records to a monitor. In some programming languages, there is no difference in the
verb used for output regardless of the hardware; you simply assign different output devices (such as
printers, monitors, and disk drives) as needed to programmer-named objects that represent them.

start
   Declarations
      InputFile employeeData
      OutputFile updatedData
      string name
      string address
      num payRate
      num RAISE = 2.00
   housekeeping()
   while not eof
      detailLoop()
   endwhile
   finish()
stop

housekeeping()
   open employeeData "EmployeeData.dat"
   open updatedData "UpdatedData.dat"
   input name, address, payRate from employeeData
return

detailLoop()
   payRate = payRate + RAISE
   output name, address, payRate to updatedData
   input name, address, payRate from employeeData
return

finish()
    close employeeData
    close updatedData
return

Figure 7-4 Flowchart and pseudocode for program that uses files
© 2015 Cengage Learning

(continued)

285

Performing File Operations

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Watch the video File Operations.

Throughout this book you have been encouraged to think of input as basically the same
process, whether it comes from a user typing interactively at a keyboard or from a stored file
on a disk or other media. The concept remains valid for this chapter, which discusses
applications that commonly use stored file data.

TWO TRUTHS & A LIE

Performing File Operations

1. You give a file an internal name in a program and then associate it with the
operating system’s name for the file.

2. When you read from a file, you copy values from memory to a storage device.

3. If you fail to close an input file, usually no serious consequences will occur; the
data still exists in the file.

Understanding Control Break Logic
A control break is a temporary detour in the logic of a program. In particular, programmers
use a control break program to do the following:

Read in records from a sorted sequential file so that all records that belong to specific
groups are stored together in sequence.

Process each record, checking to determine if it still belongs to the same group as the
previous record.

Pause for special processing whenever a new group of records is encountered.

For example, a control break program might be used to generate a report that lists all
company clients in order by state of residence, with a count of clients after each state’s
client list. See Figure 7-5 for an example of a control break report that breaks after each
change in state.

Thefalsestatementis#2.Whenyoureadfromafile,youcopyvaluesfromastorage
deviceintomemory.Whenyouwritetoafile,youcopyvaluesfrommemorytoa
storagedevice.

286

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Other examples of control break reports produced by control break programs could include:

All employees listed in order by department number, with a new page started for each
department

All books for sale in a bookstore listed in order by category (such as reference or self-help),
with a count following each category of book

All items sold in order by date of sale, with a different ink color for each new month

Each of these reports shares two traits:

The records used in a report are listed in order by a specific variable: state, department,
category, or date.

When that variable changes, the program takes special action: it starts a new page, prints a
count or total, or switches ink color.

To generate a control break report, your input records must be organized in sequential
order based on the field that will cause the breaks. In other words, to write a program
that produces a report of customers by state, like the one in Figure 7-5, the records
must be grouped by state before you begin processing. Frequently, this grouping will
mean placing the records in alphabetical order by state, although they could just as
easily be ordered by state population, governor’s name, or any other factor, as long as all
of each state’s records are together.

Company Clients by State of Residence

Name

Albertson
Davis
Lawrence

Smith
Young
Davis
Mitchell
Zimmer

Edwards

City

Birmingham
Birmingham
Montgomery

Anchorage
Anchorage
Fairbanks
Juneau
Juneau

Phoenix

State

Alabama
Alabama
Alabama
Count for Alabama

Alaska
Alaska
Alaska
Alaska
Alaska
Count for Alaska

Arizona
Count for Arizona

3

5

1

Figure 7-5 A control break report with totals after each state
© 2015 Cengage Learning

287

Understanding Control Break Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



With some newer languages, such as SQL, the details of control break processing are handled
automatically. Still, understanding how control break programs work improves your competence as
a programmer.

Suppose that you have an input file that contains client names, cities, and states, and you want
to produce a report like the one in Figure 7-5. The basic logic of the program works like this:

Each time you read a client’s record from the input file, you determine whether the client
resides in the same state as the previous client.

If so, you simply output the client’s data, add 1 to a counter, and read another record,
without any special processing. If there are 20 clients in a state, these steps are repeated
20 times in a row—read a client’s data, count it, and output it.

Eventually you will read a record for a client who is not in the same state. At that point,
before you output the data for the first client in the new state, you must output the
count for the previous state. You also must reset the counter to 0 so it is ready to start
counting customers in the next state. Then you can proceed to handle client records for
the new state, and you continue to do so until the next time you encounter a client from
a different state.

This type of program contains a single-level control break, a break in the logic of the
program (in this case, pausing or detouring to output a count) that is based on the value
of a single variable (in this case, the state). The technique you must use to “remember”
the old state so you can compare it with each new client’s state is to create a special
variable, called a control break field, to hold the previous state. As you read each new
record, comparing the new and old state values determines when it is time to output the
count for the previous state.

Figure 7-6 shows the mainline logic and getReady() module for a program that produces the
report in Figure 7-5. In the mainline logic, the control break variable oldState is declared in
the shaded statement. In the getReady() module, the report headings are output, the file is
opened, and the first record is read into memory. Then, the state value in the first record is
copied to the oldState variable. (See shading.) Note that it would be incorrect to initialize
oldState when it is declared. When you declare the variables at the beginning of the main
program, you have not yet read the first input record; therefore, you don’t know what the
value of the first state will be. You might assume that it is Alabama because that is the first
state alphabetically, and you might be right, but perhaps this data set contains no records for
Alabama and the first state is Alaska or even Wyoming. You are assured of storing the correct
first state value if you copy it from the first input record.

288

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declarations
   InputFile inFile
   string TITLE = "Company Clients by State of Residence"
   string COL_HEADS = "Name   City   State"
   string name
   string city
   string state
   num count = 0
   string oldState

Yes

No

not eof?

start

input name, city,
state from inFile

getReady()

open inFile
"ClientsByState.dat"

return

stop

finishUp()

produceReport()

getReady()

oldState = state

output TITLE

output
COL_HEADS

start
   Declarations
      InputFile inFile
      string TITLE = "Company Clients by State of Residence"
      string COL_HEADS = "Name   City   State"
      string name
      string city
      string state
      num count = 0
      string oldState
   getReady()
   while not eof
      produceReport()
   endwhile
   finishUp()
stop

getReady()
   output TITLE
   output COL_HEADS
   open inFile "ClientsByState.dat"
   input name, city, state from inFile
   oldState = state
return

Figure 7-6 Mainline logic and getReady() module for the program that produces clients by
state report
© 2015 Cengage Learning

289

Understanding Control Break Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Within the produceReport() module in Figure 7-7, the first task is to check whether state

holds the same value as oldState. For the first record, on the first pass through this method,
the values are equal (because you set them to be equal right after getting the first input record
in the getReady() module). Therefore, you proceed by outputting the first client’s data,
adding 1 to count, and inputting the next record.

produceReport()

YesNo state <>
oldState?

controlBreak()

output name,
city, state

count = count + 1

input name, city,
state from inFile

return

controlBreak()

output "Count for ",
oldState, count

count = 0

oldState = state

produceReport()
   if state <> oldState then
      controlBreak()
   endif
   output name, city, state
   count = count + 1
   input name, city, state from inFile
return

controlBreak()
   output "Count for ", oldState, count
   count = 0
   oldState = state
return

return

Figure 7-7 The produceReport() and controlBreak() modules for the program that
produces a list of clients by state
© 2015 Cengage Learning

As long as each new record holds the same state value, you continue outputting, counting,
and inputting, never pausing to output the count. Eventually, you will read in a client whose
state is different from the previous one. That’s when the control break occurs. Whenever a
new state differs from the old one, three tasks must be performed:

The count for the previous state must be output.

The count must be reset to 0 so it can start counting records for the new state.

The control break field must be updated.

290

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When the produceReport() module receives a client record for which state is not the same
as oldState, you force a break in the normal flow of the program. The new client record must
“wait” while the count for the just-finished state is output and count and the control break
field oldState acquire new values.

The produceReport() module continues to output client names, cities, and states until the
end of the file is reached; then the finishUp() module executes. As shown in Figure 7-8, the
module that executes after processing the last record in a control break program must
complete any required processing for the last group that was handled. In this case, the
finishUp() module must display the count for the last state that was processed. After the
input file is closed, the logic can return to the main program, where the program ends.

Watch the video Control Break Logic.

TWO TRUTHS & A LIE

Understanding Control Break Logic

1. In a control break program, a change in the value of a variable initiates special
actions or causes unique processing to occur.

2. When a control break variable changes, the program takes special action.

3. To generate a control break report, input records must be organized in sequential
order based on the first field in the record.

finishUp()

output "Count for ",
oldState, count

return

close inFile

finishUp()
   output "Count for ", oldState, count
   close inFile
return

Figure 7-8 The finishUp() module for the program that produces clients by state report
© 2015 Cengage Learning

Thefalsestatementis#3.Togenerateacontrolbreakreport,inputrecordsmustbe
organizedinsequentialorderbasedonthefieldthatwillcausethebreaks.

291

Understanding Control Break Logic

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Merging Sequential Files
Businesses often need to merge two or more sequential files. Merging files involves
combining two or more files while maintaining the sequential order of the records. For
example:

Suppose that you have a file of current employees in ID number order and a file of newly
hired employees, also in ID number order. You need to merge these two files into one
combined file in ID number order before running this week’s payroll program.

Suppose that you have a file of parts manufactured in the Northside factory in part-
number order and a file of parts manufactured in the Southside factory, also in part-
number order. You need to merge these two files into one combined file, creating a master
list of available parts in order by part number.

Suppose that you have a file that lists last year’s customers in alphabetical order and
another file that lists this year’s customers in alphabetical order. You want to create a
mailing list of all customers in order by last name.

Before you can easily merge files, two conditions must be met:

Each file must contain the same record layout.

Each file used in the merge must be sorted in the same order based on the same field.
Ascending order describes records in order from lowest to highest values; descending
order describes records in order from highest to lowest values.

For example, suppose that your business has two locations, one on the East Coast and one on
the West Coast, and each location maintains a customer file in alphabetical order by
customer name. Each file contains fields for name and customer balance. You can call the
fields in the East Coast file eastName and eastBalance, and the fields in the West Coast file
westName and westBalance. You want to merge the two files, creating one combined file
containing records for all customers. Figure 7-9 shows some sample data for the files; you
want to create a merged file like the one shown in Figure 7-10.

East Coast File West Coast File

Able
Brown
Dougherty
Hanson
Ingram
Johnson

eastName

100.00
50.00
25.00

300.00
400.00

30.00

eastBalance

Chen
Edgar
Fell
Grand

westName

200.00
125.00

75.00
100.00

westBalance

Figure 7-9 Sample data contained in two customer files
© 2015 Cengage Learning

Able
Brown
Chen
Dougherty
Edgar
Fell
Grand
Hanson
Ingram
Johnson

100.00
50.00

200.00
25.00

125.00
75.00

100.00
300.00
400.00
30.00

mergedBalancemergedName

Figure 7-10 Merged customer file
© 2015 Cengage Learning

292

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The mainline logic for a program that merges two files is similar to the main logic
you’ve used before in other programs: it contains preliminary, housekeeping tasks; a
detail module that repeats until the end of the program; and some clean-up, end-of-job
tasks. However, most programs you have studied processed records until an eof

condition was met, either because an input data file reached its end or because a user
entered a sentinel value in an interactive program. In a program that merges two input
files, checking for eof in only one of them is insufficient. Instead, the program can’t end
until both input files are exhausted.

One way to end a file-merging program is to create a string flag variable with a name such as
areBothAtEnd. You might initialize areBothAtEnd to "N", but change its value to "Y" after
you have encountered eof in both input files. (If the language you use supports a Boolean data
type, you can use the values true and false instead of strings.) Figure 7-11 shows the
mainline logic for a program that merges the files shown in Figure 7-9. After the getReady()

module executes, the shaded question that sends the logic to the finishUp() module tests the
areBothAtEnd variable. When it holds "Y", the program ends.

Yes

No

Declarations
   InputFile eastFile
   InputFile westFile
   OutputFile mergedFile
   string eastName
   num eastBalance
   string westName
   num westBalance
   string END_NAME = "ZZZZZ"
   string areBothAtEnd = "N"

start
   Declarations
      InputFile eastFile
      InputFile westFile
      OutputFile mergedFile
      string eastName
      num eastBalance
      string westName
      num westBalance
      string END_NAME = "ZZZZZ"
      string areBothAtEnd = "N"
   getReady()
   while areBothAtEnd <> "Y"
      mergeRecords()
   endwhile
   finishUp()
stop

start

stop

getReady()

finishUp()

mergeRecords()
areBothAtEnd
<> "Y"?

Figure 7-11 Mainline logic of a program that merges files
© 2015 Cengage Learning

293

Merging Sequential Files

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The getReady() module is shown in Figure 7-12. It opens three files—the input files for the
east and west customers, and an output file in which to place the merged records. The
program then reads one record from each input file. If either file has reached its end, the
END_NAME constant is assigned to the variable that holds the file’s customer name. The
getReady() module then checks to see whether both files are finished (admittedly, a rare
occurrence in the getReady() portion of the program’s execution) and sets the areBothAtEnd
flag variable to "Y" if they are. Assuming that at least one record is available, the logic would
then enter the mergeRecords() module.

294

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



open mergedFile
"Clients.dat"

open westFile
"WestCoastClients.dat"

return

readEast()

checkEnd()

input eastName,
eastBalance from
eastFile

YesNo
eof?

eastName =
END_NAME

readEast()

YesNo eastName =
END_NAME?

areBothAtEnd
= "Y"

checkEnd()

YesNo westName =
END_NAME?

open eastFile
"EastCoastClients.dat"

getReady()

return

readWest()

return

input westName,
westBalance from
westFile

YesNo
eof?

westName =
END_NAME

readWest()

return

Figure 7-12 The getReady() method for a program that merges files, and the methods it calls
(continues)

295

Merging Sequential Files

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you begin the mergeRecords() module in the program using the files shown in
Figure 7-9, two records—one from eastFile and one from westFile—are sitting in the
memory of the computer. One of these records needs to be written to the new output file
first. Which one? Because the two input files contain records stored in alphabetical order,
and you want the new file to store records in alphabetical order, you first output the input
record that has the lower alphabetical value in the name field. Therefore, the process begins
as shown in Figure 7-13.

getReady()
   open eastFile "EastCoastClients.dat"
   open westFile "WestCoastClients.dat"
   open mergedFile "Clients.dat"
   readEast()
   readWest()
   checkEnd()
return

readEast()
   input eastName, eastBalance from eastFile
   if eof then
      eastName = END_NAME
   endif
return

readWest()
   input westName, westBalance from westFile
   if eof then
      westName = END_NAME
   endif
return

checkEnd()
   if eastName = END_NAME then
      if westName = END_NAME then
         areBothAtEnd = "Y"
      endif
   endif
return

Figure 7-12 The getReady() method for a program that merges files, and the methods it calls
© 2015 Cengage Learning

(continued)

296

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the sample data from Figure 7-9, you can see that the Able record from the East Coast
file should be written to the output file, while Chen’s record from the West Coast file waits in
memory. The eastName value Able is alphabetically lower than the westName value Chen.

After you write Able’s record, should Chen’s record be written to the output file next? Not
necessarily. It depends on the next eastName following Able’s record in eastFile. When data
records are read into memory from a file, a program typically does not “look ahead” to
determine the values stored in the next record. Instead, a program usually reads the record
into memory before making decisions about its contents. In this program, you need to read
the next eastFile record into memory and compare it to Chen. Because in this case the next
record in eastFile contains the name Brown, another eastFile record is written; no
westFile records are written yet.

After the first two eastFile records, is it Chen’s turn to be written now? You really don’t
know until you read another record from eastFile and compare its name value to Chen.
Because this record contains the name Dougherty, it is indeed time to write Chen’s record.
After Chen’s record is written, should you now write Dougherty’s record? Until you read the
next record from westFile, you don’t know whether that record should be placed before or
after Dougherty’s record.

Therefore, the merging method proceeds like this: compare two records, write the record with
the lower alphabetical name, and read another record from the same input file. See Figure 7-14.

mergeRecords()

YesNo eastName <
westName?

output westName,
westBalance to
mergedFile

mergeRecords()
   if eastName < westName then
      output eastName, eastBalance to mergedFile
      // more to come
   else
      output westName, westBalance to mergedFile
      // more to come

output eastName,
eastBalance to
mergedFile

Figure 7-13 Start of merging process
© 2015 Cengage Learning

297

Merging Sequential Files

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recall the names from the two original files in Figure 7-9, and walk through the processing steps.

1. Compare Able and Chen. Write Able’s record. Read Brown’s record from eastFile.

2. Compare Brown and Chen. Write Brown’s record. Read Dougherty’s record from
eastFile.

3. Compare Dougherty and Chen. Write Chen’s record. Read Edgar’s record from westFile.

4. Compare Dougherty and Edgar. Write Dougherty’s record. Read Hanson’s record
from eastFile.

5. Compare Hanson and Edgar. Write Edgar’s record. Read Fell’s record from westFile.

6. Compare Hanson and Fell. Write Fell’s record. Read Grand’s record from westFile.

7. Compare Hanson and Grand. Write Grand’s record. Read from westFile,
encountering eof. This causes westName to be set to END_NAME.

What happens when you reach the end of the West Coast file? Is the program over? It
shouldn’t be because records for Hanson, Ingram, and Johnson all need to be included in the

mergeRecords()

YesNo eastName <
westName?

output westName,
westBalance to
mergedFile

mergeRecords()
   if eastName < westName then
      output eastName, eastBalance to mergedFile
      readEast()
      // more to come
   else
      output westName, westBalance to mergedFile
      readWest()
      // more to come

output eastName,
eastBalance to
mergedFile

readEast()readWest()

Figure 7-14 Continuation of merging process
© 2015 Cengage Learning

298

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



new output file, and none of them are written yet. Because the westName field is set to
END_NAME, and END_NAME has a very high alphabetic value (ZZZZZ), each subsequent eastName
will be lower than the value of westName, and the rest of the eastName file will be processed.
With a different set of data, the eastFile might have ended first. In that case, eastName would
be set to END_NAME, and each subsequent westFile record would be processed.

Figure 7-15 shows the complete mergeRecords() module and the finishUp() module.

readEast()readWest()

checkEnd()

close eastFile

mergeRecords()
   if eastName < westName then
      output eastName, eastBalance to mergedFile
      readEast()
   else
      output westName, westBalance to mergedFile
      readWest()
   endif
   checkEnd()
return

finishUp()
   close eastFile
   close westFile
   close mergedFile
return

mergeRecords()

YesNo eastName <
westName?

output westName,
westBalance to
mergedFile

output eastName,
eastBalance to
mergedFile

return

finishUp()

close westFile

close
mergedFile

return

Figure 7-15 The mergeRecords() and finishUp() modules for the file-merging program
© 2015 Cengage Learning

299

Merging Sequential Files

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



As the value for END_NAME, you should make sure that the high value you choose is actually higher than any
legitimate value. For example, you might choose to use 10 or 20 Zs instead of only five, although it is unlikely
that a person will have the last name ZZZZZ.

After Grand’s record is processed, westFile is read and eof is encountered, so westName gets
set to END_NAME. Now, when you enter the loop again, eastName and westName are compared,
and eastName is still Hanson. The eastName value (Hanson) is lower than the westName value
(ZZZZZ), so the data for eastName’s record is written to the output file, and another
eastFile record (Ingram) is read.

The complete run of the file-merging program now executes the first six of the seven steps
listed previously, and then proceeds as shown in Figure 7-15 and as follows, starting with a
modified Step 7:

7. Compare Hanson and Grand. Write Grand’s record. Read from westFile,
encountering eof and setting westName to ZZZZZ.

8. Compare Hanson and ZZZZZ. Write Hanson’s record. Read Ingram’s record.

9. Compare Ingram and ZZZZZ. Write Ingram’s record. Read Johnson’s record.

10. Compare Johnson and ZZZZZ. Write Johnson’s record. Read from eastFile,
encountering eof and setting eastName to ZZZZZ.

11. Now that both names are ZZZZZ, set the flag areBothAtEnd equal to "Y".

When the areBothAtEnd flag variable equals "Y", the loop is finished, the files are closed, and
the program ends.

If two names are equal during the merge process—for example, when there is a Hanson record in
each file—then both Hansons will be included in the final file. When eastName and westName match,
eastName is not lower than westName, so you write the westFile Hanson record. After you read
the next westFile record, eastName will be lower than the next westName, and the eastFile
Hanson record will be output. A more complicated merge program could check another field, such as
first name, when last-name values match.

You can merge any number of files. To merge more than two files, the logic is only slightly
more complicated; you must compare the key fields from all the files before deciding which
file is the next candidate for output.

Watch the video Merging Files.

300

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Merging Sequential Files

1. A sequential file is a file in which records are stored one after another in some
order. Most frequently, the records are stored based on the contents of one or
more fields within each record.

2. Merging files involves combining two or more files while maintaining the
sequential order.

3. Before you can easily merge files, each file must contain the same number of records.

Master and Transaction File Processing
In the last section, you learned how to merge related sequential files in which each record in
each file contained the same fields. Some related sequential files, however, do not contain the
same fields. Instead, some related files have a master-transaction relationship. A master file
holds complete and relatively permanent data; a transaction file holds more temporary data.
For example, a master customer file might hold records that each contain a customer’s name,
address, phone number, and balance, and a customer transaction file might contain data that
describes each customer’s most recent purchase.

Commonly, you gather transactions for a period of time, store them in a file, and then use
them one by one to update matching records in a master file. You update the master file by
making appropriate changes to the values in its fields based on the recent transactions. For
example, a file containing transaction purchase data for a customer might be used to update
each balance due field in a customer record master file.

Here are a few other examples of files that have a master-transaction relationship:

A library maintains a master file of all patrons and a transaction file with information
about each book or other items checked out.

A college maintains a master file of all students and a transaction file for each course
registration.

A telephone company maintains a master file for every telephone line (number) and a
transaction file with information about every call.

Thefalsestatementis#3.Beforeyoucaneasilymergefiles,eachfilemustcontain
thesamerecordlayoutandeachfileusedinthemergemustbesortedinthesame
orderbasedonthesamefield.

301

Master and Transaction File Processing

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you update a master file, you can take two approaches:

You can actually change the information in the master file. When you use this
approach, the information that existed in the master file prior to the transaction
processing is lost.

You can create a copy of the master file, making the changes in the new version. Then,
you can store the previous, parent version of the master file for a period of time, in case
there are questions or discrepancies regarding the update process. The updated, child
version of the file becomes the new master file used in subsequent processing. This
approach is used in a program later in this chapter.

When a child file is updated, it becomes a parent, and its parent becomes a grandparent. Individual
organizations create policies concerning the number of generations of backup files they will save
before discarding them. The terms parent and child refer to file backup generations, but they are used
for a different purpose in object-oriented programming. When you base a class on another using
inheritance, the original class is the parent and the derived class is the child. You first learned about
the concept of object-oriented programming in Chapter 1, and you can learn much more about it and
the concepts of inheritance, parent classes, and child classes in Chapters 10 and 11 of the
comprehensive version of this book.

The logic you use to perform a match between master and transaction file records is similar
to the logic you use to perform a merge. As with a merge, you must begin with both files
sorted in the same order on the same field. Figure 7-16 shows the mainline logic for a
program that matches files. The master file contains a customer number, name, and a field
that holds the total dollar amount of all purchases the customer has made previously. The
transaction file holds data for sales, including a transaction number, the number of the
customer who made the transaction, and the amount of the transaction.

302

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 7-17 contains the housekeeping() module for the program, and the modules it calls.
These modules are very similar to their counterparts in the file-merging program earlier in
the chapter. When the program begins, one record is read from each file. When any file ends,
the field used for matching is set to a high value, 9999, and when both files end, a flag variable
is set so the mainline logic can test for the end of processing. In the file-merging program
presented earlier in this chapter, you placed the string "ZZZZZ" in the customer name field at
the end of the file because string fields were being compared. In this example, because you are
using numeric fields (customer numbers), you can store 9999 in them at the end of the file.
The assumption is that 9999 is higher than any valid customer number.

updateRecords()

housekeeping()

Yes

No

start
   Declarations
      InputFile masterFile
      InputFile transFile
      OutputFile updatedFile
      num masterCustNum
      string masterName
      num masterTotal
      num transNum
      num transCustNum
      num transAmount
      num END_NUM = 9999
      string areBothAtEnd = "N"
   housekeeping()
   while areBothAtEnd <> "Y"
      updateRecords()
   endwhile
   finishUp()
stop

start

stop

finishUp()

Declarations
   InputFile masterFile
   InputFile transFile
   OutputFile updatedFile
   num masterCustNum
   string masterName
   num masterTotal
   num transNum
   num transCustNum
   num transAmount
   num END_NUM = 9999
   string areBothAtEnd = "N"

areBothAtEnd
<> "Y"?

Figure 7-16 Mainline logic for the master-transaction program
© 2015 Cengage Learning

303

Master and Transaction File Processing

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



open updatedFile
"UpdatedCustomers.dat"

open transFile
"Transactions.dat"

return

readMaster()

checkEnd()

YesNo
eof?

readMaster()

YesNo masterCustNum
= END_NUM?

transCustNum
= END_NUM?

transCustNum
= END_NUM

areBothAtEnd
= "Y"

checkEnd()

YesNo

open masterFile
"Customers.dat"

housekeeping()

return

readTrans()

return

input
transNum,transCustNum,
transAmount from
transFile

YesNo
eof?

readTrans()

input masterCustNum,
masterName,
masterTotal from
masterFile

return

masterCustNum
= END_NUM

Figure 7-17 The housekeeping() module for the master-transaction program, and the modules
it calls (continues)

304

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Imagine that you will update master file records by hand instead of using a computer
program, and imagine that each master and transaction record is stored on a separate piece of
paper. The easiest way to accomplish the update is to sort all the master records by customer
number and place them in a stack, and then sort all the transactions by customer number
(not transaction number) and place them in another stack. You then would examine the first
transaction and look through the master records until you found a match. Any master
records without transactions would be placed in a “completed” stack without changes. When
a transaction matched a master record, you would correct the master record using the new
transaction amount, and then go on to the next transaction. Of course, if there is no matching
master record for a transaction, then you would realize an error had occurred, and you would
probably set the transaction aside before continuing. The updateRecords() module works
exactly the same way.

In the file-merging program presented earlier in this chapter, your first action in the
program’s detail loop was to determine which file held the record with the lower key value;
then, you wrote that record. In a matching program, you are trying to determine not only

housekeeping()
open masterFile "Customers.dat"
open transFile "Transactions.dat"
open updatedFile "UpdatedCustomers.dat"
readMaster()
readTrans()
checkEnd()

return

readMaster()
input masterCustNum, masterName, masterTotal from masterFile 
if eof then

masterCustNum = END_NUM
endif

return

readTrans()
input transNum, transCustNum, transAmount from transFile
if eof then

transCustNum = END_NUM
endif

return

checkEnd()
if masterCustNum = END_NUM then

if transCustNum = END_NUM then
areBothAtEnd = "Y"

endif
endif

return

Figure 7-17 The housekeeping() module for the master-transaction program, and the
modules it calls
© 2015 Cengage Learning

(continued)

305

Master and Transaction File Processing

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



whether one file’s comparison field is smaller than another’s, but also if they are equal. In this
example, you want to update the master file record’s masterTotal field only if the transaction
record field transCustNum contains an exact match for the customer number in the master
file record. Therefore, you compare masterCustNum from the master file and transCustNum

from the transaction file. Three possibilities exist:

The transCustNum value equals masterCustNum. In this case, you add transAmount to
masterTotal and then write the updated master record to the output file. Then, you read
in both a new master record and a new transaction record.

The transCustNum value is higher than masterCustNum. This means a sale was not
recorded for that customer. That’s all right; not every customer makes a transaction every
period, so you simply write the original customer record with exactly the same
information it contained when input. Then, you get the next customer record to see if this
customer made the transaction currently under examination.

The transCustNum value is lower than masterCustNum. This means you are trying to
apply a transaction for which no master record exists, so there must be an error,
because a transaction should always have a master record. You could handle this error
in a variety of ways; here, you will write an error message to an output device before
reading the next transaction record. A human operator can then read the message and
take appropriate action.

The logic used here assumes that there can be only one transaction per customer. In the exercises at the
end of this chapter, you will develop the logic for a program in which the customer can have multiple
transactions.

Whether transCustNum was higher than, lower than, or equal to masterCustNum, after
reading the next transaction or master record (or both), you check whether both
masterCustNum and transCustNum have been set to 9999, indicating that the end of the file
has been reached. When both are 9999, you set the areBothAtEnd flag to "Y".

Figure 7-18 shows the updateRecords() module that carries out the logic of the file-
matching process. Figure 7-19 shows some sample data you can use to walk through the logic
for this program.

306

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



updateRecords()

YesNo transCustNum =
masterCustNum?

output "No
master record
for
transaction ",
transNum

output
masterCustNum,
masterName,
masterTotal to
updatedFile

updateRecords()
   if transCustNum = masterCustNum then
      masterTotal = masterTotal + transAmount
      output masterCustNum, masterName, masterTotal to updatedFile
      readMaster()
      readTrans()
   else
      if transCustNum > masterCustNum then
         output masterCustNum, masterName, masterTotal to updatedFile
         readMaster()
      else
         output "No master record for transaction ", transNum
         readTrans()
      endif
   endif
   checkEnd()
return

masterTotal =
masterTotal +
transAmounttransCustNum >

masterCustNum?

YesNo

output
masterCustNum,
masterName,
masterTotal to
updatedFile

readTrans() readMaster() readMaster()

readTrans()

checkEnd()

return

Figure 7-18 The updateRecords() module for the master-transaction program
© 2015 Cengage Learning

307

Master and Transaction File Processing

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The program proceeds as follows:

1. Read customer 100 from the master file and customer 100 from the transaction file.
Customer numbers are equal, so 400.00 from the transaction file is added to 1000.00
in the master file, and a new master file record is written with a 1400.00 total sales
figure. Then, read a new record from each input file.

2. The customer number in the master file is 102 and the customer number in the
transaction file is 105, so there are no transactions today for customer 102. Write the
master record exactly the way it came in, and read a new master record.

3. Now, the master customer number is 103 and the transaction customer number is
still 105. This means customer 103 has no transactions, so you write the master
record as is and read a new one.

4. Now, the master customer number is 105 and the transaction number is 105. Because
customer 105 had a 75.00 balance and now has a 700.00 transaction, the new total
sales figure for the master file is 775.00, and a new master record is written. Read one
record from each file.

5. Now, the master number is 106 and the transaction number is 108. Write customer
record 106 as is, and read another master.

6. Now, the master number is 109 and the transaction number is 108. An error has
occurred. The transaction record indicates that you made a sale to customer 108, but
there is no master record for customer number 108. Either the transaction is incorrect
(there is an error in the transaction’s customer number) or the transaction is correct but
you have failed to create a master record. Either way, write an error message so that a
clerk is notified and can handle the problem. Then, get a new transaction record.

7. Now, the master number is 109 and the transaction number is 110. Write master
record 109 with no changes and read a new one.

8. Now, the master number is 110 and the transaction number is 110. Add the 400.00
transaction to the previous 500.00 balance in the master file, and write a new master
record with 900.00 in the masterTotal field. Read one record from each file.

Master File Transaction File

100
105
108
110

transCustNum

1000.00
    50.00
  500.00
    75.00
5000.00
4000.00
  500.00

masterTotal

400.00
700.00
100.00
400.00

transAmount

100
102
103
105
106
109
110

masterCustNum

Figure 7-19 Sample data for the file-matching program
© 2015 Cengage Learning

308

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9. Because both files are finished, end the job. The result is a new master file in which
some records contain exactly the same data they contained going in, but others (for
which a transaction has occurred) have been updated with a new total sales figure.
The original master and transaction files that were used as input can be saved for a
period of time as backups.

Figure 7-20 shows the finishUp() module for the program. After all the files are closed, the
updated master customer file contains all the customer records it originally contained, and
each holds a current total based on the recent group of transactions.

TWO TRUTHS & A LIE

Master and Transaction File Processing

1. A master file typically holds temporary data related to transaction file records.

2. A transaction file typically holds data that is used to update a master file.

3. The original version of a master file is the parent file; the updated version is the
child file.

finishUp()

close
masterFile

close
transFile

close
updatedFile

finishUp()
   close masterFile
   close transFile
   close updatedFile
return

return

Figure 7-20 The finishUp() module for the master-transaction program

Thefalsestatementis#1.Amasterfileholdsrelativelypermanentdata.

309

Master and Transaction File Processing

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Random Access Files
The files used as examples so far in this chapter are sequential access files, which means that
the records are accessed in order from beginning to end. For example, if you stored an
employee record with an ID number of 234 in a file, and then you created and stored a second
record with an ID number of 326, you would see when you retrieved the records that they
remain in the original data-entry order. Businesses store data in sequential order when they
use the records for batch processing, or processing that involves performing the same tasks
with many records, one after the other. For example, when a company produces paychecks,
the records for the pay period are gathered in a batch and the checks are calculated and
printed in sequence. It really doesn’t matter whose check is produced first because none are
distributed to employees until all have been processed. Batch processing usually implies some
delay in processing from the time events occur. For example, most companies produce
paychecks for time that employees have already worked. Likewise, a customer might order an
item but not receive the bill for a month.

Besides indicating a system that works with many records, the term batch processing can also mean a
system in which many programs can run in sequence without human intervention. Batch processing is an old
computing technique, but it is still crucial for such common business tasks as updating records and
generating reports.

For many applications, sequential access is inefficient. These applications, known as real-time
applications, require that a record be accessed immediately while a client is waiting. A program
in which the user makes direct requests is an interactive program. For example, if a customer
telephones a department store with a question about a monthly bill, the customer service
representative does not need or want to access every customer account in sequence. With tens
of thousands of account records to read, it would take too long to access the customer’s record.
Instead, customer service representatives require random access files, files in which records
can physically be located in any order. Files in which records must be accessed immediately are
also called instant access files. Because they enable clients to locate a particular record directly
(without reading all of the preceding records), random access files are also called direct access
files. You can declare a random access file with a statement similar to the following:

RandomFile customerFile

This statement associates the identifier customerFile with a stored file that can be accessed
randomly. You can use read, write, and close operations with a random access file just as you
can with a sequential file. However, with random access files you have the additional
capability to find a record directly. For example, you might be able to use a statement similar
to the following to find customer number 712 on a random access file:

seek record 712

This feature is particularly useful in real-time, interactive programs. Consider a business with
20,000 customer accounts. When a customer who has the 14,607th record in the file inquires
about his balance, it is convenient to access the 14,607th record directly instead of first
reading in data for the 14,606 records that precede the requested one. Figure 7-21 illustrates
this concept.

310

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The precise techniques for working with random access files vary among programming
languages. You will learn more about this concept when you study a programming language.

TWO TRUTHS & A LIE

Random Access Files

1. A batch program usually uses instant access files.

2. In a real-time application, a record is accessed immediately while a client is waiting.

3. An interactive program usually uses random access files.

Chapter Summary
A computer file is a collection of data stored on a nonvolatile device in a computer system.
Although the contents of files differ, each file occupies space on a section of a storage
device, and each has a name and specific times associated with it. Computer files are
organized in directories or folders. A file’s complete list of directories is its path.

Data items in a file usually are stored in a hierarchy. Characters are letters, numbers, and
special symbols, such as A, 7, and $. Fields are data items that each represent a single
attribute of a record; they are composed of one or more characters. Records are groups of
fields that go together for some logical reason. Files are groups of related records.

When you use a data file in a program, you must declare the file and open it; opening a file
associates an internal program identifier with the name of a physical file on a storage device.
A sequential file is a file in which records are stored one after another in some order. When

Accessing a target
record sequentially

Accessing a target
record randomly

Figure 7-21 Accessing a record in a sequential file and in a random access file

Thefalsestatementis#1.Abatchprogramusuallyusessequentialfiles;interactive
programsuserandom,instantaccessfiles.

311

Chapter Summary

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



you read from a file, the data is copied into memory. When you write to a file, the data is
copied from memory to a storage device. When you are done with a file, you close it.

A control break program is one that reads a sorted, sequential file and performs special
processing based on a change in one or more fields in each record in the file.

Merging files involves combining two or more files while maintaining the sequential order.

Some related sequential files are master files that hold relatively permanent data, and
transaction files that hold more temporary data. Commonly, you gather transactions for a
period of time, store them in a file, and then use them one by one to update matching
records in a master file.

Real-time, interactive applications require random access files in which records can be
located in any order. Files in which records must be accessed immediately are also called
instant access files and direct access files.

Key Terms
A permanent storage device holds nonvolatile data; examples include hard disks, DVDs,
USB drives, and reels of magnetic tape.

A computer file is a collection of data stored on a nonvolatile device in a computer system.

Text files contain data that can be read in a text editor.

Binary files contain data that has not been encoded as text.

A byte is a small unit of storage; for example, in a simple text file, a byte holds only one
character.

A kilobyte is approximately 1000 bytes.

A megabyte is a million bytes.

A gigabyte is a billion bytes.

Directories are organization units on storage devices; each can contain multiple files as well as
additional directories. In a graphic system, directories are often called folders.

Folders are organization units on storage devices; each can contain multiple files as well as
additional folders. Folders are graphic directories.

A file’s path is the combination of its disk drive and the complete hierarchy of directories in
which the file resides.

The data hierarchy is a framework that describes the relationships between data
components. The data hierarchy contains characters, fields, records, and files.

Characters are letters, numbers, and special symbols, such as A, 7, and $.

Fields are data items that each represent a single attribute of a record and that are composed
of one or more characters.

Records are groups of fields that go together for some logical reason.

312

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Files are groups of related records.

A database holds groups of files or tables and provides the means for easy retrieval and
organization.

Tables are files in a database.

Opening a file locates it on a storage device and associates a variable name within your
program with the file.

Reading from a file copies data from a file on a storage device into RAM.

A sequential file is a file in which records are stored one after another in some order.

Sorting is the process of placing records in order by the value in a specific field or fields.

Writing to a file copies data from RAM to persistent storage.

Closing a file makes it no longer available to an application.

Default input and output devices are those that do not require opening. Usually they are the
keyboard and monitor, respectively.

A backup file is a copy that is kept in case values need to be restored to their original state.

A parent file is a copy of a file before revision.

A child file is a copy of a file after revision.

A control break is a temporary detour in the logic of a program.

A control break program is one in which a change in the value of a variable initiates special
actions or causes special or unusual processing to occur.

A control break report is a form of output that includes special processing after each group of
records.

A single-level control break is a break in the logic of a program to perform special processing
based on the value of a single variable.

A control break field holds a value that causes special processing in a control break program.

Merging files involves combining two or more files while maintaining the sequential order.

Ascending order describes records placed in order from lowest to highest based on the value
in a field.

Descending order describes records placed in order from highest to lowest based on the value
in a field.

A master file holds complete and relatively permanent data.

A transaction file holds temporary data that is used to update a master file.

To update a master file involves making changes to the values in its fields based on
transactions.

313

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Batch processing involves performing the same tasks with many records, one after the other.

Real-time applications require that a record be accessed immediately while a client or user is
waiting.

An interactive program is one in which the user makes direct requests or provides input
while a program executes.

A random access file is one in which records can be located in any physical order and
accessed directly.

Instant access files are random access files in which records can be accessed immediately.

Direct access files are random access files.

Exercises

Review Questions

1. Random access memory is .

a. volatile
b. permanent

c. persistent
d. continual

2. Which is true of text files?

a. Text files contain data that can be read in a text editor.
b. Text files commonly contain images and music.
c. both of the above
d. none of the above

3. Every file on a storage device has a .

a. name
b. size

c. both of the above
d. none of the above

4. Which of the following is true regarding the data hierarchy?

a. Fields contain records.
b. Characters contain fields.

c. Fields contain files.
d. Files contain records.

5. The process of a file locates it on a storage device and associates a
variable name within your program with the file.

a. declaring
b. closing

c. opening
d. defining

314

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6. When you write to a file, you .

a. move data from a storage device to memory
b. copy data from a storage device to memory
c. move data from memory to a storage device
d. copy data from memory to a storage device

7. Unlike when you print a report or display information on a screen, when a
program’s output is a data file, you do not .

a. include explanations or formatting such as dollar signs
b. open or close the files
c. output all of the input fields
d. all of the above

8. When you close a file, it .

a. becomes associated with an internal identifier
b. cannot be reopened
c. is no longer available to the program
d. ceases to exist

9. A file in which records are stored one after another in order based on the contents
of a field is a(n) file.

a. temporal
b. alphabetical

c. random
d. sequential

10. When you combine two or more sorted files while maintaining their sequential
order based on a field, you are the files.

a. tracking
b. collating

c. merging
d. absorbing

11. A control break occurs when a program .

a. pauses to perform special processing based on the value of a field
b. ends prematurely, before all records have been processed
c. takes one of two alternate courses of action for every record
d. passes logical control to a module contained within another program

12. Which of the following is an example of a control break report?

a. a list of all customers of a business in zip code order, with a count of the
number of customers who reside in each zip code

b. a list of all students in a school, arranged in alphabetical order, with a total
count at the end of the report

315

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



c. a list of all employees in a company, with a “Retain” or “Dismiss” message
following each employee record

d. a list of medical clinic patients who have not seen a doctor for at least two years

13. A control break field .

a. always is output prior to any group of records on a control break report
b. always is output after any group of records on a control break report
c. never is output on a report
d. causes special processing to occur

14. Whenever a control break occurs during record processing in any control break
program, you must .

a. declare a control break field
b. set the control break field to 0
c. update the value in the control break field
d. output the control break field

15. Assume that you are writing a program to merge two files named FallStudents and
SpringStudents. Each file contains a list of students enrolled in a programming
logic course during the semester indicated, and each file is sorted in student ID
number order. After the program compares two records and subsequently writes a
Fall student to output, the next step is to .

a. read a SpringStudents record
b. read a FallStudents record
c. write a SpringStudents record
d. write another FallStudents record

16. When you merge records from two or more sequential files, the usual case is that
the records in the files .

a. contain the same data
b. have the same format
c. are identical in number
d. are sorted on different fields

17. A file that holds more permanent data than a transaction file is a file.

a. master
b. primary

c. key
d. mega-

18. A transaction file is often used to another file.

a. augment
b. remove

c. verify
d. update

316

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



19. The saved version of a file that does not contain the most recently applied
transactions is known as a file.

a. master
b. child

c. parent
d. relative

20. Random access files are used most frequently in all of the following
except .

a. interactive programs
b. batch processing
c. real-time applications
d. programs requiring direct access

Programming Exercises

Your downloadable files for Chapter 7 include one or more comma-delimited sample
data files for each exercise in this section and the Game Zone section. You might want
to use these files in any of several ways:

You can look at the file contents to better understand the types of data each
program uses.

You can use the file contents as sample data when you desk-check the logic of
your flowcharts or pseudocode.

You can use the files as input files if you implement the solutions in a
programming language and write programs that accept file input.

You can use the data as guides for entering appropriate values if you implement
the solutions in a programming language and write interactive programs.

1. The Vernon Hills Mail Order Company often sends multiple packages per order. For
each customer order, output a mailing label for each box to be mailed. The mailing
labels contain the customer’s complete name and address, along with a box number
in the form Box 9 of 9. For example, an order that requires three boxes produces three
labels: Box 1 of 3, Box 2 of 3, and Box 3 of 3. Design an application that reads records
that contain a customer’s title (for example, Mrs.), first name, last name, street
address, city, state, zip code, and number of boxes. The application must read the
records until eof is encountered and produce enough mailing labels for each order.

2. Boardman College maintains two files—one for Sociology majors and another for
Anthropology majors. Each file contains students’ ID numbers, last names, first
names, and grade point averages. Each file is in student ID number order. The
college is merging the two departments into a Department of Sociology and
Anthropology. Design the logic for a program that merges the two files into one file
containing a list of all students, maintaining ID number order.

317

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Laramie Park District has files of participants in its summer and winter programs
this year. Each file is in participant ID number order and contains additional fields
for first name, last name, age, and class taken (for example, Beginning Swimming).

a. Design the logic for a program that merges the files for summer and winter
programs to create a list of the first and last names of all participants for the
year in ID number order.

b. Modify the program so that if a participant has more than one record, the
participant’s ID number and name are output only once.

c. Modify the program so that if a participant has more than one record, the ID
number and name are output only once along with a count of the total number
of classes the participant has taken.

4. The Apgar Medical group keeps a patient file for each doctor in the office. Each
record contains the patient’s first and last name, home address, and birth year. The
records are sorted in ascending birth year order. Two doctors, Dr. Best and Dr.
Cushing, have formed a partnership.

a. Design the logic that produces a merged list of patients’ names in ascending
order by birth year.

b. Modify the program so that it does not display patients’ names, but only
produces a count of the number of patients born each year.

5. The Martin Weight Loss Clinic maintains two patient files—one for male clients and
one for female clients. Each record contains the name of a patient and current total
weight loss in pounds. Each file is in descending weight loss order. Design the logic
that merges the two files to produce one combined file in order by weight loss.

6. a. The Curl Up and Dye Beauty Salon maintains a master file that contains a
record for each of its clients. Fields in the master file include the client’s ID
number, first name, last name, and total amount spent this year. Every week, a
transaction file is produced. It contains a customer’s ID number, the service
received (for example, Manicure), and the price paid. Each file is sorted in ID
number order. Design the logic for a program that matches the master and
transaction file records and updates the total paid for each client by adding the
current week’s price paid to the cumulative total. Not all clients purchase
services each week. The output is the updated master file and an error report
that lists any transaction records for which no master record exists.

b. Modify the program to output a coupon for a free haircut each time a client
exceeds $750 in services. The coupon, which contains the client’s name and an
appropriate congratulatory message, is output during the execution of the
update program when a client total surpasses $750. Make sure that only one
coupon is printed per client, even if the client has purchased multiple services
to pass the $750 cutoff value.

318

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7. The Timely Talent Temporary Help Agency maintains an employee master file
that contains an employee ID number, last name, first name, address, and hourly
rate for each temporary worker. The file has been sorted in employee ID number
order. Each week, a transaction file is created with a job number, address, customer
name, employee ID, and hours worked for every job filled by Timely Talent
workers. The transaction file is also sorted in employee ID order.

a. Design the logic for a program that matches the current week’s transaction file
records to the master file and outputs one line for each transaction, indicating
job number, employee ID number, hours worked, hourly rate, and gross pay.
Assume that each temporary worker works at most one job per week. Output
one line for each worker, even if the worker has completed no jobs during the
current week.

b. Modify the help agency program to output lines only for workers who have
completed at least one job during the current week.

c. Modify the help agency program so that any temporary worker can work any
number of separate jobs during the week. Output one line for each job that
week.

d. Modify the help agency program so that it accumulates the worker’s total pay
for all jobs in a week and outputs one line per worker.

Performing Maintenance

1. A file named MAINTENANCE07-01.txt is included with your downloadable
student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 7 include DEBUG07-01.txt, DEBUG07-02.txt,
and DEBUG07-03.txt. Each file starts with some comments that describe the
problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must find
and correct.

2. Your downloadable files for Chapter 7 include a file named DEBUG07-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

319

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Game Zone

1. The International Rock Paper Scissors Society holds regional and national cham-
pionships. Each region holds a semifinal competition in which contestants play
500 games of Rock Paper Scissors. The top 20 competitors in each region are
invited to the national finals. Assume that you are provided with files for the East,
Midwest, and Western regions. Each file contains the following fields for the top
20 competitors: last name, first name, and number of games won. The records in
each file are sorted in alphabetical order. Merge the three files to create a file of the
top 60 competitors who will compete in the national championship.

2. In the Game Zone section of Chapter 5, you designed a guessing game in which the
application generates a random number and the player tries to guess it. After each
guess, you displayed a message indicating whether the player’s guess was correct,
too high, or too low. When the player eventually guessed the correct number, you
displayed a score that represented a count of the number of required guesses.
Modify the game so that when it starts, the player enters his or her name. After
a player plays the game exactly five times, save the best (lowest) score from the five
games to a file. If the player’s name already exists in the file, update the record
with the new lowest score. If the player’s name does not already exist in the file,
create a new record for the player. After the file is updated, display all the best
scores stored in the file.

Up for Discussion

1. Suppose that you are hired by a police department to write a program that matches
arrest records with court records detailing the ultimate outcome or verdict for
each case. You have been given access to current files so that you can test the
program. Your friend works in the personnel department of a large company and
must perform background checks on potential employees. (The job applicants sign
a form authorizing the check.) Police records are open to the public and your
friend could look up police records at the courthouse, but it would take many
hours per week. As a convenience, should you provide your friend with outcomes
of any arrest records of job applicants?

2. Suppose that you are hired by a clinic to match a file of patient office visits with
patient master records to print various reports. While working with the confi-
dential data, you notice the name of a friend’s fiancé. Should you tell your friend
that the fiancé is seeking medical treatment? Does the type of treatment affect your
answer?

320

C H A P T E R 7 File Handling and Applications

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 8
Advanced Data
Handling Concepts

In this chapter, you will learn about:

The need for sorting data

The bubble sort algorithm

Sorting multifield records

The insertion sort algorithm

Multidimensional arrays

Indexed files and linked lists

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding the Need for Sorting Data
Stored data records exist in some type of order; that is, one record is first, another second, and
so on. When records are in sequential order, they are arranged one after another on the basis
of the value in a particular field. Examples include employee records stored in numeric order
by Social Security number or department number, or in alphabetical order by last name or
department name. Even if the records do not seem to be stored in any particular order—for
example, if they are in the order in which a clerk felt like entering them—they still exist one
after the other, although probably not in the order desired for processing or viewing. Data
records that are stored randomly, or that are not in the order needed for a particular
application, need to be sorted. As you learned in Chapter 7, sorting records is the process of
placing them in order based on the contents of one or more fields. You can sort data either in
ascending order, arranging records from lowest to highest value within a field, or in
descending order, arranging records from highest to lowest value.

The sorting process usually is reserved for a relatively small number of data items. If thousands of customer
records are stored, and they frequently need to be accessed in order based on different fields (alphabetical
order by customer name one day, zip code order the next), the records would probably not be sorted at all,
but would be indexed or linked. You learn about indexing and linking later in this chapter.

Here are some examples of occasions when you would need to sort records:

A college stores student records in ascending order by student ID number, but the
registrar wants to view the data in descending order by credit hours earned so he can
contact students who are close to graduation.

A department store maintains customer records in ascending order by customer number,
but at the end of a billing period, the credit manager wants to contact customers whose
balances are 90 or more days overdue. The manager wants to list these overdue customers
in descending order by the amount owed, so the customers with the largest debt can be
contacted first.

A sales manager keeps records for her salespeople in alphabetical order by last name, but
she needs to list the annual sales figure for each salesperson so she can determine the
median annual sale amount.

The median value in a list is the value of the middle item when the values are listed in order. (If the list
contains an even number of values, the median is halfway between the two middle values.) The median is
not the same as the arithmetic average, or mean. The median is often used as a statistic because it
represents a more typical case—half the values are below it and half are above it. Unlike the median, the
mean is skewed by a few very high or low values.

A store manager wants to create a control break report in which individual sales are listed
in order in groups by their department. As you learned in Chapter 7, when you create a
control break report, the records must have been sorted in order by the control break
field.

322

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When computers sort data, they always use numeric values to make comparisons between
values. This is clear when you sort records by fields such as a numeric customer ID or balance
due. However, even alphabetic sorts are numeric, because computer data is stored as a
number using a series of 0s and 1s. Ordinary computer users seldom think about the numeric
codes behind the letters, numbers, and punctuation marks they enter from their keyboards or
see on a monitor. However, they see the consequence of the values behind letters when they
see data sorted in alphabetical order. In every popular computer coding scheme, B is
numerically one greater than A, and y is numerically one less than z. Unfortunately, your
system dictates whether A is represented by a number that is greater or smaller than the
number representing a. Therefore, to obtain the most useful and accurate list of
alphabetically sorted records, either a company’s data-entry personnel should be consistent in
the use of capitalization, or the programmer should convert all the data to use consistent
capitalization. Because A is always less than B, alphabetic sorts are ascending sorts.

The most popular coding schemes include ASCII, Unicode, and EBCDIC. In each code, a number represents
a specific computer character. Appendix A contains additional information about these codes.

As a professional programmer, you might never have to write a program that sorts data, because
organizations can purchase prewritten, “canned” sorting programs. Additionally, many popular
language compilers come with built-in methods that can sort data for you. However, it is
beneficial to understand the sorting process so that you can write a special-purpose sort when
needed. Understanding the sorting process also improves your array-manipulating skills.

TWO TRUTHS & A LIE

Understanding the Need for Sorting Data

1. When you sort data in ascending order, you arrange records from lowest to
highest based on the value in a specific field.

2. Normal alphabetical order, in which A precedes B, is descending order.

3. When computers sort data, they use numeric values to make comparisons, even
when string values are compared.

Using the Bubble Sort Algorithm
One of the simplest sorting techniques to understand is a bubble sort. You can use a bubble
sort to arrange data items in either ascending or descending order. In a bubble sort, items in a
list are compared with each other in pairs. When an item is out of order, it trades places, or is
swapped, with the item below it. With an ascending bubble sort, after each adjacent pair of

Thefalsestatementis#2.Normalalphabeticalorderisascending.
323

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



items in a list has been compared once, the largest item in the list will have “sunk” to the
bottom. After many passes through the list, the smallest items rise to the top like bubbles in a
carbonated drink. A bubble sort is sometimes called a sinking sort.

When you learn a method like sorting, programmers say you are learning an algorithm. An
algorithm is a list of instructions that accomplish a task. In this section, you will learn about
the bubble sort algorithm for sorting a list of simple values; later in this chapter you will learn
more about how multifield records are sorted. To understand the bubble sort algorithm, you
first must learn about swapping values.

Understanding Swapping Values
A concept central to many sorting algorithms, including the bubble sort, is the idea of
swapping values. When you swap values stored in two variables, you exchange their values;
you set the first variable equal to the value of the second, and the second variable equal to the
value of the first. However, there is a trick to swapping any two values. Assume that you have
declared two variables as follows:

num score1 = 90
num score2 = 85

You want to swap the values so that score1 is 85 and score2 is 90. If you first assign score1

to score2 using a statement such as score2 = score1, both score1 and score2 hold 90, and
the value 85 is lost. Similarly, if you first assign score2 to score1 using a statement such as
score1 = score2, both variables hold 85, and the value 90 is lost.

To correctly swap two values, you create a temporary variable to hold a copy of one of the
scores so it doesn’t get lost. Then, you can accomplish the swap as shown in Figure 8-1. First,
the value in score2, 85, is assigned to a temporary holding variable named temp. Then, the
score1 value, 90, is assigned to score2. At this point, both score1 and score2 hold 90. Then,
the 85 in temp is assigned to score1. Therefore, after the swap process, score1 holds 85 and
score2 holds 90.

324

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 8-1, you can accomplish identical results by assigning score1 to temp, assigning
score2 to score1, and finally assigning temp to score2.

Watch the video Swapping Values.

Understanding the Bubble Sort
Assume that you want to sort five student test scores in ascending order. Figure 8-2 shows a
program in which a constant is declared to hold an array’s size, and then the array is declared
to hold five scores. (The other variables and constants, which are shaded in the figure, will be
discussed in the next paragraphs when they are used.) The program calls three main
procedures—one to input the five scores, one to sort them, and the final one to display the
sorted result.

In Chapter 6, you learned that many modern languages allow you to use a built-in value as an array size,
which relieves you of the requirement to declare a constant for the size. Because the name of the built-in
value varies among programming languages, the examples in this chapter use a declared, named constant.

Declarations
   num score1
   num score2
   num temp

input score1,
score2

score2 = score1

score1 = temp

Declarations
   num score1
   num score2
   num temp
input score1, score2
temp = score2
score2 = score1
score1 = temp

temp = score2

Figure 8-1 Program segment that swaps two values
© 2015 Cengage Learning

325

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start

sortArray()

displayArray()

stop

Declarations
   num SIZE = 5
   num scores[SIZE]
   num x
   num y
   num temp
   num COMPS = SIZE - 1

fillArray()

start
   Declarations
      num SIZE = 5
      num scores[SIZE]
      num x
      num y
      num temp
      num COMPS = SIZE - 1
   fillArray()
   sortArray()
   displayArray()
stop

Figure 8-2 Mainline logic for program that accepts, sorts, and displays scores
© 2015 Cengage Learning

326

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 8-3 shows the fillArray() method. Within the method, a subscript, x, is initialized to
0 and each array element is filled in turn. After a user enters five scores, control returns to the
main program.

fillArray()

Yes

input
scores[x]

x < SIZE?

x = x + 1

No

return

fillArray()
   x = 0
   while x < SIZE
      output "Enter a score "
      input scores[x]
      x = x + 1
   endwhile
return

output "Enter
a score " 

x = 0

Figure 8-3 The fillArray() method
© 2015 Cengage Learning

327

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The sortArray() method in Figure 8-4 sorts the array elements by making a series of
comparisons of adjacent element values and swapping them if they are out of order. To begin
sorting this list of scores, you compare the first two scores, scores[0] and scores[1]. If they
are out of order—that is, if scores[0] is larger than scores[1]—you want to reverse their
positions, or swap their values.

For example, assume that the five entered scores are:
scores[0] = 90
scores[1] = 85
scores[2] = 65
scores[3] = 95
scores[4] = 75

In this list, scores[0] is 90 and scores[1] is 85; you want to exchange the values of the two
elements so that the smaller value ends up earlier in the array. You call the swap() method,
which places the scores in slightly better order than they were originally. Figure 8-5 shows the
swap() method. This module switches any two adjacent elements in the scores array.

x = x + 1

sortArray()
   x = 0
   while x < COMPS
      if scores[x] > scores[x + 1] then
         swap()
      endif
      x = x + 1
   endwhile
return

YesNo

sortArray()

Yes
x < COMPS?

No

x = 0

return

scores[x] >
scores[x + 1]?

swap()

Don't Do It
This series of comparisons
is not yet complete.
Figure 8-6 shows a
complete, working method.

Figure 8-4 The incomplete sortArray() method
© 2015 Cengage Learning

328

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 8-4, the number of comparisons made is based on the value of the constant named
COMPS, which was initialized to the value of SIZE - 1. That is, for an array of size 5, the COMPS

constant will be 4. Therefore, the following comparisons are made:
scores[0] > scores[1]
scores[1] > scores[2]
scores[2] > scores[3]
scores[3] > scores[4]

Each element in the array is compared to the element that follows it. When x becomes COMPS,
the while loop ends. If the loop continued when x became equal to COMPS, then the next
comparison would use scores[4] and scores[5]. This would cause an error because the
highest allowed subscript in a five-element array is 4. You must evaluate the expression
scores[x] > scores[x + 1] four times—when x is 0, 1, 2, and 3.

For an ascending sort, you need to perform the swap() method whenever any given element
of the scores array has a value greater than the next element. For any x, if the xth element is
not greater than the element at position x + 1, the swap should not take place. For example,
when scores[x] is 90 and scores[x + 1] is 85, a swap should occur. On the other hand,
when scores[x] is 65 and scores[x + 1] is 95, then no swap should occur.

For a descending sort in which you want to end up with the highest value first, you would write
the decision so that you perform the switch when scores[x] is less than scores[x + 1].

As a complete example of how this application works using an ascending sort, suppose that
you have these original scores:
scores[0] = 90
scores[1] = 85
scores[2] = 65
scores[3] = 95
scores[4] = 75

temp = scores[x + 1]

scores[x + 1] = scores[x]

scores[x] = temp

swap()
   temp = scores[x + 1]
   scores[x + 1] = scores[x]
   scores[x] = temp
return

swap()

return

Figure 8-5 The swap() method
© 2015 Cengage Learning

329

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The logic of the sortArray() method proceeds like this:

1. Set x to 0.

2. The value of x is less than 4 (COMPS), so enter the loop.

3. Compare scores[x], 90, to scores[x + 1], 85. The two scores are out of order, so
they are swapped.

The list is now:

scores[0] = 85

scores[1] = 90
scores[2] = 65

scores[3] = 95

scores[4] = 75

4. After the swap, add 1 to x, so x is 1.

5. Return to the top of the loop. The value of x is less than 4, so enter the loop a second time.

6. Compare scores[x], 90, to scores[x + 1], 65. These two values are out of order, so
swap them.

Now the result is:

scores[0] = 85

scores[1] = 65
scores[2] = 90

scores[3] = 95

scores[4] = 75

7. Add 1 to x, so x is now 2.

8. Return to the top of the loop. The value of x is less than 4, so enter the loop.

9. Compare scores[x], 90, to scores[x + 1], 95. These values are in order, so no swap
is necessary.

10. Add 1 to x, making it 3.

11. Return to the top of the loop. The value of x is less than 4, so enter the loop.

12. Compare scores[x], 95, to scores[x + 1], 75. These two values are out of order, so
swap them.

Now the list is as follows:

scores[0] = 85

scores[1] = 65

scores[2] = 90
scores[3] = 75

scores[4] = 95

13. Add 1 to x, making it 4.

14. Return to the top of the loop. The value of x is 4, so do not enter the loop again.

330

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When x reaches 4, every element in the list has been compared with the one adjacent to it.
The highest score, 95, has “sunk” to the bottom of the list. However, the scores still are not in
order. They are in slightly better ascending order than they were when the process began,
because the largest value is at the bottom of the list, but they are still out of order. You need to
repeat the entire procedure so that 85 and 65 (the current scores[0] and scores[1] values)
can switch places, and 90 and 75 (the current scores[2] and scores[3] values) can switch
places. Then, the scores will be 65, 85, 75, 90, and 95. You will have to go through the list yet
again to swap 85 and 75.

As a matter of fact, if the scores had started in the worst possible order (95, 90, 85, 75, 65), the
comparison process would have to take place four times. In other words, you would have to
pass through the list of values four times, making appropriate swaps, before the numbers
would appear in perfect ascending order. You need to place the loop in Figure 8-4 within
another loop that executes four times.

Figure 8-6 shows the complete logic for the sortArray() module. The module uses a loop
control variable named y to cycle through the list of scores four times. (The initialization,
comparison, and alteration of this loop control variable are shaded in the figure.) With an
array of five elements, it takes four comparisons to work through the array once, comparing
each pair, and it takes four sets of those comparisons to ensure that every element in the
entire array is in sorted order. In the sortArray() method in Figure 8-6, x must be reset to 0
for each new value of y so that the comparisons always start at the top of the list.

331

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yes

YesNo

sortArray()

Yes
x < COMPS?

x = x + 1

No

return

scores[x] >
scores[x + 1]?

swap()

y <
COMPS?

x = 0

y = y + 1

No

y = 0

sortArray()
   y = 0
   while y < COMPS
      x = 0
      while x < COMPS
         if scores[x] > scores[x + 1] then
            swap()
         endif
         x = x + 1
      endwhile
      y = y + 1
   endwhile
return

Figure 8-6 The completed sortArray() method
© 2015 Cengage Learning

332

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you sort the elements in an array this way, you use nested loops—an inner loop that
swaps out-of-order pairs, and an outer loop that goes through the list multiple times. The
general rules for making comparisons with the bubble sort are:

The greatest number of pair comparisons you need to make during each loop is one less
than the number of elements in the array. You use an inner loop to make the pair
comparisons.

The number of times you need to process the list of values is one less than the number of
elements in the array. You use an outer loop to control the number of times you walk
through the list.

As an example, if you want to sort a 10-element array, you make nine pair comparisons on
each of nine iterations through the loop, executing a total of 81 score comparison statements.

The last method called by the score-sorting program in Figure 8-2 is the one that displays the
sorted array contents. Figure 8-7 shows this method.

Watch the video The Bubble Sort.

displayArray()

Yes

output
scores[x]

x < SIZE?

x = x + 1

No

x = 0

return

displayArray()
   x = 0
   while x < SIZE
      output scores[x]
      x = x + 1
   endwhile
return

Figure 8-7 The displayArray() method
© 2015 Cengage Learning

333

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sorting a List of Variable Size
In the score-sorting program in the previous section, a SIZE constant was initialized to the
number of elements to be sorted at the start of the program. At times, however, you don’t
want to create such a value because you might not know how many array elements will hold
valid values. For example, on one program run you might want to sort only three or four
scores, and on another run you might want to sort 20. In other words, what if the size of the
list to be sorted might vary? Rather than sorting a fixed number of array elements, you can
count the input scores and then sort just that many.

To keep track of the number of elements stored in an array, you can create the application
shown in Figure 8-8. As in the original version of the program, you call the fillArray()

method, and when you input each score, you increase x by 1 to place each new score into a
successive element of the scores array. After you input one value and place it in the first
element of the scores array, x is 1. After a second score is input and placed in scores[1], x is
2, and so on. After you reach the end of input, x holds the number of scores that have been
placed in the array, so you can store x in numberOfEls, and compute comparisons as
numberOfEls - 1. With this approach, it doesn’t matter if there are not enough values to fill
the scores array. The sortArray() and displayArray() methods use comparisons and
numberOfEls instead of COMPS and SIZE to process the array. For example, if 35 scores are
input, numberOfEls will be set to 35 in the fillArray() module, and when the program sorts,
it will use 34 as a cutoff point for the number of pair comparisons to make. The sorting
program will never make pair comparisons on array elements 36 through 100—those
elements will just “sit there,” never being involved in a comparison or swap.

334

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start

sortArray()

displayArray()

stop

fillArray()

Yes

input
scores[x]

x = x + 1

No

return

output "Enter
a score or ",
QUIT, " to quit "

x = 0

x < SIZE
AND
scores[x] <>
QUIT?

fillArray()

numberOfEls = x

input
scores[x]

output "Enter a
score or ", QUIT,
" to quit "

x = x + 1

comparisons =
numberOfEls - 1

Declarations
   num SIZE = 100
   num scores[SIZE]
   num x
   num y
   num temp
   num numberOfEls = 0
   num comparisons
   num QUIT = 999

Figure 8-8 Score-sorting application in which number of elements to sort can vary (continues)

335

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yes

YesNo

Yesx <
comparisons?

x = x + 1

No

x = 0

return

scores[x] >
scores[x + 1]?

swap()

x = 0

y = y + 1

No

y = 0

sortArray()

y <
comparisons?

temp = scores[x + 1]

scores[x + 1] = scores[x]

scores[x] = temp

swap()

return

No

displayArray()

Yes

output
scores[x]

x <
numberOfEls?

x = x + 1

x = 0

return

Figure 8-8 Score-sorting application in which number of elements to sort can vary (continues)

(continued)

336

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start
   Declarations
      num SIZE = 100
      num scores[SIZE]
      num x
      num y
      num temp
      num numberOfEls = 0
      num comparisons
      num QUIT = 999
   fillArray()
   sortArray()
   displayArray()
stop

fillArray()
   x = 0
   output "Enter a score or ", QUIT, " to quit "
   input scores[x]
   x = x + 1
   while x < SIZE AND scores[x] <> QUIT
      output "Enter a score or ", QUIT, " to quit "
      input scores[x]
      x = x + 1
   endwhile
   numberOfEls = x
   comparisons = numberOfEls - 1
return

sortArray()
   x = 0
   y = 0
   while y < comparisons
      x = 0
      while x < comparisons
         if scores[x] > scores[x + 1] then
            swap()
         endif
         x = x + 1
      endwhile
      y = y + 1
   endwhile
return

swap()
   temp = scores[x + 1]
   scores[x + 1] = scores[x]
   scores[x] = temp
return

displayArray()
   x = 0
   while x < numberOfEls
      output scores[x]
      x = x + 1
   endwhile
return

Figure 8-8 Score-sorting application in which number of elements to sort can vary
© 2015 Cengage Learning

(continued)

337

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the fillArray() method in Figure 8-8, notice that a priming read has been added to the method. If the
user enters the QUIT value at the first input, then the number of elements to be sorted will be 0.

When you count the input values and use the numberOfEls variable, it does not matter if
there are not enough scores to fill the array. However, an error occurs if you attempt to store
more values than the array can hold. When you don’t know how many elements will be stored
in an array, you must overestimate the number of elements you declare.

Refining the Bubble Sort to Reduce Unnecessary Comparisons
You can make additional improvements to the bubble sort created in the previous sections.
As illustrated in Figure 8-8, when you perform the sorting module for a bubble sort, you pass
through a list, making comparisons and swapping values if two adjacent values are out of
order. If you are performing an ascending sort and you have made one pass through the list,
the largest value is guaranteed to be in its correct final position at the bottom of the list.
Similarly, the second-largest element is guaranteed to be in its correct second-to-last position
after the second pass through the list, and so on. If you continue to compare every element
pair on every pass through the list, you are comparing elements that are already guaranteed to
be in their final correct position. In other words, after the first pass through the list, you no
longer need to check the bottom element; after the second pass, you don’t need to check the
two bottom elements.

On each pass through the array, you can afford to stop your pair comparisons one element
sooner. You can avoid comparing the values that are already in place by creating a new
variable, pairsToCompare, and setting its initial value to numberOfEls – 1. On the first pass
through the list, every pair of elements is compared, so pairsToCompare should equal
numberOfEls – 1. In other words, with five array elements to sort, four pairs are compared,
and with 50 elements to sort, 49 pairs are compared. On each subsequent pass through the
list, pairsToCompare should be reduced by 1; for example, after the first pass is completed, it
is not necessary to check the bottom element. See Figure 8-9 to examine the use of the
pairsToCompare variable.

338

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yes

YesNo

Yesx <
pairsToCompare?

x = x + 1

No

x = 0

return

scores[x] >
scores[x + 1]?

swap()

x = 0

y = y + 1

No

y = 0

sortArray()

y <
comparisons?

pairsToCompare =
pairsToCompare - 1

This assumes
pairsToCompare was 
declared as a numeric
variable.

pairsToCompare = numberOfEls - 1

sortArray()
   x = 0
   y = 0
   pairsToCompare = numberOfEls – 1
   while y < comparisons
      x = 0
      while x < pairsToCompare
         if scores[x] > scores[x + 1] then
            swap()
         endif
         x = x + 1
      endwhile
      y = y + 1
      pairsToCompare = pairsToCompare - 1
   endwhile
return

Figure 8-9 Flowchart and pseudocode for sortArray()method using pairsToCompare variable
© 2015 Cengage Learning

339

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Refining the Bubble Sort to Eliminate Unnecessary Passes
You could also improve the bubble sort module in Figure 8-9 by reducing the number of
passes through the array. If array elements are badly out of order, many passes through the
list are required to place it in order; it takes one fewer pass than the value in numberOfEls to
complete all the comparisons and swaps needed to sort the list. However, when the array
elements are in order or nearly in order to start, all the elements might be correctly arranged
after only a few passes through the list. All subsequent passes result in no swaps. For example,
assume that the original scores are as follows:
scores[0] = 65
scores[1] = 75
scores[2] = 85
scores[3] = 90
scores[4] = 95

The bubble sort module in Figure 8-9 would pass through the array list four times, making
four sets of pair comparisons. It would always find that each scores[x] is not greater than the
corresponding scores[x + 1], so no switches would ever be made. The scores would end up
in the proper order, but they were in the proper order in the first place; therefore, a lot of time
would be wasted.

A possible remedy is to add a flag variable set to a “continue” value on any pass through the
list in which any pair of elements is swapped (even if just one pair), and which holds a
different “finished” value when no swaps are made—that is, when all elements in the list are
already in the correct order. For example, you can create a variable named didSwap and set it
to "No" at the start of each pass through the list. You can change its value to "Yes" each time
the swap() module is performed (that is, each time a switch is necessary).

If you make it through the entire list of pairs without making a switch, the didSwap flag will
not have been set to "Yes", meaning that no swap has occurred and that the array elements
must already be in the correct order. This situation might occur on the first or second pass
through the array list, or it might not occur until a much later pass. Once the array elements
are in the correct order, you can stop making passes through the list.

Figure 8-10 illustrates a module that sorts scores and uses a didSwap flag. At the beginning of
the sortArray() module, initialize didSwap to "Yes" before entering the comparison loop the
first time. Then, immediately set didSwap to "No". When a switch occurs—that is, when the
swap() module executes—set didSwap to "Yes".

340

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



x = x + 1

scores[x] >
scores[x + 1]?

didSwap = "Yes"?

sortArray()
   x = 0
   didSwap = "Yes"
   while didSwap = "Yes"
      x = 0
      didSwap = "No"
      while x < comparisons
         if scores[x] > scores[x + 1] then
            swap()
            didSwap = "Yes"
         endif
         x = x + 1
      endwhile
   endwhile
return

Yes

Yes

Yes

No

No

No

return

didSwap = "Yes"

x = 0

sortArray()

didSwap = "No"

didSwap = "Yes"

x <
comparisons?

x = 0

swap()

This assumes didSwap
was declared as a string
variable.

Figure 8-10 Flowchart and pseudocode for sortArray() method using didSwap variable
© 2015 Cengage Learning

341

Using the Bubble Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



With the addition of the flag variable in Figure 8-10, you no longer need the variable y, which was keeping
track of the number of passes through the list. Instead, you keep going through the list until you can make a
complete pass without any switches.

TWO TRUTHS & A LIE

Using the Bubble Sort Algorithm

1. You can use a bubble sort to arrange records in ascending or descending order.

2. In a bubble sort, items in a list are compared with each other in pairs, and when an
item is out of order, it swaps values with the item below it.

3. With any bubble sort, after each adjacent pair of items in a list has been compared
once, the largest item in the list will have “sunk” to the bottom.

Sorting Multifield Records
The bubble sort algorithm is useful for sorting a list of values, such as a list of test scores in
ascending order or a list of names in alphabetical order. Records, however, are most
frequently composed of multiple fields. When you want to sort records, you need to make
sure data that belongs together stays together. When you sort records, two approaches you
can take are to place related data items in parallel arrays and to sort records as a whole.

Sorting Data Stored in Parallel Arrays
Suppose that you have parallel arrays containing student names and test scores, like the arrays
shown in Figure 8-11. Each student’s name appears in the same relative position in the names

array as his or her test score appears in the scores array. Further suppose that you want to
sort the student names and their scores in alphabetical order. If you use a sort algorithm on
the names array to place the names in alphabetical order, the name that starts in position 3,
Anna, should end up in position 0. If you also neglect to rearrange the scores array, Anna’s
name will no longer be in the same relative position as her score, which is 85. Notice that
you don’t want to sort the values in the scores array. If you did, scores[2], 60, would move
to position 0, and that is not Anna’s score. Instead, when you sort the names, you want to
make sure that each corresponding score is moved to the same position as the name to which
it belongs.

Thefalsestatementis#3.Statement#3istrueofanascendingbubblesort.However,
withadescendingbubblesort,thesmallestiteminthelistwillhave“sunk”tothebottom
aftereachadjacentpairofitemshasbeencomparedonce.

342

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 8-12 shows the swap() module for a program that sorts names array values in
alphabetical order and moves scores array values correspondingly. This version of the swap()

module uses two temporary variables—a string named tempName and a numeric variable
named tempScore. The swap() method executes whenever two names in positions x and x + 1

are out of order. Besides swapping the names in positions x and x + 1, the module also swaps
the scores in the same positions. Therefore, each student’s score always moves along with its
student’s name.

names[0]

names[1]

names[2]

names[3]

names[4]

Cody

Emma

Brad

Anna

Doug

scores[0]

scores[1]

scores[2]

scores[3]

scores[4]

95

90

60

85

67

Figure 8-11 Appearance of names and scores arrays in memory
© 2015 Cengage Learning

tempName = names[x + 1]

names[x + 1] = names[x]

names[x] = tempName

swap()
   tempName = names[x + 1]
   names[x + 1] = names[x]
   names[x] = tempName
   tempScore = scores[x + 1]
   scores[x + 1] = scores[x]
   scores[x] = tempScore
return

swap()

tempScore = scores[x + 1]

scores[x + 1] = scores[x]

scores[x] = tempScore

return

Figure 8-12 The swap() method for a program that sorts student names and retains
their correct scores
© 2015 Cengage Learning

343

Sorting Multifield Records

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sorting Records as a Whole
In most modern programming languages, you can create group items that can be
manipulated more easily than single data items. (You first learned about such group names in
Chapter 7.) Creating a group name for a set of related data fields is beneficial when you want
to move related data items together, as when you sort records with multiple fields. These
group items are sometimes called structures, but more frequently are created as classes.
Chapters 10 and 11 provide much more detail on creating classes, but for now, understand
that you can create a group item with syntax similar to the following:
class StudentRecord

string name
num score

endClass

To sort student records using the group name, you could do the following:

Define a class named StudentRecord, as shown in the preceding code.

Define what greater than means for a StudentRecord. For example, to sort records by
student name, you would define greater than to compare names values, not scores values.
The process for creating this definition varies among programming languages.

Use a sort algorithm that swaps StudentRecord items, including both names and scores,
whenever two StudentRecords are out of order.

TWO TRUTHS & A LIE

Sorting Multifield Records

1. To sort related parallel arrays, you must sort each in the same order—either
ascending or descending.

2. When you sort related parallel arrays and swap values in one array, you must
make sure that all associated arrays make the same relative swap.

3. Most modern programming languages allow you to create a group name for
associated fields in a record.

Thefalsestatementis#1.Tosortrelatedparallelarrayssuccessfully,youmustmake
sureallitemsineacharrayareswappedinasynchronizedmanner.Youdonotwantto
sortthearraysseparately.

344

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the Insertion Sort Algorithm
The bubble sort works well and is relatively easy to understand and manipulate, but many
other sorting algorithms have been developed. For example, when you use an insertion sort,
you look at each list element one at a time. If an element is out of order relative to any of the
items earlier in the list, you move each earlier item down one position and then insert the
tested element. The insertion sort is similar to the technique you would most likely use to sort
a group of objects manually. For example, if a list contains the values 2, 3, 1, and 4, and you
want to place them in ascending order using an insertion sort, you test the values 2 and 3, but
you do not move them because they are in order. However, when you test the third value in
the list, 1, you move both 2 and 3 to later positions and insert 1 at the first position.

Figure 8-13 shows the logic that performs an ascending insertion sort using a five-element
array named scores. Assume that a constant named SIZE has been set to 5, and that the five
scores in the array are as follows:
scores[0] = 90
scores[1] = 85
scores[2] = 65
scores[3] = 95
scores[4] = 75

345

Using the Insertion Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yes

insertionSort()

Yes

y = y – 1

No

return

y >= 0 AND
scores[y] >
temp?

scores[y + 1] =
scores[y]

x <
SIZE?

temp =
scores[x]

scores[y + 1]
= temp

No

x = 1

y = x – 1

x = x + 1

insertionSort()
   x = 1
   while x < SIZE
      temp = scores[x]
      y = x – 1
      while y >= 0 AND scores[y] > temp
         scores[y + 1] = scores[y]
         y = y – 1
      endwhile
      scores[y + 1] = temp
      x = x + 1
   endwhile
return

Figure 8-13 Flowchart and pseudocode for the insertionSort() method
© 2015 Cengage Learning

346

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The shaded outer loop varies a loop control variable x from 1 through one less than the size of
the array. The logic proceeds as follows:

First x is set to 1, and then the unshaded section in the center of Figure 8-13 executes.

1. The value of temp is set to scores[1], which is 85, and y is set to 0.

2. Because y is greater than or equal to 0 and scores[y] (90) is greater than temp, the
inner loop is entered. (If you were performing a descending sort, then you would ask
whether scores[y] was less than temp.)

3. The value of scores[1] becomes 90 and y is decremented, making it –1, so y is no
longer greater than or equal to 0, and the inner loop ends.

4. Then scores[0] is set to temp, which is 85.

After these steps, 90 was moved down one position and 85 was inserted in the first position,
so the array values are in slightly better order than they were originally. The values are as
follows:
scores[0] = 85
scores[1] = 90
scores[2] = 65
scores[3] = 95
scores[4] = 75

Now, in the outer loop, x becomes 2. The logic in the unshaded portion of Figure 8-13
proceeds as follows:

1. The value of temp becomes 65, and y is set to 1.

2. The value of y is greater than or equal to 0, and scores[y] (90) is greater than temp,
so the inner loop is entered.

3. The value of scores[2] becomes 90 and y is decremented, making it 0, so the loop
executes again.

4. The value of scores[1] becomes 85 and y is decremented, making it –1, so the loop
ends.

5. Then scores[0] becomes 65.

After these steps, the array values are in better order than they were originally, because 65 and
85 now both come before 90:
scores[0] = 65
scores[1] = 85
scores[2] = 90
scores[3] = 95
scores[4] = 75

347

Using the Insertion Sort Algorithm

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Now, x becomes 3. The logic in Figure 8-13 proceeds to work on the new list as follows:

1. The value of temp becomes 95, and y is set to 2.

2. For the loop to execute, y must be greater than or equal to 0, which it is, and
scores[y] (90) must be greater than temp, which it is not. So, the inner loop does not
execute.

3. Therefore, scores[2] is set to 90, which it already was. In other words, no changes
are made.

Now, x is increased to 4. The logic in Figure 8-13 proceeds as follows:

1. The value of temp becomes 75, and y is set to 3.

2. The value of y is greater than or equal to 0, and scores[y] (95) is greater than temp,
so the inner loop is entered.

3. The value of scores[4] becomes 95 and y is decremented, making it 2, so the loop
executes again.

4. The value of scores[3] becomes 90 and y is decremented, making it 1, so the loop
executes again.

5. The value of scores[2] becomes 85 and y is decremented, making it 0; scores[y]
(65) is no longer greater than temp (75), so the inner loop ends. In other words, the
scores 85, 90, and 95 are each moved down one position, but score 65 is left in place.

6. Then scores[1] becomes 75.

After these steps, all the array values have been rearranged in ascending order as
follows:

scores[0] = 65
scores[1] = 75

scores[2] = 85

scores[3] = 90
scores[4] = 95

Watch the video The Insertion Sort.

Many sorting algorithms exist in addition to the bubble sort and insertion sort. You might want to investigate
the logic used by the selection sort, cocktail sort, gnome sort, and quick sort.

348

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using the Insertion Sort Algorithm

1. When you use an insertion sort, you look at each list element one at a time and
move items down if the tested element should be inserted before them.

2. You can create an ascending list using an insertion sort, but not a descending
one.

3. The insertion sort is similar to the technique you would most likely use to sort a
group of objects manually.

Using Multidimensional Arrays
In Chapter 6, you learned that an array is a series or list of values in computer memory, all of
which have the same name and data type but are differentiated with special numbers called
subscripts. Usually, all the values in an array have something in common; for example, they might
represent a list of employee ID numbers or a list of prices for items sold in a store. A subscript, also
called an index, is a number that indicates the position of a particular item within an array.

An array whose elements you can access using a single subscript is a one-dimensional or
single-dimensional array. The array has only one dimension because its data can be stored in
a table that has just one dimension—height. If you know the vertical position of a one-
dimensional array’s element, you can find its value.

For example, suppose that you own an apartment building and charge five different rent
amounts for apartments on different floors (including floor 0, the basement), as shown in
Table 8-1.

You could declare the following array to hold the
rent values:

num RENTS_BY_FLR[5] = 350, 400, 475, 600,

1000

The location of any rent value in Table 8-1 depends
on only a single variable—the floor of the building.
So, when you create a single-dimensional array to
hold rent values, you need just one subscript to
identify the row.

Thefalsestatementis#3.Followingthelogicofarecursivemethodisdifficult,and
programsthatuserecursionaresometimeserror-proneandhardtodebug.

Floor Rent ($)

0 350

1 400

2 475

3 600

4 1000

Table 8-1 Rent schedule based on floor

349

Using Multidimensional Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sometimes, however, locating a value in an array depends on more than one variable. If you
must represent values in a table or grid that contains rows and columns instead of a single list,
then you might want to use a two-dimensional array. A two-dimensional array contains two
dimensions: height and width. That is, the location of any element depends on two factors.
For example, if an apartment’s rent depends on two variables—both the floor of the building
and the number of bedrooms—then you want to create a two-dimensional array.

As an example of how useful two-dimensional arrays can be, assume that you own an
apartment building with five floors, and that each of the floors has studio apartments (with no
bedroom) and one- and two-bedroom apartments. Table 8-2 shows the rental amounts.

To determine a tenant’s rent, you need to know two pieces of information: the floor where
the tenant lives and the number of bedrooms in the apartment. Each element in a two-
dimensional array requires two subscripts to reference it—one subscript to determine the
row and a second to determine the column. Thus, the 15 rent values for a two-dimensional
array based on Table 8-2 would be arranged in five rows and three columns and defined
as follows:
num RENTS_BY_FLR_AND_BDRMS[5][3]= {350, 390, 435},

{400, 440, 480},
{475, 530, 575},
{600, 650, 700},
{1000, 1075, 1150}

Floor
Studio
Apartment

1-bedroom
Apartment

2-bedroom
Apartment

0 350 390 435

1 400 440 480

2 475 530 575

3 600 650 700

4 1000 1075 1150

Table 8-2 Rent schedule based on floor and number of bedrooms

350

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 8-14 shows how the one- and two-dimensional rent arrays might appear in computer
memory.

When you declare a one-dimensional array, you use a set of square brackets after the array
type and name. To declare a two-dimensional array, many languages require you to use two
sets of brackets after the array type and name. For each element in the array, the first set of
square brackets holds the number of rows and the second set holds the number of columns.
In other words, the two dimensions represent the array’s height and its width.

Instead of two sets of brackets to indicate a position in a two-dimensional array, some languages use a
single set of brackets but separate the subscripts with commas. Therefore, the elements in row 1, column 2
would be RENTS_BY_FLR_AND_BDRMS[1, 2].

In the RENTS_BY_FLR_AND_BDRMS array declaration, the values that are assigned to each row
are enclosed in curly braces to help you picture the placement of each number in the array.
The first row of the array holds the three rent values 350, 390, and 435 for floor 0; the second
row holds 400, 440, and 480 for floor 1; and so on.

A Single-Dimensional Array

num RENTS_BY_FLR[5] = 
350, 400, 475, 600, 1000

350
400
475
600
1000

A Two-Dimensional Array

num RENTS_BY_FLR_AND_BDRMS[5][3] = 
       {350, 390, 435},
       {400, 440, 480},
       {475, 530, 575},
       {600, 650, 700},
       {1000, 1075, 1150}

350
400
475
600
1000

390
440
530
650
1075

435
480
575
700
1150

Figure 8-14 One- and two-dimensional arrays in memory
© 2015 Cengage Learning

351

Using Multidimensional Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You access a two-dimensional array value using two subscripts, in which the first subscript
represents the row and the second one represents the column. For example, some of the
values in the array are as follows:

RENTS_BY_FLR_AND_BDRMS[0][0] is 350

RENTS_BY_FLR_AND_BDRMS[0][1] is 390

RENTS_BY_FLR_AND_BDRMS[0][2] is 435

RENTS_BY_FLR_AND_BDRMS[4][0] is 1000

RENTS_BY_FLR_AND_BDRMS[4][1] is 1075

RENTS_BY_FLR_AND_BDRMS[4][2] is 1150

If you declare two variables to hold the floor number and bedroom count as num floor and
num bedrooms, any tenant’s rent is RENTS_BY_FLR_AND_BDRMS[floor][bedrooms].

When mathematicians use a two-dimensional array, they often call it a matrix or a table. You
may have used a spreadsheet, which is a two-dimensional array in which you need to know a row
number and a column letter to access a specific cell.

Figure 8-15 shows a program that continuously displays rents for apartments based on renter
requests for floor location and number of bedrooms. Notice that although significant setup is
required to provide all the values for the rents, the basic program is extremely brief and easy
to follow. (You could improve the program in Figure 8-15 by making sure the values for
floor and bedrooms are within range before using them as array subscripts.)

352

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



output "Enter
floor "

output "Rent is $", 
RENTS_BY_FLR_AND_BDRMS 
[floor][bedrooms]

output "Enter
floor "

return

determineRent()

finish()

return

output "End of
program"

input bedrooms

input floor

output "Enter
number of bedrooms "

stop

floor <>
QUIT?

Yes

No

getReady()

finish()

determineRent()

start

Declarations
   num RENTS_BY_FLR_AND_BDRMS[5][3] =
      {350, 390, 435},
      {400, 440, 480},
      {475, 530, 575},
      {600, 650, 700},
      {1000, 1075, 1150}
   num floor
   num bedrooms
   num QUIT = 99  

getReady()

return

input floor

Figure 8-15 A program that determines rents (continues)

353

Using Multidimensional Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Watch the video Two-Dimensional Arrays.

Two-dimensional arrays are never actually required in order to achieve a useful program. The
same 15 categories of rent information could be stored in three separate single-dimensional
arrays of five elements each, and you could use a decision to determine which array to access.
Of course, don’t forget that even one-dimensional arrays are never required to solve a
problem. You could also declare 15 separate rent variables and make 15 separate decisions to
determine the rent.

start
   Declarations
      num RENTS_BY_FLR_AND_BDRMS[5][3] = {350, 390, 435},
                                         {400, 440, 480},
                                         {475, 530, 575},
                                         {600, 650, 700},
                                         {1000, 1075, 1150}
      num floor
      num bedrooms
      num QUIT = 99
   getReady()
   while floor <> QUIT
      determineRent()
   endwhile
   finish()
stop

getReady()
   output "Enter floor "
   input floor
return

determineRent()
   output "Enter number of bedrooms "
   input bedrooms
   output "Rent is $", RENTS_BY_FLR_AND_BDRMS[floor][bedrooms]
   output "Enter floor "
   input floor
return

finish()
   output "End of program"
return

Figure 8-15 A program that determines rents
© 2015 Cengage Learning

(continued)

354

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Besides one- and two-dimensional arrays, many programming languages also support three-
dimensional arrays. For example, if you own a multistory apartment building with different
numbers of bedrooms available in apartments on each floor, you can use a two-dimensional
array to store the rental fees, but if you own several apartment buildings, you might want to
employ a third dimension to store the building number. For example, if a three-dimensional
array is stored on paper, you might need to know an element’s row, column, and page to
access it, as shown in Figure 8-16.

If you declare a three-dimensional array named RENTS_BY_3_FACTORS, then you can use an
expression such as RENTS_BY_3_FACTORS[floor][bedrooms][building], which refers to a
specific rent figure for an apartment whose floor and bedroom numbers are stored in the
floor and bedrooms variables, and whose building number is stored in the building variable.
Specifically, RENTS_BY_3_FACTORS[0][1][2] refers to a basement (floor 0) one-bedroom
apartment in building 2 (which is the third building).

Both two- and three-dimensional arrays are examples of multidimensional arrays, which are arrays that
have more than one dimension. Some languages allow many dimensions. For example, in C# and Visual
Basic, an array can have 32 dimensions. However, it’s usually hard for people to keep track of more than
three dimensions.

800   900    1000

925   1025   1200

500    550    600

612    725    835

350   390   435

400   440   480

475   530   575

600   650   700

1000 1075  1150

Row indicates
floor

Column indicates
bedrooms

Page indicates the
building 

This is the rent amount 
for floor 0, 1-bedroom
apartment, in building 2.

Data for a Three-Dimensional Array

This is the rent amount 
for floor 3, 2-bedroom
apartment, in building 0.

Figure 8-16 Picturing a three-dimensional array
© 2015 Cengage Learning

355

Using Multidimensional Arrays

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Multidimensional Arrays

1. In every multidimensional array, the location of any element depends on two
factors.

2. For each element in a two-dimensional array, the first subscript represents the
row number and the second one represents the column.

3. Multidimensional arrays are never actually required in order to achieve a useful
program.

Using Indexed Files and Linked Lists
Sorting a list of five or even 100 scores does not require significant computer resources.
However, many data files contain thousands of records, and each record might contain
dozens of data fields. Sorting large numbers of data records requires considerable time
and computer memory. When a large data file needs to be processed in ascending or
descending order based on a particular field, the most efficient approach is usually to store
and access records based on their logical order rather than sorting and accessing them in
their physical order. Physical order refers to a “real” order for storage; an example would be
writing the names of 10 friends, each one on a separate index card. You can arrange the cards
alphabetically by the friends’ last names, chronologically by age of the friendship, or randomly
by throwing the cards in the air and picking them up as you find them. Whichever way you do
it, the records still follow each other in some order. In addition to their current physical
order, you can think of the cards as having a logical order; that is, a virtual order, based on
any criterion you choose—from the tallest friend to the shortest, from the one who lives
farthest away to the closest, and so on. Sorting the cards in a new physical order can take a lot
of time; using the cards in their logical order without physically rearranging them is often
more efficient.

Using Indexed Files
A common method of accessing records in logical order requires using an index. Using
an index involves identifying a key field for each record. A record’s key field is the field
whose contents make the record unique among all records in a file. For example,
multiple employees can have the same last name, first name, salary, or street address,
but each employee possesses a unique employee identification number, so an ID number

Thefalsestatementis#1.Inatwo-dimensionalarray,thelocationofanyelement
dependsontwofactors,butinathree-dimensionalarray,itdependsonthreefactors,
andsoon.

356

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



field might make a good key field for a personnel file. Similarly, a product number makes
a good key field in an inventory file.

As pages in a book have numbers, computer memory and storage locations have
addresses. In Chapter 1, you learned that every variable has a numeric address in
computer memory; likewise, every data record on a disk has a numeric address where it
is stored. You can store records in any physical order on the disk, but when you index
records, you store a list of key fields paired with the storage address for the
corresponding data record. Then you can use the index to find the records in order
based on their addresses.

When you use an index, you can store records on a random-access storage device, such as a
disk, from which records can be accessed in any order. Each record can be placed in any
physical location on the disk, and you can use the index as you would use an index in the back
of a book. If you pick up a 600-page American history book because you need some facts
about Betsy Ross, you do not want to start on page 1 and work your way through the book.
Instead, you turn to the index, discover that Betsy Ross is mentioned on page 418, and go
directly to that page. As a programmer, you do not need to determine a record’s exact
physical address in order to use it. A computer’s operating system takes care of locating
available storage for your records.

Chapter 7 contains a discussion of random access files and how they differ from sequential files.

You can picture an index based on ID numbers by looking at the index in Figure 8-17. The
index is stored on a portion of the disk. The address in the index refers to other scattered
locations on the disk.

357

Using Indexed Files and Linked Lists

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you want to access the data for employee 333, you tell your computer to look through
the ID numbers in the index, find a match, and then proceed to the memory location
specified. Similarly, when you want to process records in order based on ID number, you tell
your system to retrieve records at the locations in the index in sequence. Thus, employee 111
may have been hired last and the record may be stored at the highest physical address on the
disk, but if the employee record has the lowest ID number, it will be accessed first during any
ordered processing.

When a record is removed from an indexed file, it does not have to be physically removed. Its
reference can simply be deleted from the index, and then it will not be part of any further
processing.

Watch the video Using an Indexed File.

Using Linked Lists
Another way to access records in a desired order, even though they might not be physically
stored in that order, is to create a linked list. In its simplest form, creating a linked list involves
creating one extra field in every record of stored data. This extra field holds the physical

Location 240 – Record
for ID 333 is here.

ID  Location
111
222
333

320
480
240

Location 320 – Record
for ID 111 is here.

Location 280 – No
records in the index
are here currently.

Location 480 – Record
for ID 222 is here.

index

Figure 8-17 An index on a disk that associates ID numbers with disk addresses
© 2015 Cengage Learning

358

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



address of the next logical record. For example, a record that holds a customer’s ID, name,
and phone number might contain the following fields:

idNum
name
phoneNum
nextCustAddress

Every time you use a record, you access the next record based on the address held in the
nextCustAddress field.

Every time you add a new record to a linked list, you search through the list for the correct
logical location of the new record. For example, assume that customer records are stored at
the addresses shown in Table 8-3 and that they are linked in customer ID order. Notice that
the addresses of the records are not shown in sequential order. The records are shown in their
logical order by idNum.

You can see from Table 8-3 that each customer record contains a nextCustAddress field that
stores the address of the next customer who follows in customer ID number order (and not
necessarily in address order). For any individual customer, the next logical customer’s address
might be physically distant.

Examine the file shown in Table 8-3, and suppose that a new customer is acquired with
number 245 and the name Newberg. Also suppose that the computer operating system finds
an available storage location for Newberg’s data at address 8400. In this case, the procedure to
add Newberg to the list is:

1. Create a variable named currentAddress to hold the address of the record in the list
you are examining. Store the address of the first record in the list, 0000, in this
variable.

2. Compare the new customer Newberg’s ID, 245, with the current (first) record’s ID, 111
(in other words, the ID at address 0000). The value 245 is higher than 111, so you save
the first customer’s address—0000, the address you are currently examining—in a
variable you can name saveAddress. The saveAddress variable always holds the address
you just finished examining. The first customer record contains a link to the address of
the next logical customer—7200. Store 7200 in the currentAddress variable.

Address idNum name phoneNum nextCustAddress of Record

0000 111 Baker 234-5676 7200

7200 222 Vincent 456-2345 4400

4400 333 Silvers 543-0912 6000

6000 444 Donovan 328-8744 eof

Table 8-3 Sample linked customer list

359

Using Indexed Files and Linked Lists

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Examine the second customer record, the one that physically exists at the address
7200, which is currently held in the currentAddress variable.

4. Compare Newberg’s ID, 245, with the ID stored in the record at currentAddress,
222. The value 245 is higher, so save the current address, 7200, in saveAddress and
store its nextCustAddress address field, 4400, in the currentAddress variable.

5. Compare Newberg’s ID, 245, with 333, which is the ID at currentAddress (4400). Up
to this point, 245 had been higher than each ID tested, but this time the value 245 is
lower, so customer 245 should logically precede customer 333. Set the
nextCustAddress field in Newberg’s record (customer 245) to 4400, which is the
address of customer 333 and the address stored in currentAddress. This means that
in any future processing, Newberg’s record will logically be followed by the record
containing 333. Also set the nextCustAddress field of the record located at
saveAddress (7200, customer 222, Vincent, who logically preceded Newberg) to the
new customer Newberg’s address, 8400. The updated list appears in Table 8-4.

As with indexing, when removing records from a linked list, the records do not need to be
physically deleted from the medium on which they are stored. If you need to remove
customer 333 from the preceding list, all you need to do is change Newberg’s
nextCustAddress field to the value in Silvers’ nextCustAddress field, which is Donovan’s
address: 6000. In other words, the value of 6000 is obtained not by knowing to which record
Newberg should point, but by knowing to which record Silvers previously pointed. When
Newberg’s record points to Donovan, Silvers’ record is then bypassed during any further
processing that uses the links to travel from one record to the next.

More sophisticated linked lists are doubly linked—they store two additional fields with each
record. One field stores the address of the next record, and the other field stores the address
of the previous record so that the list can be accessed either forward or backward.

Watch the video Using a Linked List.

Address idNum name phoneNum nextCustAddress of Record

0000 111 Baker 234-5676 7200

7200 222 Vincent 456-2345 8400

8400 245 Newberg 222-9876 4400

4400 333 Silvers 543-0912 6000

6000 444 Donovan 328-8744 eof

Table 8-4 Updated customer list

360

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Indexed Files and Linked Lists

1. When a large data file needs to be processed in order based on a particular field,
the most efficient approach is usually to sort the records.

2. A record’s key field contains a value that makes the record unique among all
records in a file.

3. Creating a linked list requires you to create one extra field for every record; this
extra field holds the physical address of the next logical record.

Chapter Summary
Frequently, data items need to be sorted. When you sort data, you can sort either in
ascending order, arranging records from lowest to highest value, or in descending order,
arranging records from highest to lowest value.

In a bubble sort, items in a list are compared with each other in pairs. When an item is out
of order, it swaps values with the item below it. With an ascending bubble sort, after each
adjacent pair of items in a list has been compared once, the largest item in the list will have
“sunk” to the bottom; after many passes through the list, the smallest items rise to the top.
The bubble sort algorithm can be improved to sort varying numbers of values and to
eliminate unnecessary comparisons.

When you sort records, two possible approaches are to place related data items in parallel
arrays and to sort records as a whole.

When you use an insertion sort, you look at each list element one at a time. If an element
is out of order relative to any of the items earlier in the list, you move each earlier item
down one position and then insert the tested element.

Two-dimensional arrays have both rows and columns of values. You must use two
subscripts when you access an element in a two-dimensional array. Many languages
support arrays with even more dimensions.

You can use an index or linked list to access data records in a logical order that differs
from their physical order. Using an index involves identifying a physical address and key
field for each record. Creating a linked list involves creating an extra field within every
record to hold the physical address of the next logical record.

Thefalsestatementis#1.Themostefficientapproachisusuallytostoreandaccess
recordsbasedontheirlogicalorderratherthansortingandaccessingthemintheir
physicalorder.

361

Chapter Summary

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
Sequential order describes the arrangement of records when they are stored one after
another on the basis of the value in a particular field.

The median value in a list is the value in the middle position when the values are sorted; when
the list contains an even number of values, the median is the mean of the values in the two
middle positions.

The mean value in a list is the arithmetic average.

A bubble sort is a sort in which a list of elements is arranged in either ascending or
descending order by comparing items in pairs; when an item is out of order, it is swapped
with the item below it.

A sinking sort is another name for a bubble sort.

An algorithm is a list of instructions that accomplish a task.

To swap values is to exchange the values of two variables.

An insertion sort is a sort in which each list element is examined one at a time; if an element is
out of order relative to any of the items earlier in the list, each earlier item is moved down one
position and then the tested element is inserted.

A one-dimensional or single-dimensional array is a list accessed using a single subscript.

Two-dimensional arrays have both rows and columns of values; you must use two subscripts
when you access an element in a two-dimensional array.

Matrix and table are terms used by mathematicians to describe a two-dimensional array.

Three-dimensional arrays are arrays in which each element is accessed using three
subscripts.

Multidimensional arrays are lists with more than one dimension.

A list’s physical order is the order in which its elements are actually stored.

A list’s logical order is the order in which it is used, even though its elements are not
necessarily stored in that physical order.

The key field of a record contains a value that makes the record unique among all records in a file.

Addresses identify computer memory and storage locations.

When you index records, you store a list of key fields paired with the storage address for the
corresponding data record.

A random-access storage device, such as a disk, is one from which records can be accessed
in any order.

A linked list contains an extra field in every record of stored data; this extra field holds the
physical address of the next logical record.

362

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises

Review Questions

1. Employee records stored in order from highest-paid to lowest-paid have been
sorted in order.

a. recursive
b. ascending

c. staggered
d. descending

2. Student records stored in alphabetical order by last name have been sorted
in order.

a. recursive
b. ascending

c. staggered
d. descending

3. When computers sort data, they always .

a. place items in ascending order
b. use a bubble sort
c. use numeric values when making comparisons
d. begin the process by locating the position of the lowest value

4. Which of the following code segments correctly swaps the values of variables
named x and y?

a. x = y
y = temp
x = temp

b. temp = x
x = y
y = temp

c. x = y
temp = x
y = temp

d. temp = x
y = x
x = temp

5. Which type of sort compares list items in pairs, swapping any two adjacent values
that are out of order?

a. insertion sort
b. indexed sort

c. bubble sort
d. selection sort

6. To sort a list of 15 values using a bubble sort, the greatest number of times you
would have to pass through the list making comparisons is .

a. 12
b. 13

c. 14
d. 15

7. To completely sort a list of eight values using a bubble sort, the greatest possible
number of required pair comparisons is .

a. seven
b. eight

c. 49
d. 64

363

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8. When you do not know how many items need to be sorted in a program, you can
create an array that has .

a. variable-sized elements
b. at least as many elements as the number you predict you will need
c. at least one element less than the number you predict you will need
d. You cannot sort items if you do not know the number of items when you write

the program.

9. In a bubble sort, on each pass through the list that must be sorted, you can stop
making pair comparisons .

a. one comparison sooner
b. two comparisons sooner

c. one comparison later
d. two comparisons later

10. When performing a bubble sort on a list of 10 values, you can stop making passes
through the list of values as soon as on a single pass through the list.

a. no swaps are made
b. exactly one swap is made
c. no more than nine swaps are made
d. no more than 10 swaps are made

11. The bubble sort is .

a. the most efficient sort
b. a relatively fast sort compared to others
c. a relatively easy sort to understand
d. all of the above

12. Data stored in a table that can be accessed using row and column numbers is
stored as a array.

a. single-dimensional
b. two-dimensional

c. three-dimensional
d. nondimensional

13. A two-dimensional array declared as num myArray[6][7] has columns.

a. 5
b. 6

c. 7
d. 8

14. In a two-dimensional array declared as num myArray[6][7], the highest row
number is .

a. 5
b. 6

c. 7
d. 8

364

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15. If you access a two-dimensional array with the expression output myArray[2][5],
the output value will be .

a. 0
b. 2
c. 5
d. impossible to tell from the information given

16. Three-dimensional arrays .

a. are supported in many modern programming languages
b. always contain at least nine elements
c. are used only in object-oriented languages
d. all of the above

17. Student records are stored in ID number order, but accessed by grade-point
average for a report. Grade-point average order is a(n) order.

a. imaginary
b. physical

c. logical
d. illogical

18. When you store a list of key fields paired with the storage address for the
corresponding data record, you are creating .

a. a directory
b. a three-dimensional array

c. a linked list
d. an index

19. When a record in an indexed file is not needed for further processing, .

a. its first character must be replaced with a special character, indicating it is a
deleted record

b. its position must be retained, but its fields must be replaced with blanks
c. it must be physically removed from the file
d. the record can stay in place physically, but its reference is removed from the

index

20. With a linked list, every record .

a. is stored in sequential order
b. contains a field that holds the address of another record
c. contains a code that indicates the record’s position in an imaginary list
d. is stored in a physical location that corresponds to a key field

365

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Exercises

1. Design an application that accepts 10 numbers and displays them in descending order.

2. Design an application that accepts 15 words and displays them in alphabetical
order.

3. a. Professor Zak allows students to drop the three lowest scores on the nine
100-point quizzes she gives during the semester. Design an application that
accepts a student name and nine quiz scores. Output the student’s name and
total points for the student’s six highest-scoring quizzes.

b. Modify the application in Exercise 3a so that the student’s mean and median
scores on the six best quizzes are displayed.

4. Girl Scout Troop 815 has 25 members. Write a program in which the troop leader
can enter the number of boxes of cookies sold by each scout, and output the total
number of boxes sold and the mean and median value.

5. The village of Marengo conducted a census and collected records that contain
household data, including the number of occupants in each household. The exact
number of household records has not yet been determined, but you know that
Marengo has fewer than 300 households. Develop the logic for a program that
allows a user to enter each household size and determine the mean and median
household size in Marengo.

6. a. The Palmertown Elementary School has 30 classrooms. The children in the
school donate used books to sell at an annual fundraising book fair. Write a
program that accepts each teacher’s name and the number of books donated by
that teacher’s classroom. Display the names of the four teachers whose
classrooms donated the most books.

b. Modify the book donation program so that, besides the teacher’s name and
number of books donated, the program also accepts the number of students in
each classroom. Display the names of the teachers whose classrooms had the
four highest ratios of book donations per student.

7. a. The Daily Trumpet newspaper accepts classified advertisements in 15
categories such as Apartments for Rent and Pets for Sale. Develop the logic for a
program that accepts classified advertising data, including a category code (an
integer 1 through 15) and the number of words in the ad. Store these values in
parallel arrays. Then sort the arrays so that records are sorted in ascending
order by category. The output lists each category number, the number of ads in
the category, and the total number of words in the ads in the category.

b. Modify the newspaper advertising program in Exercise 7a to display a
descriptive string with each category. For example, Category 1 might be
Apartments for Rent.

366

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8. The MidAmerica Bus Company charges fares to passengers based on the number
of travel zones they cross. Additionally, discounts are provided for multiple pas-
sengers traveling together. Ticket fares are shown in Table 8-5.

Develop the logic for a program that accepts the number of passengers and zones
crossed as input. The output is the ticket charge.

9. In golf, par represents a standard number of strokes a player needs to complete a
hole. Instead of using an absolute score, players can compare their scores on a hole
to the par figure. Families can play nine holes of miniature golf at the Family Fun
Miniature Golf Park. So that family members can compete fairly, the course
provides a different par for each hole based on the player’s age. The par figures are
shown in Table 8-6.

a. Develop the logic for a program that accepts a player’s name, age, and nine-hole
score as input. Display the player’s name and score on each of the nine holes,
with one of the phrases Over par, Par, or Under par next to each score.

b. Modify the program in Exercise 9a so that, at the end of the golfer’s report, the
total score is displayed. Include the player’s total score in relation to par for the
entire course.

Zones Crossed

Passengers 0 1 2 3

1 7.50 10.00 12.00 12.75

2 14.00 18.50 22.00 23.00

3 20.00 21.00 32.00 33.00

4 25.00 27.50 36.00 37.00

Table 8-5 Bus fares

Holes

Age 1 2 3 4 5 6 7 8 9

4 and under 8 8 9 7 5 7 8 5 8

5–7 7 7 8 6 5 6 7 5 6

8–11 6 5 6 5 4 5 5 4 5

12–15 5 4 4 4 3 4 3 3 4

16 and over 4 3 3 3 2 3 2 3 3

Table 8-6 Golf par values

367

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10. Building Block Day Care Center charges varying weekly rates depending on the
age of the child and the number of days per week the child attends, as shown in
Table 8-7. Develop the logic for a program that continuously accepts child care
data and displays the appropriate weekly rate.

11. Executive Training School offers typing classes. Each final exam evaluates a student’s
typing speed and the number of typing errors made. Develop the logic for a program
that produces a summary table of each examination’s results. Each row represents
the number of students whose typing speed falls within the following ranges of words
per minute: 0–19, 20–39, 40–69, and 70 or more. Each column represents the number
of students who made different numbers of typing errors—0 through 6 or more.

12. HappyTunes is an application for downloading music files. Each time a file is
purchased, a transaction record is created that includes the music genre and price
paid. The available genres are Classical, Easy Listening, Jazz, Pop, Rock, and Other.
Develop an application that accepts input data for each transaction and displays a
report that lists each of the music genres, along with a count of the number of
downloads in each of the following price categories:

Over $10.00

$6.00 through $9.99

$3.00 through $5.99

Under $3.00

Performing Maintenance

1. A file named MAINTENANCE08-01.txt is included with your downloadable
student files. Assume that this program is a working program in your
organization and that it needs modifications as described in the comments
(lines that begin with two slashes) at the beginning of the file. Your job is to
alter the program to meet the new specifications.

Age in Years 1 2 3 4 5

0 30.00 60.00 88.00 115.00 140.00

1 26.00 52.00 70.00 96.00 120.00

2 24.00 46.00 67.00 89.00 110.00

3 22.00 40.00 60.00 75.00 88.00

4 or more 20.00 35.00 50.00 66.00 84.00

Table 8-7 Day care rates

Days Per Week368

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Find the Bugs

1. Your downloadable files for Chapter 8 include DEBUG08-01.txt, DEBUG08-02.txt,
and DEBUG08-03.txt. Each file starts with some comments that describe the pro-
blem. Comments are lines that begin with two slashes (//). Following the comments,
each file contains pseudocode that has one or more bugs you must find and correct.

2. Your downloadable files for Chapter 8 include a file named DEBUG08-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. In the Game Zone section of Chapter 6, you designed the logic for a quiz that
contains multiple-choice questions about a topic of your choice. (Each question
had three answer options.) Now, modify the program so it allows the user to retake
the quiz up to four additional times or until the user achieves a perfect score,
whichever comes first. At the end of all the quiz attempts, display a recap of the
user’s scores.

2. In the Game Zone section of Chapter 5, you designed a guessing game in which the
application generates a random number and the player tries to guess it. After each
guess, you displayed a message indicating whether the player’s guess was correct,
too high, or too low. When the player eventually guessed the correct number, you
displayed a score that represented a count of the number of required guesses. Now,
modify that program to allow a player to replay the game as many times as he likes,
up to 20 times. When the player is done, display the scores from highest to lowest,
and display the mean and median scores.

3. a. Create a TicTacToe game. In this game, two players alternate placing Xs and Os
into a grid until one player has three matching symbols in a row, either
horizontally, vertically, or diagonally. Create a game that displays a three-by-
three grid containing the digits 1 through 9, similar to the first window shown in
Figure 8-18. When the user chooses a position by typing a number, place an X
in the appropriate spot. For example, after the user chooses 3, the screen looks
like the second window in Figure 8-18. Generate a random number for the
position where the computer will place an O. Do not allow the player or the
computer to place a symbol where one has already been placed. When either
the player or computer has three symbols in a row, declare a winner. If all
positions have been used and no one has three symbols in a row, declare a tie.

369

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



b. In the TicTacToe game in Exercise 3a, the computer’s selection is chosen
randomly. Improve the game so that when the computer has two Os in any
row, column, or diagonal, it selects the winning position for its next move
rather than selecting a position randomly.

Up for Discussion

1. Now that you are becoming comfortable with arrays, you can see that programming
is a complex subject. Should all literate people understand how to program? If so,
how much programming should they understand?

2. What are language standards? At this point in your study of programming, what do
they mean to you?

3. This chapter discusses sorting data. Suppose that a large hospital hires you to write
a program that displays lists of potential organ recipients. The hospital’s doctors
will consult this list if they have an organ that can be transplanted. The hospital
administrators instruct you to sort potential recipients by last name and display
them sequentially in alphabetical order. If more than 10 patients are waiting for a
particular organ, the first 10 patients are displayed; a doctor can either select one or
move on to view the next set of 10 patients. You worry that this system gives an
unfair advantage to patients with last names that start with A, B, C, and D. Should
you write and install the program? If you do not, many transplant opportunities
will be missed while the hospital searches for another programmer to write the
program. Are there different criteria you would want to use to sort the patients?

Figure 8-18 A TicTacToe game
© 2015 Cengage Learning

370

C H A P T E R 8 Advanced Data Handling Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 9
Advanced
Modularization
Techniques

In this chapter, you will learn about:

The parts of a method

Methods with no parameters

Methods that require parameters

Methods that return a value

Passing arrays to methods

Overloading methods

Using predefined methods

Method design issues, including implementation hiding,
cohesion, and coupling

Recursion

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Parts of a Method
In object-oriented programming languages such as Java and C#, modules are most often
called methods. In Chapter 2, you learned about many features of methods and much of the
vocabulary associated with them. For example:

A method is a program module that contains a series of statements that carry out a task;
you can invoke or call a method from another program or method. The calling program
or method is the called method’s client.

Any program can contain an unlimited number of methods, and each method can be
called an unlimited number of times.

The rules for naming methods are different in every programming language, but they
often are similar to the language’s rules for variable names. In this text, method names are
followed by a set of parentheses.

A method must include a method header (sometimes also called the method declaration),
which contains identifying information about the method.

A method includes a method body. The body contains the method’s implementation—the
statements that carry out the method’s tasks.

A method return statement returns control to the calling method after a method
executes. Although methods with multiple return statements are allowed in many
programming languages, that practice is not recommended. Structured programming
requires that a method must contain a single entry point and a single exit point.
Therefore, a method should have only one return statement, and it should be the last
statement.

Variables and constants can be declared within a method. A data item declared in a
method is local to that method, meaning it is in scope, or recognized only within that
method.

The opposite of local is global. When a data item is known to all of a program’s methods
or modules, it is a global data item. In general, programmers prefer local data items
because when data is contained within the method that uses it, the method is more
portable and less prone to error. In Chapter 2, you learned that when a method is
described as portable, it can easily be moved to another application and used there.

Methods can have parameter lists that provide details about data passed into methods.
These lists are not required.

Methods have return types that provide information about data the method returns. In
some languages, like C++, a default return type is implied if no return type is listed.

Quick Reference 9-1 shows important parts of a method. You learn more about these parts in
the rest of this chapter.

372

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



QUICK REFERENCE 9-1 The Anatomy of a Method

Using Methods with no Parameters
Figure 9-1 shows a program that allows a user to enter a preferred language (English or
Spanish) and then, using the chosen language, asks the user to enter his or her weight. The
program then calculates the user’s weight on the moon as 16.6 percent of the user’s weight on
Earth. The main program contains declarations for two variables and a constant. The
program calls the displayInstructions() method, which contains its own local variable and
constants that are invisible (and therefore not available) to the main program. The method
prompts the user for a language indicator and displays a prompt in the selected language.
Figure 9-2 shows a typical program execution in a command-line environment.

returnType methodName (parameterList)

statements

return

This line is the
method header.

This line is the return
statement. If the method
returns a value, the value
will be named after the
keyword return.

If a method returns data to its calling
method, then the data type for the
returned value is named here.

The rules for creating a method name are similar
to the rules for creating a variable name. Method
names are followed by parentheses.

If a method requires data to
be passed in, the data items
and their types are listed
between the parentheses in
the method header.The statements within a method

constitute the method body.
Variables declared here are local
to the method.

TWO TRUTHS & A LIE

The Parts of a Method

1. A program can contain an unlimited number of methods, but each method can be
called only once.

2. A method includes a header and a body.

3. Variables and constants are in scope within, or local to, only the method in which
they are declared.

Thefalsestatementis#1.Eachmethodcanbecalledanunlimitednumberoftimes.

373

Using Methods with no Parameters

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start
   Declarations
      num weight
      num MOON_FACTOR = 0.166
      num moonWeight
   displayInstructions()
   input weight
   moonWeight = weight * MOON_FACTOR
   output "Your weight on the moon would be ", moonWeight
stop

displayInstructions()
   Declarations
      num langCode
      string ENGLISH_PROMPT = "Please enter your weight in pounds >> "
      string SPANISH_PROMPT = "Por favor entre en su peso en libras >> "
   output "1 - English or 2 - Espanol >> "
   input langCode
   if langCode = 1 then
      output ENGLISH_PROMPT
   else
      output SPANISH_PROMPT
   endif
return

output
ENGLISH_PROMPT

start

No Yes

Declarations
   num weight
   num MOON_FACTOR = 0.166
   num moonWeight

input weight

output "1 - English
or 2 - Espanol >> "

output "Your weight
on the moon would
be ", moonWeight

stop

displayInstructions()

return

displayInstructions()

moonWeight = weight *
MOON_FACTOR

Declarations
   num langCode
   string ENGLISH_PROMPT = "Please
      enter your weight in pounds >> "
   string SPANISH_PROMPT = "Por favor
      entre en su peso en libras >> "

input
langCode

langCode = 1?

output
SPANISH_PROMPT

Figure 9-1 A program that calculates the user’s weight on the moon
© 2015 Cengage Learning

374

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Chapter 2, you learned that this book uses a rectangle with a horizontal stripe across the top to represent
a method call statement in a flowchart. Some programmers prefer to use a rectangle with two vertical
stripes at the sides, and you should use that convention if your organization prefers it. This book
reserves the shape with two vertical stripes to represent a method from a library that is external to
the program.

In Figure 9-1, the main program and the called method each contain only data items that are
needed at the local level. The main program does not know about or have access to the
variables and constants langCode, ENGLISH_PROMPT, and SPANISH_PROMPT declared locally
within the method. Similarly, in modern programming languages, the displayInstructions()

method does not have knowledge of or access to weight, MOON_FACTOR, or moonWeight,
which are declared in the main program. In this program, there is no need for either
method to know about the data in the other. However, sometimes two or more parts of a
program require access to the same data. When methods must share data, you can pass the
data into methods and return data out of them.

In this chapter, you learn how to pass data into and receive data from called methods. When
you call a method from a program or other method, you should know four things:

What the method does in general—in other words, you should know why you are calling
the method

The name of the called method

What type of information to send to the method, if any

What type of return data to expect from the method, if any

Figure 9-2 Output of moon weight calculator program in Figure 9-1
© 2015 Cengage Learning

375

Using Methods with no Parameters

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Methods with no Parameters

1. When a method contains variable declarations, those variables are local to
the method.

2. The values of variables declared locally within a method can be used by a
calling method, but not by other methods.

3. In modern languages, the usual methodology is to declare variables locally in
their methods and pass their values to other methods as needed.

Creating Methods that Require Parameters
Some methods require information to be sent in from the outside. When a program passes a
data item to a method, the data item is an argument to the method, or more simply, an
argument. When the method receives the data item, it is a parameter to the method, or more
simply, a parameter. Parameter and argument are closely related terms. A calling method
sends an argument to a called method. A called method accepts the value as its parameter.

If a method could not receive parameters, you would have to use global variables or write an
infinite number of methods to cover every possible situation. As a real-life example, when you
make a restaurant reservation, you do not need to employ a different method for every date of
the year at every possible time of day. Rather, you can supply the date and time as information
to the person who carries out the method. The method that records the reservation is carried
out in the same manner, no matter what date and time are supplied.

As a programming example, if you design a square() method that multiplies a numeric value
by itself, you should supply the method with a parameter that represents the value to be
squared, rather than developing a square1() method that squares the value 1, a square2()

method that squares the value 2, and so on. To call a square() method that accepts a
parameter, you might write a statement that uses a constant, like square(17) or square(86),
or one that uses a variable, like square(inputValue), and let the method use whatever
argument you send.

When you write the declaration for a method that can receive a parameter, you must provide
a parameter list that includes the following items for the parameter within the method
declaration’s parentheses:

The type of the parameter

A local name for the parameter

Thefalsestatementis#2.Whenavariableisdeclaredlocallywithinamethod,its
valuecannotbeusedbyothermethods.Ifitsvalueisneededbyacallingmethod,the
valuemustbereturnedfromthemethod.

376

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Later in this chapter, you learn to create parameter lists with more than one parameter.
A method’s name and parameter list constitute the method’s signature.

For example, suppose that you decide to improve the moon weight program in Figure
9-1 by making the final output more user-friendly and adding the explanatory text in
the chosen language. It makes sense that if the user can request a prompt in a specific
language, the user would want to see the output explanation in the same language.
However, in Figure 9-1, the langCode variable is local to the displayInstructions()

method and therefore cannot be used in the main program. You could rewrite the
program by taking several approaches:

You could rewrite the program without including any methods. That way, you could
prompt the user for a language preference and display the prompt and the result
in the appropriate language. This approach works, but you would not be taking
advantage of the benefits provided by modularization. Those benefits include making
the main program more streamlined and abstract, and making the displayInstructions()
method a self-contained unit that can easily be transported to other programs—for
example, applications that might determine a user’s weight on Saturn or Mars.

You could retain the displayInstructions() method, but make at least the langCode

variable global by declaring it outside of any methods. If you took this approach, you
would lose some of the portability of the displayInstructions() method because
everything it used would no longer be contained within the method.

You could retain the displayInstructions() method as is with its own local
declarations, but add a section to the main program that also asks the user for a preferred
language to display the result. The disadvantage to this approach is that the user must
answer the same question twice during one execution of the program.

You could store the variable that holds the language code in the main program so
that it could be used to determine the result language. You could also retain the
displayInstructions() method, but pass the language code to it so the prompt
would appear in the appropriate language. This is the best choice because it employs
modularity, which keeps the main program simpler and creates a portable method. A
program that uses the method is shown in Figure 9-3, and a typical execution
appears in Figure 9-4.

377

Creating Methods that Require Parameters

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



No Yes

No Yes

start

input weight

output "1 -
English or 2 -
Espanol >>"

output "Your weight
on the moon would
be ", moonWeight

stop

displayInstructions(num langCode)

return

displayInstructions(code)

moonWeight = weight *
MOON_FACTOR

Declarations
   string ENGLISH_PROMPT = "Please
      enter your weight in pounds >> "
   string SPANISH_PROMPT = "Por favor
      entre en su peso en libras >> "input code

langCode = 1?

output
SPANISH_PROMPT

code = 1?

output
ENGLISH_PROMPT

output "Su peso en
la luna sería ",
moonWeight

Declarations
   num code
   num weight
   num MOON_FACTOR = 0.166
   num moonWeight

Figure 9-3 Moon weight program that passes an argument to a method (continues)

378

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the main program in Figure 9-3, a numeric variable named code is declared and the user is
prompted for a value. The value then is passed to the displayInstructions() method. The
value of the language code is stored in two places in memory:

The main method stores the code in the variable code and passes it to
displayInstructions() as an argument.

The displayInstructions() method accepts the value of the argument code as the value
of the parameter langCode. In other words, within the method, langCode takes on the
value that code had in the main program.

(continued)

start
   Declarations
      num code
      num weight
      num MOON_FACTOR = 0.166
      num moonWeight
   output "1 - English or 2 - Espanol >>"
   input code
   displayInstructions(code)
   input weight
   moonWeight = weight * MOON_FACTOR
   if code = 1 then
      output "Your weight on the moon would be ", moonWeight
   else
      output "Su peso en la luna sería ", moonWeight
   endif
stop

displayInstructions(num langCode)
   Declarations
      string ENGLISH_PROMPT = "Please enter your weight in pounds >> "
      string SPANISH_PROMPT = "Por favor entre en su peso en libras >> "
   if langCode = 1 then
      output ENGLISH_PROMPT
   else
      output SPANISH_PROMPT
   endif
return

Figure 9-3 Moon weight program that passes an argument to a method
© 2015 Cengage Learning

Figure 9-4 Typical execution of moon weight program in Figure 9-3
© 2015 Cengage Learning

379

Creating Methods that Require Parameters

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You can think of the parentheses in a method declaration as a funnel into the method;
parameters listed there hold values that are “dropped in” to the method.

A variable passed into a method is passed by value; that is, a copy of its value is sent to
the method and stored in a new memory location accessible to the method. The
displayInstructions() method could be called using any numeric value as an argument,
whether it is a variable, a named constant, or a literal constant. In other words, suppose that
the main program contains the following declarations:

num x = 2
num langCode = 2
num SPANISH = 2

Then any of the following statements would work to call the displayInstructions()

method:

displayInstructions(x), using a variable

displayInstructions(langCode), using a different variable

displayInstructions(SPANISH), using a named constant

displayInstructions(2), using a literal constant

If the value used as an argument in the method call is a variable or named constant, it might
possess the same identifier as the parameter declared in the method header, or it might
possess a different identifier. Within a method, the passed variable or named constant is
simply a temporary placeholder; it makes no difference what name the variable or constant
“goes by” in the calling program.

Each time a method executes, any parameters listed in the method header are redeclared—
that is, new memory locations are reserved and named. When the method ends at the return

statement, the locally declared parameter variables cease to exist. For example, Figure 9-5
shows a program that declares a variable, assigns a value to it, displays it, and sends it to a
method. Within the method, the parameter is displayed, altered, and displayed again. When
control returns to the main program, the original variable is displayed one last time. As the
execution in Figure 9-6 shows, even though the variable in the method was altered, the
original variable in the main program retains its starting value because it never was altered; it
occupies a different memory address from the variable in the method.

380

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declarations
   num myVal

myVal = 18

start

output "At start,
myVal is ", myVal

myMethod(myVal)

output "At end,
myVal is ", myVal

myMethod(num myVal)

output "At start
of method, myVal
is ", myVal

myVal = myVal
+ 86

output "At end of
method, myVal is ",
myVal

stop

return

start
Declarations

num myVal
myVal = 18
output "At start, myVal is ", myVal
myMethod(myVal)
output "At end, myVal is ", myVal

stop

myMethod(num myVal)
output "At start of method, myVal is ", myVal
myVal = myVal + 86
output "At end of method, myVal is ", myVal

return

Figure 9-5 A program that calls a method in which the argument and parameter have
the same identifier
© 2015 Cengage Learning

Figure 9-6 Execution of the program in Figure 9-5
© 2015 Cengage Learning

381

Creating Methods that Require Parameters

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Watch the video Methods with a Parameter.

Creating Methods that Require Multiple Parameters
You create and use a method with multiple parameters by doing the following:

You list the arguments within the method call, separated by commas.

You list a data type and local identifier for each parameter within the method header’s
parentheses, separating each declaration with a comma. Even if multiple parameters are
the same data type, the type must be repeated with each parameter.

The arguments sent to a method in a method call are its actual parameters. The variables in the method
declaration that accept the values from the actual parameters are formal parameters.

For example, suppose that you want to create a computeTax() method that calculates a tax on
any value passed into it. You can create a method to which you pass two values—the amount
to be taxed as well as a rate by which to tax it. Figure 9-7 shows a method that accepts two
such parameters.

382

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 9-7, notice that one of the arguments to the method has the same name as the corresponding
method parameter, and the other has a different name from its corresponding parameter. Each could have
the same identifier as its counterpart, or all could be different. Each identifier is local to its own method.

In Figure 9-7, two parameters (num amount and num rate) appear within the parentheses in
the method header. A comma separates each parameter, and each requires its own declared

start
   Declarations
      num balance
      num rate
   input balance, rate
   computeTax(balance, rate)
stop

computeTax(num amount, num rate)
   Declarations
      num tax
   tax = amount * rate
   output "Amount: ", amount, " Rate: ", rate, " Tax: ", tax
return

start

Declarations
   num balance
   num rate

stop

computeTax(num amount, num rate)

Declarations
   num tax

tax = amount * rate

output "Amount: ",
amount, " Rate: ",
rate, " Tax: ", tax

return

computeTax(balance, rate)

input balance,
rate

Figure 9-7 A program that calls a computeTax() method that requires two parameters
© 2015 Cengage Learning

383

Creating Methods that Require Parameters

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



data type (in this case, both are numeric) as well as its own identifier. When multiple values
are passed to a method, they are accepted into the parameters in the order in which they are
passed. You can write a method so that it takes any number of parameters in any order.
However, when you call a method, the arguments you send to the method must match in
order—both in number and in type—the parameters listed in the method declaration. A call
of computeTax(rate, balance) instead of computeTax(balance, rate) would result in
incorrect values being displayed in the output statement.

If method arguments are the same type—for example, two numeric arguments—passing
them to a method in the wrong order results in a logical error. The program will compile and
execute, but will produce incorrect results in most cases. If a method expects arguments of
diverse types—for example, a number and a string—then passing arguments in the wrong
order is a syntax error, and the program will not compile.

Watch the video Methods with Multiple Parameters.

TWO TRUTHS & A LIE

Creating Methods that Require Parameters

1. A value sent to a method from a calling program is a parameter.

2. When you write the declaration for a method that can receive parameters, you
must include a data type for each parameter even if multiple parameters are the
same type.

3. When a variable is used as an argument in a method call, it can have the same
identifier as the parameter in the method header.

Creating Methods that Return a Value
A variable declared within a method ceases to exist when the method ends—it goes out of scope.
When you want to retain a value that exists when a method ends, you can return the value from
the method to the calling method. When a method returns a value, the method must have a
return type that matches the data type of the returned value. A return type can be any type, which
includes num and string, as well as other types specific to the programming language you are
using. A method can also return nothing, in which case the return type is void, and the method is
a void method. (The term void means “nothing” or “empty.”) A method’s return type is known
more succinctly as a method’s type, and it is listed in front of the method name when the method

Thefalsestatementis#1.Acallingmethodsendsanargument;whenthemethod
receivesthevalue,itisaparameter.

384

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



is defined. Previously, this book has not included return types for methods because all the methods
have been void. From this point forward, a return type is included with every method header.

Along with an identifier and parameter list, a return type is part of a method’s declaration. A method’s return
type is not part of its signature, although you might hear some programmers claim that it is. Only the method
name and parameter list constitute the signature.

For example, a method that returns the number of hours an employee has worked might have
the following header:

num getHoursWorked()

This method returns a numeric value, so its type is num.

When a method returns a value, you usually want to use the returned value in the calling
method, although this is not required. For example, Figure 9-8 shows how a program might
use the value returned by the getHoursWorked() method. A variable named hours is declared
in the main program. The getHoursWorked() method call is part of an assignment statement.
When the method is called, the logical control is transferred to the getHoursWorked()

method, which contains a variable named workHours. A value is obtained for this variable,
which is returned to the main program where it is assigned to hours. After logical control
returns to the main program from the getHoursWorked() method, the method’s local variable
workHours no longer exists. However, its value has been stored in the main program where, as
hours, it can be displayed and used in a calculation.

As an example of when you might call a method but not use its returned value, consider a method that gets a
character from the keyboard and returns its value to the calling program. In some applications, you would
want to use the value of the returned characters. However, in other applications, you might want to tell the
user to press any key. Then, you could call the method to accept the character from the keyboard, but you
would not care which key was pressed or which key value was returned.

385

Creating Methods that Return a Value

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 9-8, notice the return type num that precedes the method name in the
getHoursWorked() method header. A method’s declared return type must match the type of
the value used in the return statement; if it does not, the program will not compile. A
numeric value is correctly included in the return statement—the last statement in the
getHoursWorked() method. When you place a value in a return statement, the value is sent
from the called method back to the calling method.

A method’s return statement can return one value at most. The returned value can be a
variable or a constant. The value can be a simple data type or a complex data type. For
example, in Chapter 10 you will learn to create objects, which are more complex data types.

You are not required to assign a method’s return value to a variable to use the value. Instead,
you can use a method’s returned value directly, without storing it. You use a method’s value in
the same way you would use any variable of the same type. For example, you can output a
return value in a statement such as the following:

output "Hours worked is ", getHoursWorked()

start

hours =
getHoursWorked()

gross = hours *
PAY_RATE

Declarations
   num hours
   num PAY_RATE = 12.00
   num gross

output "Hours
worked: ", hours,
" Gross pay is: ",
gross

stop

num getHoursWorked()

output "Please
enter hours
worked "

input
workHours

Declarations
   num workHours

return workHours

Figure 9-8 A payroll program that calls a method that returns a value
© 2015 Cengage Learning

386

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Because getHoursWorked() returns a numeric value, you can use the method call
getHoursWorked() in the same way that you would use any simple numeric value. Figure 9-9
shows an example of a program that uses a method’s return value directly without storing it.
The value of the shaded workHours variable returned from the method is used directly in the
calculation of gross in the main program.

When a program needs to use a method’s returned value in more than one place, it makes sense to store the
returned value in a variable instead of calling the method multiple times. A program statement that calls a
method requires more computer time and resources than a statement that does not call any outside
methods. Programmers use the term overhead to describe any extra time and resources required by an
operation.

As mentioned earlier, in most programming languages you technically are allowed to include
multiple return statements in a method, but this book does not recommend the practice for
most business programs. For example, consider the findLargest() method in Figure 9-10.
The method accepts three parameters and returns the largest of the values. Although this
method works correctly and you might see this technique used, its style is awkward and not
structured. In Chapter 3, you learned that structured logic requires each structure to contain
one entry point and one exit point. The return statements in Figure 9-10 violate this
convention by leaving decision structures before they are complete. Figure 9-11 shows the

start

Declarations
   num PAY_RATE = 12.00
   num gross

output "Gross pay is: ",
gross

stop

num getHoursWorked()

output "Please
enter hours
worked "

input
workHours

return workHours

Declarations
   num workHours

gross =
getHoursWorked()
* PAY_RATE

Figure 9-9 A program that uses a method’s returned value without storing it
© 2015 Cengage Learning

387

Creating Methods that Return a Value

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



superior and recommended way to handle the problem. In Figure 9-11, the largest value is
stored in a variable. Then, when the nested decision structure is complete, the stored value is
returned in the last method statement.

Yes

Yes

No

No

num findLargest(num first, num
second, num third)

first > second
AND first >
third?

return first

second > third? return second

return third

num findLargest(num first, num second, num third)
   if first > second AND first > third then
      return first
   endif
   if second > third then
      return second
   endif
return third

Don’t Do It
It is unstructured to
return from a method at
multiple points.

Don’t Do It
It is unstructured to
return from a method
at multiple points.

Figure 9-10 Unstructured approach to returning one of several values
© 2015 Cengage Learning

388

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using an IPO Chart
When designing methods to use within larger programs, some programmers find it helpful to
use an IPO chart, a tool that identifies and categorizes each item needed within the method as
pertaining to input, processing, or output. For example, consider a method that finds the

Yes

YesNo

No

num findLargest(num first, num
second, num third)

first > second
AND first >
third?

second > third?

return largest

num findLargest(num first, num second, num third)
   Declarations
      num largest
   if first > second AND first > third then
      largest = first
   else
      if second > third then
         largest = second
      else
         largest = third
      endif
   endif
return largest

Declarations
   num largest

largest =
first

largest =
second

largest =
third

Figure 9-11 Recommended, structured approach to returning one of several values
© 2015 Cengage Learning

389

Creating Methods that Return a Value

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



smallest of three numeric values. When you think about designing this method, you can start
by placing each of its components in one of the three processing categories, as shown in
Figure 9-12.

The IPO chart in Figure 9-12 provides an overview of the processing steps involved in the
method. Like a flowchart or pseudocode, an IPO chart is just another tool to help you plan
the logic of your programs. Many programmers create an IPO chart only for specific methods
in their programs and as an alternative to flowcharting or writing pseudocode. IPO charts
provide an overview of input to the method, the processing steps that must occur, and the
resulting output. This book emphasizes creating flowcharts and pseudocode, but you can find
many more examples of IPO charts on the Web.

TWO TRUTHS & A LIE

Creating Methods that Return a Value

1. The return type for a method can be any type, which includes numeric, character,
and string, as well as other more specific types that exist in the programming
language you are using.

2. A method’s return type must be the same type as one of the method’s
parameters.

3. You are not required to use a method’s returned value.

Figure 9-12 IPO chart for the method that finds the smallest of three numeric values
© 2015 Cengage Learning

Input Processing Output

First value
Second value
Third value

If the first value is smaller than each of the other
two, save it as the smallest value; otherwise, if the
second value is smaller than the third, save it as
the smallest value; otherwise, save the third value
as the smallest value

Smallest value

Thefalsestatementis#2.Thereturntypeofamethodcanbeanytype.Thereturntype
mustmatchthetypeofvalueinthemethod’sreturnstatement.Amethod’sreturntype
isnotrequiredtomatchanyofthemethod’sparameters.

390

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Passing an Array to a Method
In Chapter 6, you learned that you can declare an array to create a list of elements, and that
you can use any individual array element in the same manner you would use any single
variable of the same type. For example, suppose that you declare a numeric array as
follows:

num someNums[12]

You can subsequently output someNums[0] or perform arithmetic with someNums[11], just
as you would for any simple variable that is not part of an array. Similarly, you can pass a
single array element to a method in exactly the same manner you would pass a variable or
constant.

Consider the program shown in Figure 9-13. This program creates an array of four numeric
values and then outputs them. Next, the program calls a method named tripleTheValue()

four times, passing each of the array elements in turn. The method outputs the passed value,
multiplies it by 3, and outputs it again. Finally, back in the calling program, the four numbers
are output again. Figure 9-14 shows an execution of this program in a command-line
environment.

391

Passing an Array to a Method

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declarations
   num LENGTH = 4
   num someNums[LENGTH] = 10, 12, 22, 35
   num x

x = 0

x = 0

x = x + 1

tripleTheValue
(someNums[x])

x <
LENGTH?

x = 0

x <
LENGTH?

x <
LENGTH?

start

stop

Yes

No

No

No

output "At end of the
program.........."

output
someNums[x]

x = x + 1
Yes output

someNums[x]

x = x + 1
Yes

return

void tripleTheValue(num oneVal)

output "In tripleTheValue()
method, value is ",
oneVal

oneVal = oneVal * 3

output "   After change,
 value is ", oneVal

output "At beginning
of the program..."

Figure 9-13 PassArrayElement program (continues)

392

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



As you can see in Figure 9-14, the program displays the four original values, then passes each
value to the tripleTheValue() method, where it is displayed, multiplied by 3, and displayed
again. After the method executes four times, the logic returns to the main program where the

start
   Declarations
      num LENGTH = 4
      num someNums[LENGTH] = 10, 12, 22, 35
      num x
   output "At beginning of the program..."
   x = 0
   while x < LENGTH
      output someNums[x]
      x = x + 1
   endwhile
   x = 0
   while x < LENGTH
      tripleTheValue(someNums[x])
      x = x + 1
   endwhile
   output "At end of the program.........."
   x = 0
   while x < LENGTH
      output someNums[x]
      x = x + 1
   endwhile
stop

void tripleTheValue(num oneVal)
   output "In tripleTheValue() method, value is ", oneVal
   oneVal = oneVal * 3
   output "     After change, value is ", oneVal
return

Figure 9-13 PassArrayElement program
© 2015 Cengage Learning

Figure 9-14 Output of the PassArrayElement program
© 2015 Cengage Learning

(continued)

393

Passing an Array to a Method

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



four values are displayed again, showing that they are unchanged by the new assignments
within tripleTheValue(). The oneVal variable is local to the tripleTheValue() method;
therefore, any changes to it are not permanent and are not reflected in the array declared in
the main program. Each oneVal variable in the tripleTheValue() method holds only a copy
of the array element passed into the method, and the oneVal variable that holds each newly
assigned, larger value exists only while the tripleTheValue() method is executing. In all
respects, a single array element acts just like any single variable of the same type would.

Instead of passing a single array element to a method, you can pass an entire array as an
argument. You can indicate that a method parameter must be an array by using the
convention of placing square brackets after the data type in the method’s parameter list.
When you pass an array to a method, changes you make to array elements within the method
are permanent; that is, they are reflected in the original array that was sent to the method.
Arrays, unlike simple built-in types, are passed by reference; the method receives the actual
memory address of the array and has access to the actual values in the array elements. The
name of an array represents a memory address, and the subscript used with an array name
represents an offset from that address.

Some languages, such as Visual Basic, use parentheses after an identifier to indicate an array as a
parameter to a method. Many other languages, including Java, C++, and C#, use square brackets after the
data type. Because this book uses parentheses following method names, it uses brackets to indicate arrays.

Simple nonarray variables usually are passed to methods by value. Many programming languages provide
the means to pass variables by reference as well as by value. The syntax to accomplish this differs among
the languages that allow it; you will learn more about this concept when you study a specific language.

The program shown in Figure 9-15 creates an array of four numeric values. After the
numbers are output, the entire array is passed to a method named quadrupleTheValues().
Within the method header, the parameter is declared as an array by using square brackets
after the parameter type. Within the method, the numbers are output, which shows that they
retain their values from the main program upon entering the method. Then the array values
are multiplied by 4. Even though quadrupleTheValues() returns nothing to the calling
program, when the program displays the array for the last time within the mainline logic, all
of the values have been changed to their new quadrupled values. Figure 9-16 shows an
execution of the program. Because arrays are passed by reference, the quadrupleTheValues()
method “knows” the address of the array declared in the calling program and makes its
changes directly to the original array that was declared in the calling program.

394

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declarations
   num LENGTH = 4
   num someNums[LENGTH] = 10, 12, 22, 35
   num x

x = 0

x = x + 1
x <
LENGTH?

x = 0

x <
LENGTH?

start

stop

Yes

No

No

output "At end of the
program.........."

output
someNums[x]

x = x + 1
Yes output

someNums[x]

quadrupleTheValues(someNums)

output "At beginning
of the program..."

Figure 9-15 PassEntireArray program (continues)

395

Passing an Array to a Method

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



x <
LENGTH?

Yes

Yes

Yes

No

No

No

x <
LENGTH?

x = 0

x = 0

x = 0

x = x + 1

return

x <
LENGTH?

void quadrupleTheValues(num[] vals)

output "In
quadrupleTheValues()
method, value is ",
vals[x] 

Declarations 
   num LENGTH = 4
   num x 

vals[x] = vals[x] * 4

output " After change,
value is ", vals[x] 

x = x + 1

x = x + 1

Figure 9-15 PassEntireArray program (continues)

(continued)

396

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start
   Declarations
      num LENGTH = 4
      num someNums[LENGTH] = 10, 12, 22, 35
      num x
   output "At beginning of the program..."
   x = 0
   while x < LENGTH
      output someNums[x]
      x = x + 1
   endwhile
   quadrupleTheValues(someNums)
   output "At end of the program.........."
   x = 0
   while x < LENGTH
      output someNums[x]
      x = x + 1
   endwhile
stop

void quadrupleTheValues(num[] vals)
   Declarations
      num LENGTH = 4
      num x
   x = 0
   while x < LENGTH
      output "In quadrupleTheValues() method, value is ", vals[x]
      x = x + 1
   endwhile
   x = 0
   while x < LENGTH
      vals[x] = vals[x] * 4
      x = x + 1
   endwhile
   x = 0
   while x < LENGTH
      output "     After change, value is ", vals[x]
      x = x + 1
   endwhile
return

Figure 9-15 PassEntireArray program
© 2015 Cengage Learning

(continued)

397

Passing an Array to a Method

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When an array is a method parameter, the square brackets in the method header remain empty and do not
hold a size. The array name that is passed is a memory address that indicates the start of the array.
Depending on the language you are working in, you can control the values you use for a subscript to the
array in different ways. In some languages, you might also want to pass a constant that indicates the array
size to the method. In other languages, you can access the automatically created length field for the array.
Either way, the array size itself is never implied when you use the array name. The array name only indicates
the starting point from which subscripts will be used.

TWO TRUTHS & A LIE

Passing an Array to a Method

1. You can pass an entire array as a method’s argument.

2. You can indicate that a method parameter must be an array by placing square
brackets after the data type in the method’s parameter list.

3. Arrays, unlike simple built-in types, are passed by value; the method receives a
copy of the original array.

Overloading Methods
In programming, overloading involves supplying diverse meanings for a single identifier.
When you use the English language, you frequently overload words. When you say break a
window, break bread, break the bank, and take a break, you describe four very different
actions that use different methods and produce different results. However, anyone who

Figure 9-16 Output of the PassEntireArray program
© 2015 Cengage Learning

Thefalsestatementis#3.Arrays,unlikesimplebuilt-intypes,arepassedbyreference;
themethodreceivestheactualmemoryaddressofthearrayandhasaccesstothe
actualvaluesinthearrayelements.

398

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



speaks English well comprehends your meaning because break is understood in the context of
the discussion.

In most programming languages, some operators are overloaded. For example, a + between two values
indicates addition, but a single + to the left of a value means the value is positive. The + sign has different
meanings based on the arguments used with it.

Overloading a method is an example of polymorphism—the ability of a method to act appropriately
according to the context. Literally, polymorphism means “many forms.”

When you overload a method, you write multiple methods with a shared name but different
parameter lists. When you call an overloaded method, the language translator understands
which version of the method to use based on the arguments used. For example, suppose that
you create a method to output a message and the amount due on a customer bill, as shown in
Figure 9-17. The method receives a numeric parameter that represents the customer’s
balance and produces two lines of output. Assume that you also need a method that is similar
to printBill(), except the new method applies a discount to the customer bill. One solution
to this problem would be to write a new method with a different name—for example,
printBillWithDiscount(). A downside to this approach is that a programmer who uses
your methods must remember the names of each slightly different version. It is more natural
for your methods’ clients to use a single well-designed method name for the task of printing
bills, but to be able to provide different arguments as appropriate. In this case, you can
overload the printBill() method so that, in addition to the version that takes a single
numeric argument, you can create a version that takes two numeric arguments—one that
represents the balance and one that represents the discount rate. Figure 9-17 shows the two
versions of the printBill() method.

399

Overloading Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If both versions of printBill() are included in a program and you call the method using a
single numeric argument, as in printBill(custBalance), the first version of the method in
Figure 9-17 executes. If you use two numeric arguments in the call, as in printBill
(custBalance, rate), the second version of the method executes.

If it suited your needs, you could provide more versions of the printBill() method, as
shown in Figure 9-18. The first version accepts a numeric parameter that holds the
customer’s balance, and a string parameter that holds an additional message that can be
customized for the bill recipient and displayed on the bill. For example, if a program makes a
method call such as the following, this version of printBill() will execute:

printBill(custBal, "Due in 10 days")

The second version of the method in Figure 9-18 accepts three parameters, providing a
balance, discount rate, and customized message. For example, the following method call
would use this version of the method:

printBill(balanceDue, discountRate, specialMessage)

This overloaded version of the method
takes one parameter, a num.

This overloaded version of the method
takes two parameters, both nums.

void printBill(num bal, num discountRate)

output "Thank you
for your order"

output "Please
remit ", newBal

Declarations
   num newBal

newBal = bal –
(bal * discountRate)

return

output "Please
remit ", bal

void printBill(num bal)

return

output "Thank you
for your order" 

void printBill(num bal, num discountRate)
   Declarations
      num newBal
   newBal = bal – (bal * discountRate)
   output "Thank you for your order"
   output "Please remit ", newBal
return

void printBill(num bal)
   output "Thank you for your order"
   output "Please remit ", bal
return

Figure 9-17 Two overloaded versions of the printBill() method
© 2015 Cengage Learning

400

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Overloading methods is never required in a program. Instead, you could create multiple methods
with unique identifiers such as printBill() and printBillWithDiscountAndMessage().
Overloading methods does not reduce your work when creating a program; you need to
write each method individually. The advantage is provided to your method’s clients;
those who use your methods need to remember just one appropriate name for all related
tasks.

In many programming languages, the output statement is actually an overloaded method that you call.
Using a single name such as output, whether you want to output a number, a string, or any
combination of the two, is convenient.

Even if you write two or more overloaded versions of a method, many program clients will use
just one version. For example, suppose that you develop a bill-creating program that contains
all four versions of the printBill() method just discussed, and then sell it to different

This overloaded version of the
method takes two parameters: a
num and a string.

This overloaded version takes
three parameters: two nums and a
string.

output "Thank you
for your order"

output "Please
remit ", newBal

Declarations
   num newBal

newBal = bal –
(bal * discountRate)

void printBill(num bal, num discountRate, string msg)

return

output "Please
remit ", bal

void printBill(num bal, string msg)

return

output "Thank you
for your order" 

output msg 

output msg 

void printBill(num bal, num discountRate, string msg)
   Declarations
      num newBal
   newBal = bal – (bal * discountRate)
   output "Thank you for your order"
   output msg   
   output "Please remit ", newBal
return

void printBill(num bal, string msg)
   output "Thank you for your order"
   output msg   
   output "Please remit ", bal
return

Figure 9-18 Two additional overloaded versions of the printBill() method
© 2015 Cengage Learning

401

Overloading Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



companies. An organization that adopts your program and its methods might only want to
use one or two versions of the method. You probably own many devices for which only some
of the features are meaningful to you; for example, some people who own microwave ovens
only use the Popcorn button or never use Defrost.

Avoiding Ambiguous Methods
When you overload a method, you run the risk of creating ambiguous methods—a situation
in which the compiler cannot determine which method to use. Every time you call a method,
the compiler decides whether a suitable method exists; if so, the method executes, and if not,
you receive an error message. For example, suppose that you write two versions of a
printBill() method, as shown in the program in Figure 9-19. One version of the method is
intended to accept a customer balance and a discount rate, and the other is intended to accept
a customer balance and a discount amount expressed in dollars.

402

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start

input balance,
discountInDollars

stop? ?

?

?

Declarations
   num balance
   num discountInDollars

printBill(balance, discountInDollars)

void printBill(num bal, num
discountRate)

output "Thank you for
your order"

output "Please 
remit ", newBal

return

Declarations
   num newBal

newBal = bal - (bal *
discountRate)

void printBill(num bal, num
discountInDollars)

Declarations
   num newBal

newBal = bal - 
discountInDollars

output "Thank you for
your order"

output "Please 
remit ", newBal

return

Don’t Do It
When two methods have
the same signatures, the
program cannot determine
which one to execute.

Don’t Do It
When two methods have
the same signatures, the
program cannot determine
which one to execute.start

   Declarations
      num balance
      num discountInDollars
   input balance, discountInDollars
   printBill(balance, discountInDollars)
stop

void printBill(num bal, num discountRate)
   Declarations
      num newBal
   newBal = bal - (bal * discountRate)
   output "Thank you for your order"
   output "Please remit ", newBal
return

void printBill(num bal, num discountInDollars)
   Declarations
      num newBal
   newBal = bal - discountInDollars
   output "Thank you for your order"
   output "Please remit ", newBal
return

Figure 9-19 Program that contains ambiguous method call
© 2015 Cengage Learning

403

Overloading Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Each of the two versions of printBill() in Figure 9-19 is a valid method on its own.
However, when the two versions exist in the same program, a problem arises. When the
main program calls printBill() using two numeric arguments, the compiler cannot
determine which version to call. You might think that the version of the method with a
parameter named discountInDollars would execute, because the method call uses the
identifier discountInDollars. However, the compiler determines which version of a method
to call based on argument data types only, not their identifiers. Because both versions of the
printBill() method could accept two numeric parameters, the compiler cannot
determine which version to execute, so an error occurs and program compilation stops.

An overloaded method is not ambiguous on its own—it becomes ambiguous only if you make a method
call that matches multiple method signatures. In many languages, a program with potentially
ambiguous methods will run without problems if you don’t make any method calls that match more
than one method.

Methods can be overloaded correctly by providing different parameter lists for methods with
the same name. Methods with identical names that have identical parameter lists but different
return types are not overloaded—they are ambiguous. For example, the following two method
headers create ambiguity:
string aMethod(num x)
num aMethod(num y)

The compiler determines which version of a method to call based on parameter lists,
not return types. When the method call aMethod(17) is made, the compiler will not
know which of the two methods to execute because both possible choices take a
numeric argument.

All the popular object-oriented programming languages support multiple numeric data types. For example,
Java, C#, C++, and Visual Basic all support integer (whole number) data types that are different from
floating-point (decimal place) data types. Many languages have even more specialized numeric types, such
as signed and unsigned. Methods that accept different specific types are correctly overloaded.

Watch the video Overloading Methods.

404

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Overloading Methods

1. In programming, overloading involves supplying diverse meanings for a single
identifier.

2. When you overload a method, you write multiple methods with different names
but identical parameter lists.

3. Methods can be overloaded correctly by providing different parameter lists
for methods with the same name.

Using Predefined Methods
All modern programming languages contain many methods that have already been written
for programmers. Predefined methods might originate from several sources:

Some prewritten methods are built into a language. For example, methods that perform
input and output are usually predefined.

When you work on a program in a team, each programmer might be assigned specific
methods to create, and your methods will interact with methods written by others.

If you work for a company, many standard methods may already have been written and
you will be required to use them. For example, the company might have a standard
method that displays its logo.

Predefined methods save you time and effort. For example, in most languages, displaying a
message on the screen involves using a built-in method. When you want to display Hello on
the command prompt screen in C#, you write the following:

Console.WriteLine("Hello");

In Java, you write:

System.out.println("Hello");

In these statements, you can recognize WriteLine() and println() as method names
because they are followed by parentheses; the parentheses hold an argument that represents
the message to display. If these methods were not prewritten, you would have to know the
low-level details of how to manipulate pixels on a screen to display the characters. Instead, by
using the prewritten methods, you can concentrate on the higher-level task of displaying a
useful and appropriate message.

Thefalsestatementis#2.Whenyouoverloadamethod,youwritemethodswitha
sharednamebutdifferentparameterlists.

405

Using Predefined Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In C#, the convention is to begin method names with an uppercase letter. In Java, method names
conventionally begin with a lowercase letter. The WriteLine() and println() methods follow their
respective language’s convention. The WriteLine() and println() methods are both overloaded in
their respective languages. For example, if you pass a string to either method, the version of the method that
accepts a string parameter executes, but if you pass a number, another version that accepts a numeric
parameter executes.

Most programming languages also contain a variety of mathematical methods, such as those
that compute the square root or absolute value of a number. Other methods retrieve the
current date and time from the operating system or select a random number to use in a game
application. These methods were written as a convenience for you—computing a square root
and generating random numbers are complicated tasks, so it is convenient to have methods
already written, tested, and available when you need them. The names of the methods that
perform these functions differ among programming languages, so you need to research the
language’s documentation to use them. For example, many of a language’s methods are
described in introductory programming language textbooks, and you can also find language
documentation online.

Whether you want to use a predefined method or any other method, you should know the
following four details:

What the method does in general—for example, compute a square root.

The method’s name—for example, it might be sqrt().

The method’s required parameters—for example, a square root method might require
a single numeric parameter. There might be multiple overloaded versions of the method
from which you can choose. For example, one method version might accept an integer
and another version might accept a floating-point number.

The method’s return type—for example, a square root method most likely returns
a numeric value that is the square root of the argument passed to the
method.

You do not need to know how the method is implemented—that is, how the instruction
statements are written within it. Like all methods, you can use built-in methods without
worrying about their low-level implementation details.

406

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using Predefined Methods

1. The name of a method that performs a specific function (such as generating a
random number) is likely to be the same in various programming languages.

2. When you want to use a predefined method, you should know what the method
does in general, along with its name, required parameters, and return type.

3. When you want to use a predefined method, you do not need to know how the
method works internally to be able to use the method effectively.

Method Design Issues: Implementation Hiding,
Cohesion, and Coupling
To design effective methods, you should consider several program qualities:

You should employ implementation hiding; that is, a method’s client should not need to
understand a method’s internal mechanisms.

You should strive to increase cohesion.

You should strive to reduce coupling.

Understanding Implementation Hiding
An important principle of modularization is the notion of implementation hiding, the
encapsulation of method details. That is, when a program makes a request to a method, it
doesn’t know the details of how the method is executed. For example, when you make a
restaurant reservation, you do not need to know how the reservation is actually recorded at
the restaurant—perhaps it is written in a book, marked on a large chalkboard, or entered into
a computerized database. The implementation details don’t concern you as a patron, and if
the restaurant changes its methods from one year to the next, the change does not affect your
use of the reservation method—you still call and provide your name, a date, and a time. With
well-written methods, using implementation hiding means that a method that calls another
must know only the following:

The name of the called method

What type of information to send to the method

What type of return data to expect from the method

Thefalsestatementis#1.Methodsthatperformstandardfunctionsarelikelytohave
differentnamesinvariouslanguages.

407

Method Design Issues

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In other words, the calling method needs to understand only the interface to the method that
is called. The interface is the only part of a method with which the method’s client (or
method’s caller) interacts. The program does not need to know how the method works
internally. Additionally, if you substitute a new, improved method implementation but the
interface to the method does not change, you won’t need to make changes in any methods
that call the altered method.

Programmers refer to hidden implementation details as existing in a black box—you can
examine what goes in and what comes out, but not the details of how the method works
inside.

Increasing Cohesion
When you begin to design computer programs, it is difficult to decide how much to put into a
method. For example, a process that requires 40 instructions can be contained in a single 40-
instruction method, two 20-instruction methods, five 8-instruction methods, or many other
combinations. In most programming languages, any of these combinations is allowed; you
can write a program that executes and produces correct results no matter how you divide the
individual steps into methods. However, placing too many or too few instructions in a single
method makes a program harder to follow and reduces flexibility.

To help determine the appropriate division of tasks among methods, you want to analyze
each method’s cohesion, which refers to how the internal statements of a method serve to
accomplish the method’s purpose. In highly cohesive methods, all the operations are related,
or “go together.” Such methods are functionally cohesive—all their operations contribute to
the performance of a single task. Functionally cohesive methods usually are more reliable
than those that have low cohesion; they are considered stronger, and they make programs
easier to write, read, and maintain.

For example, consider a method that calculates gross pay. The method receives parameters
that define a worker’s pay rate and number of hours worked. The method computes gross pay
and displays it. The cohesion of this method is high because each of its instructions
contributes to one task—computing gross pay. If you can write a sentence describing what a
method does using only two words—for example, Compute gross, Cube value, or Display
record—the method is probably functionally cohesive.

You might work in a programming environment that has a rule such as No method will be
longer than can be printed on one page or No method will have more than 30 lines of code. The
rule maker is trying to achieve more cohesion, but such rules are arbitrary. A two-line
method could have low cohesion and a 40-line method might have high cohesion. Because
good, functionally cohesive methods perform only one task, they tend to be short. However,
the issue is not size. If it takes 20 statements to perform one task within a method, the method
is still cohesive.

Most programmers do not consciously make decisions about cohesiveness for each method
they write. Rather, they develop a “feel” for what types of tasks belong together, and for which
subsets of tasks should be diverted to their own methods.

408

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Reducing Coupling
Coupling is a measure of the strength of the connection between two program methods; it
expresses the extent to which information is exchanged by methods. Coupling is either tight
or loose, depending on how much one method relies on information from another. Tight
coupling, which occurs when methods depend on each other excessively, makes programs
more prone to errors. With tight coupling, you have many data paths to keep track of, many
chances for bad data to pass from one method to another, and many chances for one method
to alter information needed by another method. Loose coupling occurs when methods do
not depend on others. In general, you want to reduce coupling as much as possible
because connections between methods make them more difficult to write, maintain,
and reuse.

Imagine four cooks wandering in and out of a kitchen while preparing a stew. If each is
allowed to add seasonings at will without the knowledge of the other cooks, you could end up
with a culinary disaster. Similarly, if four payroll program methods can alter your gross pay
without the “knowledge” of the other methods, you could end up with a financial disaster. A
program in which several methods have access to your gross pay figure has methods that are
tightly coupled. A superior program would control access to the payroll value by passing it
only to methods that need it.

You can evaluate whether coupling between methods is loose or tight by examining how
methods share data.

Tight coupling occurs when methods have access to the same globally defined variables.
When one method changes the value stored in a variable, other methods are affected. You
should avoid tight coupling, but be aware that you might see it in programs written by
others.

Loose coupling occurs when a copy of data that must be shared is passed from one
method to another. That way, the sharing of data is always purposeful—variables must be
explicitly passed to and from methods that use them. The loosest (best) methods pass
single arguments if possible, rather than many variables or entire records.

Additionally, there is a time and a place for shortcuts. If a memo must go out in five minutes,
you don’t have time to change fonts or add clip art with your word processor. Similarly, if you
need a quick programming result, you might very well use cryptic variable names, tight
coupling, and minimal cohesion. When you create a professional application, however, you
should keep professional guidelines in mind.

409

Method Design Issues

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Method Design Issues: Implementation Hiding, Cohesion, and Coupling

1. A calling method must know the interface to any method it calls.

2. You should try to avoid loose coupling, which occurs when methods do not
depend on others.

3. Functional cohesion occurs when all operations in a method contribute to the
performance of only one task.

Understanding Recursion
Recursion occurs when a method is defined in terms of itself. A method that calls itself is a
recursive method. Some programming languages do not allow a method to call itself, but
those that do can be used to create recursive methods that produce interesting effects.

Figure 9-20 shows a simple example of recursion. The program calls an infinity() method,
which displays Help! and calls itself again (see the shaded statement). The second call to
infinity() displays Help! and generates a third call. The result is a large number of
repetitions of the infinity() method. The output is shown in Figure 9-21.

Thefalsestatementis#2.Youshouldaimforloosecouplingsothatmethodsare
independent.
start
   in
stop

in
   output "Help! "
   in
return

finity()

finity()

finity()

Figure 9-20 A program that calls a recursive method
© 2015 Cengage Learning

410

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Every time you call a method, the address to which the program should return at the
completion of the method is stored in a memory location called the stack. When a method
ends, the address is retrieved from the stack and the program returns to the location where
the method call was made, then proceeds to the next instruction. For example, suppose that a
program calls methodA() and that methodA() calls methodB(). When the program calls
methodA(), a return address is stored in the stack, and then methodA() begins execution.
When methodA() calls methodB(), a return address in methodA() is stored in the stack and
methodB() begins execution. When methodB() ends, the last entered address is retrieved from
the stack and program control returns to complete methodA(). When methodA() ends, the
remaining address is retrieved from the stack and program control returns to the main
program method to continue execution.

Like all computer memory, the stack has a finite size. When the program in Figure 9-20 calls
the infinity() method, the stack receives so many return addresses that it eventually
overflows. The recursive calls will end after an excessive number of repetitions and the
program issues an error message.

Of course, there is no practical use for an infinitely recursive program. Just as you must be
careful not to create endless loops, when you write useful recursive methods you must
provide a way for the recursion to stop eventually. The input values that cause a method to
recur are called the recursive cases, and the input value that makes the recursion stop is
called the base case or terminating case.

Figure 9-21 Output of the program in Figure 9-20
© 2015 Cengage Learning

411

Understanding Recursion

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using recursion successfully is easier if you thoroughly understand looping. You learned about loops in
Chapter 5. An everyday example of recursion is printed on shampoo bottles: Lather, rinse, repeat.

Figure 9-22 shows an application that uses recursion productively. The program calls a
recursive method that computes the sum of every integer from 1 up to and including the
method’s argument value. For example, the sum of every integer up to and including 3 is 1+2+3,
or 6, and the sum of every integer up to and including 4 is 1+2+3+4, or 10.

When thinking about cumulative summing relationships, remember that the sum of all the
integers up to and including any number is that number plus the sum of the integers for the
next lower number. In other words, consider the following:

The sum of the digits from 1, up to and including 1, is simply 1.

The sum of the digits from 1 through 2 is the previous sum, plus 2.

The sum of the digits from 1 through 3 is the previous sum, plus 3.

The sum of the digits from 1 through 4 is the previous sum, plus 4.

And so on.

start
   Declarations
      num LIMIT = 10
      num number
   number = 1
   while number <= LIMIT
      output "When number is ", number,
         " then cumulativeSum(number) is ",
         cumulativeSum(number)
      number = number + 1
   endwhile
return

num cumulativeSum(num number)
   Declarations
      num returnVal
   if number = 1 then
      returnVal = number
   else
      returnVal = number + cumulativeSum(number − 1)
   endif
return returnVal

Figure 9-22 Program that uses a recursive cumulativeSum() method
© 2015 Cengage Learning

412

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The recursive cumulativeSum() method in Figure 9-22 uses this knowledge. For each number,
its cumulative sum consists of the value of the number itself plus the cumulative sum of all
the previous lesser numbers. The program in Figure 9-22 calls the cumulativeSum() method
10 times in a loop to show the cumulative sum of every integer from 1 through 10. Figure 9-23
shows the output.

If you examine Figures 9-22 and 9-23 together, you can see the following:

When 1 is passed to the cumulativeSum() method, the if statement within the method
determines that the argument is equal to 1, returnVal becomes 1, and 1 is returned for
output. (The input value 1 is the base case or terminating case.)

On the next pass through the loop, 2 is passed to the cumulativeSum() method. When
the method receives 2 as an argument, the if statement within the method is false, and
returnVal is set to 2 plus the value of cumulativeSum(1). (The input value 2 is a recursive
case.) This second call to cumulativeSum() using 1 as an argument returns a 1, so when
the method ends, it returns 2+1, or 3.

On the third pass through the loop within the calling program, 3 is passed to the
cumulativeSum() method. When the method receives 3 as an argument, the if statement
within the method is false and the method returns 3 plus the value of cumulativeSum(2).
(The input value 3, like 2, is a recursive case.) The value of this call is 2 plus
cumulativeSum(1). The value of cumulativeSum(1) is 1. Ultimately, cumulativeSum(3)
is 3+2+1.

Many sophisticated programs that operate on lists of items use recursive processing.
However, following the logic of a recursive method can be difficult, and programs that use
recursion are sometimes error-prone and hard to debug. Because such programs also can be
hard for others to maintain, some business organizations forbid their programmers from
using recursive logic in company programs. Many of the problems solved by recursive
methods can be solved using loops. For example, examine the program in Figure 9-24. This
program produces the same result as the previous recursive program, but in a more
straightforward fashion.

Figure 9-23 Output of the program in Figure 9-22
© 2015 Cengage Learning

413

Understanding Recursion

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A humorous illustration of recursion is found in this sentence: “In order to understand recursion, you must
first understand recursion.” A humorous dictionary entry is “Recursion: See Recursion.” These examples
contain an element of truth, but useful recursive algorithms always have a point at which the infinite loop is
exited. In other words, the base case or terminating case is always reached at some point.

Watch the video Recursion.

TWO TRUTHS & A LIE

Understanding Recursion

1. A method that calls itself is a recursive method.

2. Every time you call a method, the address to which the program should return
at the completion of the method is stored in a memory location called the
stack.

3. Following the logic of a recursive method is usually much easier than following
the logic of an ordinary program, so recursion makes debugging easier.

start
   Declarations
      num number
      num total
      num LIMIT = 10
   total = 0
   number = 1
   while number <= LIMIT
      total = total + number
      output "When number is ", number,
         " then the cumulative sum of 1 through",
         number, " is ", total
      number = number + 1
   endwhile
stop

Figure 9-24 Nonrecursive program that computes cumulative sums
© 2015 Cengage Learning

Thefalsestatementis#3.Followingthelogicofarecursivemethodisdifficult,and
programsthatuserecursionaresometimeserror-proneandhardtodebug.

414

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter Summary
A method is a program module that contains a series of statements that carry out a task.
Any program can contain an unlimited number of methods, and each method can be
called an unlimited number of times. A method must include a header, a body, and a
return statement that marks the end of the method.

Variables and constants are in scope within, or local to, only the method within which
they are declared.

When you pass a data item into a method, it is an argument to the method. When the
method receives the data item, it is called a parameter. When you write the declaration for
a method that can receive parameters, you must include the data type and a local name for
each parameter within the method declaration’s parentheses. You can pass multiple
arguments to a called method by listing the arguments within the method call and
separating them with commas. When you call a method, the arguments you send to the
method must match in order—both in number and in type—the parameters listed in the
method declaration.

A method’s return type indicates the data type of the value that the method will send back
to the location where the method call was made. The return type also is known as a
method’s type, and is placed in front of the method name when the method is defined.
When a method returns a value, you usually want to use the returned value in the calling
method, although this is not required.

You can pass a single array element to a method in exactly the same manner you would
pass a variable or constant. You can indicate that a method parameter is an array by
placing square brackets after the data type in the method’s parameter list. When you pass
an array to a method, it is passed by reference; that is, the method receives the actual
memory address of the array and has access to the actual values in the array elements.

When you overload a method, you write multiple methods with a shared name but
different parameter lists. The compiler understands your meaning based on the
arguments you use when calling the method. Overloading a method introduces the risk of
creating ambiguous methods—a situation in which the compiler cannot determine which
version of a method to use.

All modern programming languages contain many built-in, prewritten methods to save
you time and effort.

With well-written methods, the implementation is hidden. To call a method, you need
only know the name of the method, what type of information to send to the method, and
what type of return data to expect from the method. When writing methods, you should
strive to achieve high cohesion and loose coupling.

Recursion occurs when a method is defined in terms of itself. Following the logic of a
recursive method can be difficult, and programs that use recursion are sometimes error-
prone and hard to debug.

415

Chapter Summary

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
A method is a program module that contains a series of statements that carry out a task.

A method’s client is a program or other method that uses the method.

A method header precedes a method body; the header includes the method identifier
and possibly other necessary identifying information, such as a return type and
parameter list.

A method body contains all the statements in the method.

Implementation describes the body of a method or the statements that carry out the tasks of a
method.

A method return statement marks the end of a method and identifies the point at which
control returns to the calling method.

Local describes data items that are only known to the method in which they are declared.

Global describes data items that are known to all the methods in a program.

An argument to a method is a value passed to a method in the call to the method.

A parameter to a method is a data item defined in a method header that accepts data passed
into the method from the outside.

A parameter list is all the data types and parameter names that appear in a method header.

A method’s signature includes its name and parameter list.

A variable passed into a method is passed by value; that is, a copy of its value is sent to the
method and stored in a new memory location accessible to the method.

Actual parameters are the arguments in a method call.

Formal parameters are the variables in the method declaration that accept the values from
the actual parameters.

A method’s return type indicates the data type of the value that the method will send back to
the location where the method call was made.

A void method returns no value.

A method’s type is the type of its return value.

Overhead refers to all the resources and time required by an operation.

An IPO chart identifies and categorizes each item needed within the method as pertaining to
input, processing, or output.

416

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Passed by reference describes how values are accepted into a method when the method
receives the actual memory address item. Arrays are passed by reference.

Overloading involves supplying diverse meanings for a single identifier.

Polymorphism is the ability of a method to act appropriately according to the
context.

To overload a method is to create multiple versions with the same name but different
parameter lists.

Ambiguous methods are those methods that the compiler cannot distinguish between
because they have the same name and parameter types.

Implementation hiding is a programming principle that describes the encapsulation of
method details.

The interface to a method includes the method’s return type, name, and arguments. It is the
part that a client sees and uses.

A black box is the analogy programmers use to refer to hidden method implementation
details.

Cohesion is a measure of how the internal statements of a method serve to accomplish the
method’s purpose.

Functional cohesion occurs when all operations in a method contribute to the performance of
only one task. Functional cohesion is the highest level of cohesion; you should strive for it in
all methods you write.

Coupling is a measure of the strength of the connection between two program
methods.

Tight coupling occurs when methods excessively depend on each other; it makes programs
more prone to errors.

Loose coupling occurs when methods do not depend on others.

Recursion occurs when a method is defined in terms of itself.

A recursive method is a method that calls itself.

The stack is a memory area that holds addresses to which methods should return.

Recursive cases describe the input values that cause a recursive method to execute
again.

The base case or terminating case of a recursive method describes the value that ends the
repetition.

417

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises

Review Questions

1. Which of the following is true?

a. A program can call one method at most.
b. A method can contain one or more other methods.
c. A program can contain a method that calls another method.
d. All of the above are true.

2. Which of the following must every method have?

a. a parameter list
b. a header

c. a return value
d. all of the above

3. Which of the following is most closely related to the concept of local?

a. abstract
b. object-oriented

c. program level
d. in scope

4. Although the terms parameter and argument are closely related, the difference is
that argument refers to .

a. a value in a method call
b. a passed constant

c. a formal parameter
d. a variable that is local to a method

5. A method’s interface is its .

a. parameter list
b. return type

c. identifier
d. all of the above

6. When you write the declaration for a method that can receive a parameter, which
of the following must be included in the method declaration?

a. the name of the argument that will be used to call the method
b. a local name for the parameter
c. the data type of the parameter
d. two of the above

7. When you use a variable name in a method call, it as the variable in
the method header.

a. can have the same name
b. cannot have the same name

c. must have the same name
d. cannot have the same data type

418

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8. Assume that you have written a method with the header void myMethod(num a,

string b). Which of the following is a correct method call?

a. myMethod(12)

b. myMethod(12, "Hello")

c. myMethod("Goodbye")

d. It is impossible to tell.

9. Assume that you have written a method with the header num yourMethod(string

name, num code). The method’s type is .

a. num

b. string

c. num and string

d. void

10. Assume that you have written a method with the header string myMethod(num

score, string grade). Also assume that you have declared a numeric variable
named test. Which of the following is a correct method call?

a. myMethod()

b. myMethod(test)

c. myMethod(test, test)

d. myMethod(test,"A")

11. The value used in a method’s return statement must .

a. be numeric
b. be a variable
c. match the data type used before the method name in the header
d. two of the above

12. When a method receives a copy of the value stored in an argument used in the
method call, it means the variable was .

a. unnamed
b. passed by value
c. passed by reference
d. assigned its original value when it was declared

13. A void method .

a. contains no statements
b. requires no parameters

c. returns nothing
d. has no name

14. When an array is passed to a method, it is .

a. passed by reference
b. passed by value

c. unnamed in the method
d. unalterable in the method

15. When you overload a method, you write multiple methods with the same .

a. name
b. parameter list

c. number of parameters
d. return type

419

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16. A program contains a method with the header num calculateTaxes(num amount,

string name). Which of the following methods can coexist in the same program
with no possible ambiguity?

a. num calculateTaxes(string name, num amount)

b. string calculateTaxes(num money, string taxpayer)

c. num calculateTaxes(num annualPay, string taxpayerId)

d. All of these can coexist without ambiguity.

17. Methods in the same program with identical names and identical parameter lists
are .

a. overloaded
b. overworked

c. overwhelmed
d. ambiguous

18. Methods in different programs with identical names and identical parameter lists
are .

a. overloaded
b. illegal

c. both of the above
d. none of the above

19. The notion of most closely describes the way a calling method is not
aware of the statements within a called method.

a. abstraction
b. object-oriented

c. implementation hiding
d. encapsulation

20. Programmers should strive to .

a. increase coupling
b. increase cohesion
c. both of the above
d. neither a nor b

Programming Exercises

1. Create an IPO chart for each of the following methods:
a. The method that calculates the amount owed on a restaurant check, including

tip

b. The method that calculates your yearly education-related expenses

c. The method that calculates your annual housing expenses, including rent or
mortgage payment and utilities

420

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2. Create the logic for a program that continuously prompts the user for a number of
dollars until the user enters 0. Pass each entered amount to a conversion method
that displays a breakdown of the passed amount into the fewest bills; in other
words, the method calculates the number of 20s, 10s, 5s, and 1s needed.

3. a. Create the logic for a program that calculates and displays the amount of
money you would have if you invested $5000 at 2 percent simple interest for
one year. Create a separate method to do the calculation and return the result
to be displayed.

b. Modify the program in Exercise 3a so that the main program prompts the user
for the amount of money and passes it to the interest-calculating method.

c. Modify the program in Exercise 3b so that the main program also prompts the
user for the interest rate and passes both the amount of money and the interest
rate to the interest-calculating method.

4. Create the logic for a program that accepts an annual salary as input. Pass the
salary to a method that calculates the highest monthly housing payment the user
can afford, assuming that the year’s total payment is no more than 25 percent of
the annual salary.

5. a. Create the logic for a program that performs arithmetic functions. Design the
program to contain two numeric variables, and prompt the user for values for
the variables. Pass both variables to methods named sum() and difference().
Create the logic for the methods sum() and difference(); they compute the
sum of and difference between the values of two arguments, respectively. Each
method should perform the appropriate computation and display the results.

b. Modify the program in Exercise 5a so that the two entered values are passed to
a method named getChoice(). The getChoice() method asks the user
whether addition or subtraction should be performed and then passes the two
values to the appropriate method, where the result is displayed.

6. Create the logic for a program that continuously prompts a user for a numeric
value until the user enters 0. The application passes the value in turn to the
following methods:

A method that displays all whole numbers from 1 up to and including the
entered number

A method that computes the sum of all the whole numbers from 1 up to and
including the entered number

A method that computes the product of all the whole numbers from 1 up to
and including the entered number

7. Create the logic for a program that calls a method that computes the final price for a
sales transaction. The program contains variables that hold the price of an item, the
salesperson’s commission expressed as a percentage, and the customer discount
expressed as a percentage. Create a calculatePrice() method that determines the

421

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



final price and returns the value to the calling method. The calculatePrice()

method requires three arguments: product price, salesperson commission rate, and
customer discount rate. A product’s final price is the original price plus the com-
mission amount minus the discount amount. The customer discount is taken as a
percentage of the total price after the salesperson commission has been added to the
original price.

8. Create the logic for a program that continuously prompts the user for two numeric
values that represent the dimensions of a room in feet. Include two overloaded
methods that compute the room’s area. One method takes two numeric para-
meters and calculates the area by multiplying the parameters. The other takes a
single numeric parameter, which is squared to calculate area. Each method displays
its calculated result. Accept input and respond as follows:

When the user enters zero for the first value, end the program.

If the user enters a negative number for either value, continue to reprompt the
user until the value is not negative.

If both numbers entered are greater than 0, call the method version that
accepts two parameters and pass it both values.

If the second value is zero, call the version of the method that accepts just one
parameter and pass it the nonzero value.

9. a. Plan the logic for an insurance company program to determine policy
premiums. The program continuously prompts the user for an insurance policy
number. When the user enters an appropriate sentinel value, end the program.
Call a method that prompts each user for the type of policy needed—health or
auto. While the user’s response does not indicate health or auto, continue to
prompt the user. When the value is valid, return it from the method. Pass the
user’s response to a new method where the premium is set and returned—$550
for a health policy or $225 for an auto policy. Display the results for each policy.

b. Modify Exercise 9a so that the premium-setting method calls one of two
additional methods—one that determines the health premium or one that
determines the auto premium. The health insurance method asks users whether
they smoke; the premium is $550 for smokers and $345 for nonsmokers. The
auto insurance method asks users to enter the number of traffic tickets they
have received in the last three years. The premium is $225 for drivers with three
or more tickets, $190 for those with one or two tickets, and $110 for those with
no tickets. Each of these two methods returns the premium amount to the
calling method, which returns the amount to be displayed.

422

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10. Create the logic for a program that prompts the user for numeric values for
a month, day, and year. Then pass the three variables to the following
methods:

a. A method that displays the date with dashes in month-day-year order, as it is
often represented in the United States—for example, 6-24-2015

b. A method that displays the date with dashes in day-month-year order, as it is
often represented in the United Kingdom—for example, 24-6-2015

c. A method that displays the date with dashes in year-month-day order, as it is
represented in the International Standard—for example, 2015-6-24

d. A method that prompts the user for the desired format (“US”, “UK”, or “IS”)
and then passes the three values to one of the methods described in parts a, b,
and c of this exercise

11. Create the logic for a program that computes hotel guest rates at Cornwall’s
Country Inn. Include two overloaded methods named computeRate(). One
version accepts a number of days and calculates the rate at $99.99 per day.
The other accepts a number of days and a code for a meal plan. If the code is
A, three meals per day are included, and the price is $169.00 per day. If the
code is C, breakfast is included, and the price is $112.00 per day. All other
codes are invalid. Each method returns the rate to the calling program where
it is displayed. The main program asks the user for the number of days in a
stay and whether meals should be included; then, based on the user’s
response, the program either calls the first method or prompts for a meal
plan code and calls the second method.

12. Create the logic for a program that prompts a user for 10 numbers and stores them
in an array. Pass the array to a method that reverses the order of the numbers.
Display the reversed numbers in the main program.

13. Create the logic for a program that prompts a user for six numbers and stores them
in an array. Pass the array to a method that calculates the arithmetic average of the
numbers and returns the value to the calling program. Display each number and
how far it is from the arithmetic average. Continue to prompt the user for
additional sets of six numbers until the user wants to quit.

423

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14. The Information Services Department at the Springfield Library has created
methods with the following signatures:

a. Design an interactive program that does the following, using the prewritten
methods whenever they are appropriate.

Prompt the user for and read a library card number, which must be between
1000 and 9999.

Prompt the user for and read a search option—1 to search for a book by
ISBN, 2 to search for a book by title, and 3 to quit. If the entry is invalid,
repeat the request.

While the user does not enter 3, prompt for an ISBN or title based on the
user’s previous selection. If the user enters an ISBN, get and display the
book’s title and ask the user to enter a "Y" or "N" to confirm whether the title
is correct.

If the user has entered a valid ISBN or a title that matches a valid ISBN, check
whether the book is available, and display an appropriate message for the user.

The user can continue to search for books until he or she enters 3 as the
search option.

b. Develop the logic that implements each of the methods in Exercise 14a.

Signature Description

num getNumber(num high, num low) Prompts the user for a number, and continues to
prompt until the number falls between designated high
and low limits; returns a valid number

string getCharacter() Prompts the user for a character string and returns the
entered string

num lookUpISBN(string title) Accepts the title of a book and returns the ISBN;
returns a 0 if the book cannot be found

string lookUpTitle(num isbn) Accepts the ISBN of a book and returns a title; returns
a space character if the book cannot be found

string isBookAvailable(num isbn) Accepts an ISBN, searches the library database, and
returns "Y" or "N" indicating whether the book is
currently available

Table 9-1 Library methods

424

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15. Each of the programs in Figure 9-25 uses a recursive method. Try to determine the
output in each case.

Performing Maintenance
1. A file named MAINTENANCE09-01.txt is included with your downloadable

student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 9 include DEBUG09-01.txt, DEBUG09-02.txt,
and DEBUG09-03.txt. Each file starts with some comments that describe the
problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must find
and correct.

2. Your downloadable files for Chapter 9 include a file named DEBUG09-04.jpg that
contains a flowchart with syntax and/or logical errors. Examine the flowchart and
then find and correct all the bugs.

Game Zone

1. In the Game Zone sections of Chapters 6 and 8, you designed the logic for a quiz
that contains questions about a topic of your choice. Now, modify the program so
it contains an array of five multiple-choice quiz questions related to the topic of
your choice. Each question contains four answer choices. Also, create a parallel

start
   output recursiveA(0)
stop
num recursiveA(num x)
   num result
   if x = 0 then
      result = x
   else
      result = x *
         (recursiveA(x – 1))
   endif
return result

start
   output recursiveB(2)
stop
num recursiveB(num x)
   num result
   if x = 0 then
      result = x
   else
      result = x *
         (recursiveB(x – 1))
   endif
return result

start
   output recursiveC(2)
stop
num recursiveC(num x)
   num result
   if x = 1 then
      result = x
   else
      result = x *
         (recursiveC(x – 1))
   endif
return result

a. b. c.

Figure 9-25 Problems for Exercise 15
© 2015 Cengage Learning

425

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



array that holds the correct answer to each question—A, B, C, or D. In turn, pass
each question to a method that displays the question and accepts the player’s
answer. If the player does not enter a valid answer choice, force the player to
reenter the choice. Return the user’s valid (but not necessarily correct) answer to
the main program. After the user’s answer is returned to the main program, pass it
and the correct answer to a method that determines whether the values are equal
and displays an appropriate message. After the user answers all five questions,
display the number of correct and incorrect answers that the user chose.

2. In the Game Zone section of Chapter 6, you designed the logic for the game
Hangman, in which the user guesses letters in a hidden word. Improve the game to
store an array of 10 words. One at a time, pass each word to a method that allows
the user to guess letters continuously until the game is solved. The method returns
the number of guesses it took to complete the word. Store the number in an array
before returning to the method for the next word. After all 10 words have been
guessed, display a summary of the number of guesses required for each word as
well as the average number of guesses per word.

Up for Discussion

1. One advantage to writing a program that is subdivided into methods is that such a
structure allows different programmers to write separate methods, thus dividing
the work. Would you prefer to write a large program by yourself, or to work on a
team in which each programmer produces one or more methods? Why?

2. In this chapter, you learned that hidden implementations are often said to exist in a
black box. What are the advantages and disadvantages to this approach in both
programming and real life?

426

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 10
Object-Oriented
Programming

In this chapter, you will learn about:

The principles of object-oriented programming

Classes

Public and private access

Ways to organize classes

Instance methods

Static methods

Using objects

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Principles of Object-Oriented Programming
Object-oriented programming (OOP) is a programming model that focuses on an
application’s components and data and the methods you need to manipulate them. With
OOP, you consider the items that a program will manipulate—for example, a customer
invoice, a loan application, a button that a user clicks, or a menu from which a user selects an
option. These items are called objects, and when you program, you define their
characteristics, functions, and capabilities.

OOP uses all of the familiar concepts of modular procedural programming, such as variables,
methods, and passing arguments. Methods in object-oriented programs continue to use
sequence, selection, and looping structures and make use of arrays. However, OOP adds
several new concepts to programming and involves a different way of thinking. A
considerable amount of new vocabulary is involved as well. First, you will read about OOP
concepts in general, and then you will learn the specific terminology.

Five important features of object-oriented languages are:

Classes

Objects

Polymorphism

Inheritance

Encapsulation

Classes and Objects
In object-oriented terminology, a class describes a group or collection of objects with
common attributes. An object is one instance of a class. Object-oriented programmers
sometimes say an object is one instantiation of a class; when a program creates an object, it
instantiates the object. The words in boldface in the previous sentence both derive from
instance. For example, your redChevroletAutomobileWithTheDent is an instance of the class
that describes all automobiles, and your goldenRetrieverDogNamedGinger is an instance of
the class that describes all dogs. A class is like a blueprint from which many houses might be
built, or like a recipe from which many meals can be prepared. One house and one meal are
each an instance of their class; countless instances might be created eventually. For example,
Figure 10-1 depicts a Dog class and two instances of it.

428

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Objects both in the real world and in object-oriented programming may contain attributes
and methods. Attributes are the characteristics of an object. For example, some of your
automobile’s attributes are its make, model, year, and purchase price. These attributes don’t
change during the car’s life. Examples of attributes that change frequently include whether
the automobile is currently running, its gear, its speed, and whether it is dirty. All automobiles
possess the same attributes, but not the same values for those attributes. Similarly, your dog
has the attributes of its breed, name, age, and whether its shots are current. Methods are the
actions that can be taken on an object; often they alter, use, or retrieve the attributes. For
example, an automobile has methods for changing and viewing its speed, and a dog has
methods for setting and finding out its shot status.

Thinking of items as instances of a class allows you to apply your general knowledge of the
class to the individual objects created from it. You know what attributes an object has when
you know what class defines it. For example, if your friend purchases an Automobile, you
know it has a model name, and if your friend gets a Dog, you know the dog has a breed. You
might not know the current status of your friend’s Automobile, such as its current speed, or
the status of her Dog’s shots, but you do know what attributes exist for the Automobile and
Dog classes, which allows you to imagine these objects reasonably well before you see them.
You know enough to ask the Automobile’s model and not its breed; you know enough to ask
the Dog’s name and not its engine size. As another example, when you use a new application
on your computer, you expect each component to have specific, consistent attributes, such as
a button being clickable or a window being closable. Each component gains these attributes as
an instance of the general class of GUI (graphical user interface) components.

Dog

name
age
hasShots

Method to change name
Method to update shots  

Class name

Methods 

Spike
4 years
yes 

Brutus
7 years
no

Instances or objectsClass description

Attributes or
fields

Figure 10-1 A Dog class and two instances
© 2015 Cengage Learning

429

Principles of Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Most programmers employ a naming convention in which class names begin with an uppercase letter and
multiple-word identifiers are run together, such as SavingsAccount or TemporaryWorker. Each new
word within the identifier starts with an uppercase letter. In Chapter 2, you learned that this convention is
known as Pascal casing.

Much of your understanding of the world comes from your ability to categorize objects and
events into classes. As a young child, you learned the concept of animal long before you knew
the word. Your first encounter with an animal might have been with the family dog, a
neighbor’s cat, or a goat at a petting zoo. As you developed speech, you might have used the
same term for all of these creatures, gleefully shouting “Doggie!” as your parents pointed out
cows, horses, and sheep in picture books or along the roadside on drives in the country. As
you grew more sophisticated, you learned to distinguish dogs from cows; still later, you
learned to distinguish breeds. Your understanding of the class Animal helps you see the
similarities between dogs and cows, and your understanding of the class Dog helps you see the
similarities between a Great Dane and a Chihuahua. Understanding classes gives you a
framework for categorizing new experiences. You might not know the term okapi, but when
you learn it’s an animal, you begin to develop a concept of what an okapi might be like.

When you think in an object-oriented manner, everything is an object. You can think of any
inanimate physical item as an object—your desk, your computer, and your house are all called
objects in everyday conversation. You can think of living things as objects, too—your houseplant,
your pet goldfish, and your sister are objects. Events also are objects—the stock purchase you
made, the mortgage closing you attended, and your graduation party are all objects.

Everything is an object, and every object is an instance of a more general class. Your desk is an
instance of the class that includes all desks, and your pet goldfish is an instance of the class
that contains all fish. These statements represent is-a relationships because you can say, “My
oak desk with the scratch on top is a Desk and my goldfish named Moby is a Fish.” Your
goldfish, my guppy, and the zoo’s shark each constitute one instance of the Fish class.

Object-oriented programmers also use the term is-a when describing inheritance. You will learn about
inheritance later in this chapter and in Chapter 11.

The concept of a class is useful because of its reusability. For example, if you invite me to a
graduation party, I automatically know many things about the party object. I assume that
there will be attributes such as a starting time, a number of guests, some quantity of food, and
gifts. I understand parties because of my previous knowledge of the Party class, of which all
parties are tangible examples or instances. I don’t know the number of guests or the date or
time of this particular party, but I understand that because all parties have a date and time,
then this one must as well. Similarly, even though every stock purchase is unique, each must
have a dollar amount and a number of shares. All objects have predictable attributes because
they are instantiated from specific classes.

The data components of a class that belong to every instantiated object are the class’s
instance variables. Instance variables often are called fields to help distinguish them from
other variables you might use. The set of all the values or contents of an object’s instance

430

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



variables is known as its state. For example, the current state of a particular party might be
8 p.m. and Friday; the state of a particular stock purchase might be $10 and five shares.

In addition to their attributes, classes have methods associated with them, and every object
instantiated from a given class possesses the same methods. For example, at some point you
might want to issue invitations for a party. You might name the method issueInvitations(),
and it might display some text as well as the values of the party’s date and time fields. Your
graduation party, then, might be named myGraduationParty. As an object of the Party class,
it might have data members for the date and time, like all parties, and it might have a method to
issue invitations. When you use the method, you might want to be able to send an argument
to issueInvitations() that indicates how many copies to print. When you think of an
object and its methods, it’s as though you can send a message to the object to direct it to
accomplish a particular task—you can tell the party object named myGraduationParty to print
the number of invitations you request. Even though yourAnniversaryParty also is an instance
of the Party class, and even though it also has access to the issueInvitations() method,
you will send a different argument value to yourAnniversaryParty’s issueInvitations()
method than I send to myGraduationParty’s corresponding method. Within an object-oriented
program, you continuously make requests to an object’s methods, often including arguments
as part of those requests.

In grammar, a noun is equivalent to an object and the values of a class’s attributes are adjectives—they
describe the characteristics of the objects. An object also can have methods, which are equivalent to verbs.

When you program in object-oriented languages, you frequently create classes from which
objects will be instantiated. You also write applications to use the objects, along with their
data and methods. Often, you will write programs that use classes created by others; at other
times, you might create a class that other programmers will use to instantiate objects within
their own programs. A program or class that instantiates objects of another prewritten class is
a class client or class user. For example, your organization might already have a class named
Customer that contains attributes such as name, address, and phoneNumber, and you might
create clients that include arrays of thousands of Customers. Similarly, in a GUI operating
environment, you might write applications that include prewritten components from classes
with names like Window and Button.

Polymorphism
The real world is full of objects. Consider a door. A door needs to be opened and closed. You
open a door with an easy-to-use interface known as a doorknob. Object-oriented
programmers would say you are passing a message to the door when you tell it to open by
turning its knob. The same message (turning a knob) has a different result when applied to
your radio than when applied to a door. As depicted in Figure 10-2, the procedure you use to
open something—call it the “open” procedure—works differently on a door than it does on
a desk drawer, a bank account, a computer file, or your eyes. However, even though
these procedures operate differently using the various objects, you can call each of these
procedures “open.”

431

Principles of Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Within classes in object-oriented programs, you can create multiple methods with the same
name, which will act differently and appropriately when used with different types of objects. In
Chapter 9, you learned that this concept is called polymorphism, and you learned to overload
methods. For example, you might use a method named print() to print a customer invoice,
loan application, or envelope. Because you use the same method name to describe the different
actions needed to print these diverse objects, you can write statements in object-oriented
programming languages that are more like English; you can use the same method name to
describe the same type of action, no matter what type of object is being acted upon. Using the
method name print() is easier than remembering printInvoice(), printLoanApplication(),
and so on. Object-oriented languages understand verbs in context, just as people do.

As another example of the advantages to using one name for a variety of objects, consider a screen
you might design for a user to enter data into an application you are writing. Suppose that the
screen contains a variety of objects—some forms, buttons, scroll bars, dialog boxes, and so on.
Suppose also that you decide to make all the objects blue. Instead of having to memorize the
method names that these objects use to change color—perhaps changeFormColor(),
changeButtonColor(), and so on—your job would be easier if the creators of all those objects had
developed a setColor() method that works appropriately with each type of object.

Purists find a subtle difference between overloading and polymorphism. Some reserve the term
polymorphism (or pure polymorphism) for situations in which one method body is used with a variety of
arguments. For example, a single method that can be used with any type of object is polymorphic. The term
overloading is applied to situations in which you define multiple methods with a single name—for example,
three methods, all named display(), that display a number, an employee, and a student, respectively.
Certainly, the two terms are related; both refer to the ability to use a single name to communicate multiple
meanings. For now, think of overloading as a primitive type of polymorphism.

open() 

Polymorphism occurs when the same method name 
works appropriately for different object types.

door bank account eye

Figure 10-2 Examples of polymorphism
© 2015 Cengage Learning

432

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance
Another important concept in object-oriented programming is inheritance, which is the
process of acquiring the traits of one’s predecessors. In the real world, a new door with a
stained glass window inherits most of its traits from a standard door. It has the same purpose,
it opens and closes in the same way, and it has the same knob and hinges. As Figure 10-3
shows, the door with the stained glass window simply has one additional trait—its window.
Even if you have never seen a door with a stained glass window, you know what it is and how
to use it because you understand the characteristics of all doors. With object-oriented
programming, once you create an object, you can develop new objects that possess all the
traits of the original object plus any new traits you desire. If you develop a CustomerBill class
of objects, there is no need to develop an OverdueCustomerBill class from scratch. You can
create the new class to contain all the characteristics of the already developed one, and simply
add necessary new characteristics. This not only reduces the work involved in creating new
objects, it makes them easier to understand because they possess most of the characteristics
of already developed objects.

Watch the video An Introduction to Object-Oriented Programming.

Encapsulation
Real-world objects often employ encapsulation and information hiding. Encapsulation is the
process of combining all of an object’s attributes and methods into a single package; the
package includes data that is frequently hidden from outside classes as well as methods that
are available to outside classes to access and alter the data. Information hiding is the concept
that other classes should not alter an object’s attributes—only the methods of an object’s own
class should have that privilege. (The concept is also called data hiding.) Outside classes
should only be allowed to make a request that an attribute be altered; then it is up to the
class’s methods to determine whether the request is appropriate. When using a door, you
usually are unconcerned with the latch or hinge construction, and you don’t have access to

An example of inheritance: A door with a stained glass window
inherits all the attributes and methods of a door. 

Figure 10-3 An example of inheritance
© 2015 Cengage Learning

433

Principles of Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



the interior workings of the knob. You care only about the functionality and the interface, the
user-friendly boundary between the user and internal mechanisms of the device. When you
turn a door’s knob, you are interacting appropriately with the interface. Banging on the knob
would be an inappropriate interaction, so the door would not respond. Similarly, the detailed
workings of objects you create within object-oriented programs can be hidden from outside
programs and modules if necessary, and the methods you write can control how the objects
operate. When the details are hidden, programmers can focus on the functionality and the
interface, as people do with real-life objects.

In summary, understanding object-oriented programming means that you must consider five
of its integral components: classes, objects, polymorphism, inheritance, and encapsulation.
Quick Reference 10-1 illustrates these components.

QUICK REFERENCE 10-1 Components of Object-Oriented Programming

Classes
categories
of objects

Encapsulation
the attributes and
methods of an
object are defined
by its class and
combined as a
unit 

Inheritance
new classes acquire traits
of existing classes but are
more specific

Polymorphism
methods with the same name work
appropriately for the object type 

Objects
instances
of classes

Animal

Dog Bird

myDog yourDog theHummingbirdAtMyFeeder

name    Molly
gender      F
age         5
hasShots    Y

setName()
setAge()
setHasShots()
giveBirth()

name   Scruffy
gender       M
age          1
hasShots     N

setName()
setAge()
setHasShots()
giveBirth()

age        1
gender     F

setAge()
setGender()
giveBirth()

Objb ects
instances
of classes

myDog yourDog theHummingbirdAtMyFeeder

434

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Principles of Object-Oriented Programming

1. Learning about object-oriented programming is difficult because it does not use
the concepts you already know, such as declaring variables and using modules.

2. In object-oriented terminology, a class describes a group or collection of objects
with common attributes; an instance of a class is an existing object of a class.

3. A program or class that instantiates objects of another prewritten class is a class
client or class user.

Defining Classes and Creating Class Diagrams
A class is a category of things; an object is a specific instance of a class. A class definition is a set of
program statements that lists the characteristics of each object and the methods each object can use.

A class definition can contain three parts:

Every class has a name.

Most classes contain data, although this is not required.

Most classes contain methods, although this is not required.

For example, you can create a class named Employee. Each Employee object will represent one
employee who works for an organization. Data fields, or attributes of the Employee class,
include fields such as lastName, hourlyWage, and weeklyPay.

The methods of a class include all the actions you want to perform with the class. Appropriate
methods for an Employee class might include setHourlyWage(), getHourlyWage(), and
calculateWeeklyPay(). The job of setHourlyWage() is to provide values for an Employee’s
wage data field, the purpose of getHourlyWage() is to retrieve the wage value, and the
purpose of calculateWeeklyPay() is to multiply the Employee’s hourlyWage by the number
of hours in a workweek to calculate a weekly salary. With object-oriented languages, you
think of the class name, data, and methods as a single encapsulated unit.

Declaring a class does not create actual objects. A class is just an abstract description of what
an object will be if any objects are actually instantiated. Just as you might understand all the
characteristics of an item you intend to manufacture before the first item rolls off the
assembly line, you can create a class with fields and methods long before you instantiate
objects from it.

Thefalsestatementis#1.Object-orientedprogrammingusesmanyfeaturesof
proceduralprogramming,includingdeclaringvariablesandusingmodules.

435

Defining Classes and Creating Class Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you declare a simple variable that is a built-in data type, you write a statement such as
one of the following:
num money
string name

When you write a program that declares an object that is a class data type, you write a
statement such as the following:

Employee myAssistant

In some object-oriented programming languages, you need to add more to the declaration statement to
actually create an Employee object. For example, in Java you would write:

Employee myAssistant = new Employee();

You will understand more about the format of this statement when you learn about constructors in Chapter 11.

When you declare the myAssistant object, it contains all the data fields and has access to all the
methods contained within its class. In other words, a larger section of memory is set aside
than when you declare a simple variable, because an Employee contains several fields. You
can use any of an Employee’s methods with the myAssistant object. The usual syntax is to
provide an object name, a dot (period), and a method name with parentheses and a possible
argument list. For example, you can write a program that contains statements such as those
shown in Figure 10-4.

The program segment in Figure 10-4 is very short. In a more useful real-life program, you might read
employee data from a data file before assigning it to the object’s fields, each Employee might contain
dozens of fields, and your application might create hundreds or thousands of objects.

Besides referring to Employee as a class, many programmers would refer to it as a user-defined type,
but a more accurate term is programmer-defined type. A class from which objects are instantiated is the
data type of its objects. Object-oriented programmers typically refer to a class like Employee as an abstract
data type (ADT); this term implies that the type’s data is private and can be accessed only through methods. You
learn about private data later in this chapter.

start
   Declarations
      Employee myAssistant
   myAssistant.setLastName("Reynolds")
   myAssistant.setHourlyWage(16.75)
   output "My assistant makes ",
      myAssistant.getHourlyWage(), " per hour"
stop

Figure 10-4 Application that declares and uses an Employee object
© 2015 Cengage Learning

436

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you write a statement such as myAssistant.setHourlyWage(16.75), you are making a
call to a method that is contained within the Employee class. Because myAssistant is an
Employee object, it is allowed to use the setHourlyWage() method that is part of its class. You
can tell from the method call that setHourlyWage() must accept a numeric parameter.

When you write the application in Figure 10-4, you do not need to know what statements are
written within the Employee class methods, although you could make an educated guess
based on the method names. Before you could execute the application in Figure 10-4,
someone would have to write appropriate statements within the Employee class methods. If
you wrote the methods, of course you would know their contents, but if another programmer
has already written the methods, you could use the application without knowing the details
contained in the methods. To use the methods, you only need to know their names,
parameter lists, and return types.

In Chapter 9, you learned that the ability to use methods as a black box without knowing their
contents is a feature of encapsulation. The real world is full of many black-box devices. For
example, you can use your television and microwave oven without knowing how they work
internally—all you need to understand is the interface. Similarly, with well-written methods
that belong to classes you use, you need not understand how they work internally to be able to
use them; you need only understand the ultimate result when you use them.

In the client program segment in Figure 10-4, the focus is on the object—the Employee
named myAssistant—and the methods you can use with that object. This is the essence of
object-oriented programming.

In older object-oriented programming languages, simple numbers and characters are said to be primitive
data types; this distinguishes them from objects that are class types. In the newest programming
languages, every item you name, even one that is a numeric or string type, is an object created from a class
that defines both data and methods.

When you instantiate objects, their data fields are stored at separate memory locations. However, all objects
of the same class share one copy of the class’s methods. You will learn more about this concept later in this
chapter.

Creating Class Diagrams
A class diagram consists of a rectangle divided into three sections, as shown in Figure 10-5.
The top section contains the name of the class, the middle section contains the names and data
types of the attributes, and the bottom section contains the methods. This generic class diagram
shows two attributes and three methods, but a given class might have any number of attributes
or methods, including none. Programmers often use a class diagram to plan or illustrate class
features. Class diagrams also are useful for describing a class to nonprogrammers.

Figure 10-6 shows the class diagram for the Employee class. By convention, a class diagram
lists the names of the data items first; each name is followed by a colon and the data type.
Method names are listed next, and each is followed by its data type (return type). Listing the
names first and the data types last emphasizes the purposes of the fields and methods.

437

Defining Classes and Creating Class Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Class diagrams are a type of Unified Modeling Language (UML) diagram. Chapter 13 covers the UML.

Some developers prefer to insert the word void within the parentheses of methods listed in class diagrams
when the methods do not have parameter lists. For example, void could be inserted between the
parentheses in getLastName() in the class diagram in Figure 10-6. Inserting void shows that a
parameter list was not inadvertently omitted. You should follow the conventions of your organization.

Figures 10-5 and 10-6 both show that a class diagram is intended to be only an overview of
class attributes and methods. A class diagram shows what data items and methods the class
will use, not the details of the methods nor when they will be used. It is a design tool that helps
you see the big picture in terms of class requirements. Figure 10-6 shows the Employee class
containing three data fields that represent an employee’s name, hourly pay rate, and weekly
pay amount. Every Employee object created in a program that uses this class will contain these
three data fields. In other words, when you declare an Employee object, the single declaration
statement allocates enough memory to hold all three fields.

Figure 10-6 also shows that the Employee class contains six methods. For example, the first
method is defined as follows:

setLastName(name : string) : void

This notation means that the method name is setLastName(), that it takes a single string

parameter named name, and that it returns nothing.

Various books, Web sites, and organizations use class diagrams that describe methods in different ways.
For example, some developers use the method name only, and others omit parameter lists. This book will
take the approach of being as complete as possible, so the class diagrams you see here will contain each
method’s identifier, parameter list with types, and return type.

Employee

lastName: string
hourlyWage: num
weeklyPay: num

setLastName(name : string) : void
setHourlyWage(wage : num) : void
getLastName() : string
getHourlyWage() : num
getWeeklyPay() : num
calculateWeeklyPay() : void

Figure 10-6 Employee class diagram
© 2015 Cengage Learning

ClassName

Attribute1 : dataType
Attribute2 : dataType

Method1() : dataType
Method2( ) : dataType
Method3( ) : dataType

Figure 10-5 Generic class diagram
© 2015 Cengage Learning

438

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Employee class diagram shows that two of the six methods take parameters
(setLastName() and setHourlyWage()). The diagram also shows the return type for each
method—three void methods, two numeric methods, and one string method. The class
diagram does not indicate what takes place inside the method, although you might be able to
make an educated guess. Later, when you write the code that actually creates the Employee
class, you include method implementation details. For example, Figure 10-7 shows some
pseudocode you can use to list the details for the methods in the Employee class.

In Figure 10-7, the Employee class attributes are identified with a data type and a field name.
In addition to listing the required data fields, the figure shows the complete methods for the
Employee class. The purposes of the methods can be divided into three categories:

Two of the methods accept values from the outside world; these methods, by convention,
have the prefix set. These methods are used to set the data fields in the class.

class Employee
   Declarations
      string lastName
      num hourlyWage
      num weeklyPay

   void setLastName(string name)
      lastName = name
   return

   void setHourlyWage(num wage)
      hourlyWage = wage
      calculateWeeklyPay()
   return

   string getLastName()
   return lastName

   num getHourlyWage()
   return hourlyWage
   
   num getWeeklyPay()
   return weeklyPay

   void calculateWeeklyPay()
      Declarations
         num WORK_WEEK_HOURS = 40
      weeklyPay = hourlyWage * WORK_WEEK_HOURS
   return
endClass

Figure 10-7 Pseudocode for Employee class described in the class diagram in Figure 10-6
© 2015 Cengage Learning

439

Defining Classes and Creating Class Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Three of the methods send data to the outside world; these methods, by convention, have
the prefix get. These methods return field values to a client program.

One method performs work within the class; this method is named calculateWeeklyPay().
This method does not communicate with the outside; its purpose is to multiply hourlyWage

by the number of hours in a week.

The Set Methods
In Figure 10-7, two methods begin with the word set; they are setLastName() and
setHourlyWage(). The purpose of a set method or mutator method is to set or change the
values of data fields defined within the class. There is no requirement that such methods start
with set; the prefix is merely conventional and clarifies the intention of the methods. The
method setLastName() is implemented as follows:

void setLastName(string name)
lastName = name

return

In this method, a string name is passed in as a parameter and assigned to the field lastName.
Because lastName is contained in the same class as this method, the method has access to the
field and can alter it.

Similarly, the method setHourlyWage() accepts a numeric parameter and assigns it to the
class field hourlyWage. This method also calls the calculateWeeklyPay() method, which sets
weeklyPay based on hourlyWage. By writing the setHourlyWage() method to call the
calculateWeeklyPay() method automatically, you guarantee that the weeklyPay field is
updated any time hourlyWage changes.

When you create an Employee object with a statement such as Employee mySecretary, you
can use statements such as the following:
mySecretary.setLastName("Johnson")
mySecretary.setHourlyWage(15.00)

Instead of literal constants, you could pass variables or named constants to the methods as
long as they were the correct data type. For example, if you write a program in which you
make the following declaration, then the assignment in the next statement is valid.
Declarations

num PAY_RATE_TO_START = 8.00
mySecretary.setHourlyWage(PAY_RATE_TO_START)

In some languages—for example, Visual Basic and C#—you can create a property instead of creating a
set method. Using a property provides a way to set a field value using a simpler syntax. By convention, if a
class field is hourlyWage, its property would be HourlyWage, and in a program you could make a
statement similar to mySecretary.HourlyWage = PAY_RATE_TO_START. The implementation
of the property HourlyWage (with an uppercase initial letter) would be written in a format very similar to
that of the setHourlyWage() method.

440

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Like other methods, the methods that manipulate fields within a class can contain any
statements you need. For example, a more complicated setHourlyWage() method that
validates input might be written, as in Figure 10-8. In this version, the wage passed to the
method is tested against minimum and maximum values, and is assigned to the class field
hourlyWage only if it falls within the prescribed limits. If the wage is too low, the MINWAGE
value is substituted, and if the wage is too high, the MAXWAGE value is substituted.

Similarly, if the set methods in a class required them, the methods could contain output
statements, loops, array declarations, or any other legal programming statements. However, if
the main purpose of a method is not to set a field value, then for clarity the method should
not be named with the set prefix.

The Get Methods
The purpose of a get method or accessor method is to return a value to the world outside the
class. In the Employee class in Figure 10-7, the three get methods have the prefix get:
getLastName(), getHourlyWage(), and getWeeklyPay(). The methods are implemented as
follows:

string getLastName()
return lastName

num getHourlyWage()
return hourlyWage

num getWeeklyPay()
return weeklyPay

void setHourlyWage(num wage)
   Declarations
      num MINWAGE = 6.00
      num MAXWAGE = 70.00
   if wage < MINWAGE then
      hourlyWage = MINWAGE
   else
      if wage > MAXWAGE then
         hourlyWage = MAXWAGE
      else
         hourlyWage = wage
      endif
   endif
   calculateWeeklyPay()
return

Figure 10-8 setHourlyWage() method including validation
© 2015 Cengage Learning

441

Defining Classes and Creating Class Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Each of these methods simply returns the value in the field associated with the method name.
Like set methods, any of these get methods could also contain more complex statements as
needed. For example, in a more complicated class, you might return the hourly wage of an
employee only if the user had also passed an appropriate access code to the method, or you
might return the weekly pay value as a string with a dollar sign attached instead of as a
numeric value. When you declare an Employee object such as Employee mySecretary, you
can then make statements in a program similar to the following:
Declarations

string employeeName
employeeName = mySecretary.getLastName()
output "Wage is ", mySecretary.getHourlyWage()
output "Pay for half a week is ", mySecretary.getWeeklyPay() * 0.5

In other words, the value returned from a get method can be used as any other variable of its
type would be used. You can assign the value to another variable, display it, perform
arithmetic with it, or make any other statement that works correctly with the returned
data type.

In some languages—for example, Visual Basic and C#—instead of creating a get method, you can add
statements to the property to return a value using simpler syntax. For example, if you created an
HourlyWage property, you could write a program that contains the statement output mySecretary.
HourlyWage.

Work Methods
The Employee class in Figure 10-7 contains one method that is neither a get nor a set method.
This method, calculateWeeklyPay(), is a work method within the class. A work method is
also known as a help method or facilitator. It contains a locally named constant that
represents the hours in a standard workweek, and it computes the weeklyPay field value by
multiplying hourlyWage by the named constant. The method is written as follows:

void calculateWeeklyPay()
Declarations

num WORK_WEEK_HOURS = 40
weeklyPay = hourlyWage * WORK_WEEK_HOURS

return

No values need to be passed into this method, and no value is returned from it because the
method does not communicate with the outside world. Instead, this method is called only
from another method in the same class (the setHourlyWage() method), and that method is
called from the outside world. Each time a program uses the setHourlyWage() method to
alter an Employee’s hourlyWage field, calculateWeeklyPay() is called to recalculate the
weeklyPay field. No setWeeklyPay() method is included in this Employee class because the
intention is that weeklyPay is set only inside the calculateWeeklyPay() method each time
the setHourlyWage() method calls it. If you wanted programs to be able to set the weeklyPay
field directly, you would have to write a method to allow it.

442

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programmers who are new to class creation often want to pass the hourlyWage value into the
calculateWeeklyPay() method so that it can use the value in its calculation. Although this technique
would work, it is not required. The calculateWeeklyPay() method has direct access to the
hourlyWage field by virtue of being a member of the same class.

For example, Figure 10-9 shows a program that declares an Employee object and sets the hourly
wage value. The program displays the weeklyPay value. Then a new value is assigned to hourlyWage,
and weeklyPay is displayed again. As you can see from the output in Figure 10-10, the weeklyPay

value has been recalculated even though it was never set directly by the client program.

start
   Declarations
      num LOW = 9.00
      num HIGH = 14.65
      Employee myGardener
   myGardener.setLastName("Greene")
   myGardener.setHourlyWage(LOW)
   output "My gardener makes ",
     myGardener.getWeeklyPay(), " per week"
   myGardener.setHourlyWage(HIGH)
   output "My gardener makes ",
     myGardener.getWeeklyPay(), " per week"
stop

Figure 10-9 Program that sets and displays Employee data two times
© 2015 Cengage Learning

Figure 10-10 Execution of program in Figure 10-9
© 2015 Cengage Learning

443

Defining Classes and Creating Class Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Defining Classes and Creating Class Diagrams

1. Every class has a name, data, and methods.

2. After an object has been instantiated, its methods can be accessed using the
object’s identifier, a dot, and a method call.

3. A class diagram consists of a rectangle divided into three sections; the top
section contains the name of the class, the middle section contains the names
and data types of the attributes, and the bottom section contains the methods.

Understanding Public and Private Access
When you buy a new product, one of the usual conditions of its warranty is that the
manufacturer must perform all repair work. For example, if your computer has a warranty
and something goes wrong with its operation, you cannot open the system unit yourself,
remove and replace parts, and then expect to get your money back for a device that does not
work properly. Instead, when something goes wrong, you must take the computer to an
approved technician. The manufacturer guarantees that your machine will work properly
only if the manufacturer can control how the computer’s internal mechanisms are modified.

Similarly, in object-oriented design, you do not want outside programs or methods to alter your
class’s data fields unless you have control over the process. For example, you might design a class
that performs complicated statistical analysis on some data, and you would not want others to be
able to alter your carefully crafted result. Or, you might design a class from which others can
create an innovative and useful GUI screen object. In this case you would not want anyone
altering the dimensions of your artistic design. To prevent outsiders from changing your data
fields in ways you do not endorse, you force other programs and methods to use a method that is
part of your class to alter data. (Earlier in this chapter, you learned that the principle of keeping
data private and inaccessible to outside classes is called information hiding or data hiding.)

To prevent unauthorized field modifications, object-oriented programmers usually specify
that their data fields will have private access—the data cannot be accessed by any method
that is not part of the class. The methods themselves, like setHourlyWage() in the Employee

class, support public access. When methods have public access, other programs and
methods may use the methods to get access to the private data.

Figure 10-11 shows a complete Employee class to which access specifiers have been added to
describe each attribute and method. An access specifier is the adjective that defines the type
of access (public or private) outside classes will have to the attribute or method. In the
figure, each access specifier is shaded.

Thefalsestatementis#1.Mostclassescontaindataandmethods,althoughneitheris
required.

444

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In many object-oriented programming languages, if you do not declare an access specifier for a data field or
method, then it is private by default. This book will follow the convention of explicitly specifying access for
every class member.

In Figure 10-11, each of the data fields is private, which means each field is inaccessible to an
object declared in a program. In other words, if a program declares an Employee object, such
as Employee myAssistant, then the following
statement is illegal:

myAssistant.hourlyWage = 15.00

Instead, hourlyWage can be assigned only
through a public method as follows:

myAssistant.setHourlyWage(15.00)

class Employee
   Declarations
      private string lastName
      private num hourlyWage
      private num weeklyPay

   public void setLastName(string name)
      lastName = name
   return

   public void setHourlyWage(num wage)
      hourlyWage = wage
      calculateWeeklyPay()
   return

   public string getLastName()
   return lastName

   public num getHourlyWage()
   return hourlyWage

   public num getWeeklyPay()
   return weeklyPay

   private void calculateWeeklyPay()
      Declarations
         num WORK_WEEK_HOURS = 40
      weeklyPay = hourlyWage * WORK_WEEK_HOURS
   return
endClass

Figure 10-11 Employee class including public and private access specifiers
© 2015 Cengage Learning

Don’t Do It
You cannot directly assign
a value to a private data
field from outside its class.

445

Understanding Public and Private Access

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If you made hourlyWage public instead of private, then a direct assignment statement would
work, but you would violate the important OOP principle of data hiding using encapsulation.
Data fields should usually be private, and a client application should be able to access them
only through the public interfaces—in other words, through the class’s public methods. That
way, if you have restrictions on the value of hourlyWage, those restrictions will be enforced by
the public method that acts as an interface to the private data field. Similarly, a public get
method might control how a private value is retrieved. Perhaps you do not want clients to
have access to an Employee’s hourlyWage if it is more than a specific value, or maybe you want
to return the wage to the client as a string with a dollar sign attached. Even when a field has
no data value requirements or restrictions, making data private and providing public set and
get methods establishes a framework that makes such modifications easier in the future.

In the Employee class in Figure 10-11, all of the methods are public except one—the
calculateWeeklyPay() method is private. That means if you write a program and declare an
Employee object such as Employee myAssistant,
then the following statement is not permitted:

myAssistant.calculateWeeklyPay()

Because it is private, the only way to call the
calculateWeeklyPay() method is from another
method that already belongs to the class. In this example, it is called from the setHourlyWage()
method. This prevents a client program from setting hourlyWage to one value while setting
weeklyPay to an incompatible value. By making the calculateWeeklyPay() method private,
you ensure that the class retains full control over when and how it is used.

Classes usually contain private data and public methods, but as you have just seen, they can
contain private methods. Classes can contain public data items as well. For example, an
Employee class might contain a public constant data field named MINIMUM_WAGE; outside
programs then would be able to access that value without using a method. Public data fields
are not required to be named constants, but they frequently are.

In some object-oriented programming languages, such as C++, you can label a set of data fields or methods
as public or private using the access specifier name just once, then follow it with a list of the items in that
category. In other languages, such as Java, you use the specifier public or private with each field or method.
For clarity, this book will label each field and method as public or private.

Many programmers like to specify in class diagrams whether each component in a class is
public or private. Figure 10-12 shows the conventions that are typically used. A minus sign
(–) precedes the items that are private (less accessible); a plus sign (+) precedes those that are
public (more accessible).

Don’t Do It
The calculateWeeklyPay()
method is not accessible
outside the class.

446

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you learn more about inheritance in Chapter 11, you will learn about an additional access
specifier—the protected access specifier. In a class diagram, you use an octothorpe, also called a
pound sign or number sign (#), to indicate protected access.

In object-oriented programming languages, the main program is most often written as a method named
main() or Main(), and that method is virtually always defined as public.

Watch the video Creating a Class.

TWO TRUTHS & A LIE

Understanding Public and Private Access

1. Object-oriented programmers usually specify that their data fields will have
private access.

2. Object-oriented programmers usually specify that their methods will have
private access.

3. In a class diagram, a minus sign (–) precedes the items that are private;
a plus sign (+) precedes those that are public.

Employee

-lastName : string
-hourlyWage : num
-weeklyPay : num

+setLastName(name : string) : void
+setHourlyWage(wage : num) : void
+getLastName() : string
+getHourlyWage() : num
+getWeeklyPay() : num
-calculateWeeklyPay() : void

Figure 10-12 Employee class diagram with public and private access specifiers
© 2015 Cengage Learning

Thefalsestatementis#2.Object-orientedprogrammersusuallyspecifythattheir
methodswillhavepublicaccess.

447

Understanding Public and Private Access

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Organizing Classes
The Employee class in Figure 10-12 contains just three data fields and six methods; most
classes you create for professional applications will have many more. For example, in addition
to a last name and pay information, real employees require an employee number, a first name,
address, phone number, hire date, and so on, as well as methods to set and get those fields. As
classes grow in complexity, deciding how to organize them becomes increasingly important.

Although it is not required, most programmers place data fields in some logical order at the
beginning of a class. For example, an ID number is most likely used as a unique identifier for
each employee, so it makes sense to list the employee ID number first in the class. An
employee’s last name and first name “go together,” so it makes sense to store the two
components adjacently. Despite these common-sense rules, in most languages you have
considerable flexibility when positioning your data fields within a class. For example,
depending on the class, you might choose to store the data fields alphabetically, or you might
group together all the fields that are the same data type. Alternatively, you might choose to
store all public data items first, followed by private ones, or vice versa.

In some languages, you can organize data fields and methods in any order within a class. For
example, you could place all the methods first, followed by all the data fields, or you could
organize the class so that data fields are followed by methods that use them. This book will
follow the convention of placing all data fields first so that you can see their names and data
types before reading the methods that use them. This format also echoes the way data and
methods appear in standard class diagrams.

For ease in locating a class’s methods, some programmers store them in alphabetical order.
Other programmers arrange them in pairs of get and set methods, in the same order as the
data fields are defined. Another option is to list all accessor (get) methods together and all
mutator (set) methods together. Depending on the class, you might decide to create other
logically functional groupings. Of course, if your company distributes guidelines for
organizing class components, you must follow those rules.

TWO TRUTHS & A LIE

Organizing Classes

1. As classes grow in complexity, deciding how to organize them becomes
increasingly important.

2. You have a considerable amount of flexibility in how you organize data fields
within a class.

3. In a class, methods must be stored in the order in which they are used.

Thefalsestatementis#3.Methodscanbestoredinalphabeticalorder,inpairsofget
andsetmethods,inthesameorderasthedatafieldsaredefined,orinanyother
logicallyfunctionalgroupings.

448

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Instance Methods
Classes contain data and methods, and every instance of a class possesses the same data and
has access to the same methods. For example, Figure 10-13 shows a class diagram for a simple
Student class that contains just one private data field for a student’s grade point average. The
class also contains get and set methods for the field. Figure 10-14 shows the pseudocode for
the Student class. This class becomes the model for a new data type named Student; when
Student objects are created eventually, each will have its own gradePointAverage field and
have access to methods to get and set it.

If you create multiple Student objects using the class in Figure 10-14, you need a separate
storage location in computer memory to store each Student’s unique grade point average.
For example, Figure 10-15 shows a client program that creates three Student objects and
assigns values to their gradePointAverage fields. It also shows how the Student objects look
in memory after the values have been assigned.

Student

-gradePointAverage : num

+setGradePointAverage(gpa: num) : void
+getGradePointAverage() : num

Figure 10-13 Class diagram for Student class
© 2015 Cengage Learning

class Student
   Declarations
      private num gradePointAverage

   public void setGradePointAverage(num gpa)
      gradePointAverage = gpa
   return

   public num getGradePointAverage()
   return gradePointAverage
endClass

Figure 10-14 Pseudocode for the Student class
© 2015 Cengage Learning

449

Understanding Instance Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



It makes sense for each Student object in Figure 10-15 to have its own gradePointAverage

field, but it does not make sense for each Student to have its own copy of the methods that
get and set gradePointAverage. Creating identical copies of a method for each instance
would be inefficient. Instead, even though every Student has its own gradePointAverage

field, only one copy of each of the methods getGradePointAverage() and
setGradePointAverage() is stored in memory; however, each instantiated object of the class
can use the single method copy. A method that works appropriately with different objects is
an instance method.

Although the Student class contains only one copy of the get and set methods, they work
correctly for any number of instances. Therefore, methods like getGradePointAverage() and
setGradePointAverage() are instance methods. Because only one copy of each instance
method is stored, the computer needs a way to determine which gradePointAverage is being
set or retrieved when one of the methods is called. The mechanism that handles this problem
is illustrated in Figure 10-16. When a method call such as oneSophomore.

setGradePointAverage(2.6) is made, the true method call, which is invisible and
automatically constructed, includes the memory address of the oneSophomore object. (These
method calls are represented by the three narrow boxes in the center of Figure 10-16.)

start
   Declarations
      Student oneSophomore
      Student oneJunior
      Student oneSenior
   oneSophomore.setGradePointAverage(2.6)
   oneJunior.setGradePointAverage(3.8)
   oneSenior.setGradePointAverage(3.4)
stop

oneSophomore

2.6

oneJunior

3.8

oneSenior

3.4

Figure 10-15 StudentDemo program and how Student objects look in memory
© 2015 Cengage Learning

450

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Within the setGradePointAverage() method in the Student class, an invisible and
automatically created parameter is added to the list. (For illustration purposes, this parameter
is named aStudentAddress and is shaded in the Student class definition in Figure 10-16. In
fact, no parameter is created with that name.) This parameter accepts the address of a
Student object because the instance method belongs to the Student class; if this method

start
   Declarations
      Student oneSophomore
      Student oneJunior
      Student oneSenior
   oneSophomore.setGradePointAverage(2.6)
   oneJunior.setGradePointAverage(3.8)
   oneSenior.setGradePointAverage(3.4)
stop

setGradePointAverage(oneSophomoreAddress, 2.6)

This address is
known as the this
reference.

setGradePointAverage(oneJuniorAddress, 3.8)

setGradePointAverage(oneSeniorAddress, 3.4)

class Student
   Declarations
      private num gradePointAverage

   public void setGradePointAverage(aStudentAddress, num gpa)
      gradePointAverage = gpa
   return
   
   public num getGradePointAverage()
   return gradePointAverage
endClass

Figure 10-16 How Student object memory addresses are passed from an application to an
instance method of the Student class
© 2015 Cengage Learning

451

Understanding Instance Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



belonged to another class—Employee, for example—then the method would accept an address
for that type of object. The shaded addresses are not written as code in any program—they are
“secretly” sent and received behind the scenes. The address variable in Figure 10-16 is called a
this reference. A this reference is an automatically created variable that holds the address of
an object and passes it to an instance method whenever the method is called. It is called a this
reference because it refers to “this particular object” that is using the method at the moment. In
other words, an instance method receives a this reference to a specific class instance. In the
application in Figure 10-16, when oneSophomore uses the setGradePointAverage() method,
the address of the oneSophomore object is contained in the this reference. Later in the
program, when the oneJunior object uses the setGradePointAverage() method, the this
reference will hold the address of that Student object.

Figure 10-16 shows each place the this reference is used in the Student class. It is implicitly
passed as a parameter to each instance method. You never explicitly refer to the this

reference when you write the method header for an instance method; Figure 10-16 just shows
where it implicitly exists. Within each instance method, the this reference is implied any
time you refer to one of the class data fields. For example, when you call
setGradePointAverage() using a oneSophomore object, the gradePointAverage assigned
within the method is the “this gradePointAverage”, or the one that belongs to the
oneSophomore object. The phrase “this gradePointAverage” usually is written as this,
followed by a dot, followed by the field name—this.gradePointAverage.

The this reference exists throughout every instance method. You can explicitly use the this

reference with data fields, but it is not required. Figure 10-17 shows two locations where the
this reference can be used implicitly, or where you can (but do not have to) use it explicitly.
Within an instance method, the following two identifiers mean exactly the same thing:

any field name defined in the class

this, followed by a dot, followed by the same field name

For example, within the setGradePointAverage() method, gradePointAverage and this.

gradePointAverage refer to exactly the same memory location.

You can write this
as a reference in
these locations.

class Student
   Declarations
      private num gradePointAverage

   public void setGradePointAverage(num gpa)
      this.gradePointAverage = gpa
   return

   public num getGradePointAverage()
   return this.gradePointAverage
endClass

Figure 10-17 Explicitly using this in the Student class
© 2015 Cengage Learning

452

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The this reference can be used only with identifiers that are part of the class definition—that
is, field names or instance methods. You cannot use it with local variables that are parameters
to instance methods or declared within the method bodies. For example, in Figure 10-17 you
can refer to this.gradePointAverage, but you cannot refer to this.gpa because gpa is not a
class field—it is only a local variable.

The syntax for using this differs among programming languages. For example, within a class in C++, you
can refer to the Student class gradePointAverage value as this->gradePointAverage or
(*this).gradePointAverage, but in Java you refer to it as this.gradePointAverage. In Visual
Basic, the this reference is named Me, so the variable would be Me.gradePointAverage.

Usually you do not need to use the this reference explicitly within the methods you write,
but the this reference is always there, working behind the scenes, accessing the data field for
the correct object.

Your organization might prefer that you explicitly use the this reference for clarity even though it is not
required to create a workable program. It is the programmer’s responsibility to follow the conventions
established at work or by clients.

As an example of when you might use the this reference explicitly, consider the following
setGradePointAverage() method and compare it to the version in the Student class in
Figure 10-17.
public void setGradePointAverage(num gradePointAverage)

this.gradePointAverage = gradePointAverage
return

In this version of the method, the programmer has used the identifier gradePointAverage

both as the parameter to the method and as the instance field within the class. Therefore,
gradePointAverage is the name of a local variable within the method whose value is received
by passing; it also is the name of a class field. To differentiate the two, you explicitly use the
this reference with the copy of gradePointAverage that is a member of the class. Omitting
the this reference in this case would result in the local parameter gradePointAverage being
assigned to itself, and the class’s instance variable would not be set. Any time a local variable
in a method has the same identifier as a field, the field is hidden; you must use a this
reference to distinguish the field from the local variable.

Watch the video The this Reference.

453

Understanding Instance Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding Instance Methods

1. An instance method operates correctly yet differently for each separate
instance of a class.

2. A this reference is a variable you must explicitly declare with each class you
create.

3. When you write an instance method in a class, the following two identifiers within
the method always mean exactly the same thing: any field name or this

followed by a dot, followed by the same field name.

Understanding Static Methods
Some methods do not require a this reference because it makes no sense for them either
implicitly or explicitly. For example, the displayStudentMotto() method in Figure 10-18 could
be added to the Student class. Its purpose is to display a motto that all Student objects use in
the same way. The method does not use any data fields from the Student class, so it does not
matter which Student object calls it. If you write a program in which you declare 100 Student

objects, the displayStudentMotto() method executes in exactly the same way for each of
them; it does not need to know whose motto is displayed and it does not need to access any
specific object addresses. As a matter of fact, you might want to display the Student motto
without instantiating any Student objects. Therefore, the displayStudentMotto() method can
be written as a static method instead of an instance method.

Thefalsestatementis#2.Athisreferenceisanautomaticallycreatedvariablethat
holdstheaddressofanobjectandpassesittoaninstancemethodwheneverthe
methodiscalled.Youdonotdeclareitexplicitly.

public static void displayStudentMotto()
   output "Every student is an individual"
   output "in the pursuit of knowledge."
   output "Every student strives to be"
   output "a literate, responsible citizen."
return

Figure 10-18 Student class displayStudentMotto() method
© 2015 Cengage Learning

454

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you write a class, you can indicate two types of methods:

Static methods, also called class methods, are those for which no object needs to exist,
like the displayStudentMotto() method in Figure 10-18. Static methods do not receive a
this reference as an implicit parameter. Typically, static methods include the word
static in the method header, as shown shaded in Figure 10-18. (Java, C#, and C++ use
the keyword static. In Visual Basic, the keyword Shared is used in place of static.)

Nonstatic methods are methods that exist to be used with an object. These instance
methods receive a this reference to a specific object. In most programming languages,
you use the word static when you want to declare a static class member, but you do
not use a special word when you want a class member to be nonstatic. In other words,
methods in a class are nonstatic instance methods by default.

In everyday language, the word static means “stationary”; it is the opposite of dynamic, which means
“changing.” In other words, static methods are always the same for every instance of a class, whereas
nonstatic methods act differently depending on the object used to call them.

In most programming languages, you use a static method with the class name (but not an
object name), as in the following:

Student.displayStudentMotto()

In other words, no object is necessary with a static method.

In some languages, notably C++, besides using a static method with the class name, you also can use a
static method with any object of the class, as in oneSophomore.displayStudentMotto().

TWO TRUTHS & A LIE

Understanding Static Methods

1. Class methods do not receive a this reference.

2. Static methods do not receive a this reference.

3. Nonstatic methods do not receive a this reference.

Thefalsestatementis#3.Nonstaticmethodsreceiveathisreference
automatically.

455

Understanding Static Methods

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using Objects
A class is a complex data type defined by a programmer, but in many ways you can use its
instances as you use items of simpler data types. For example, you can pass an object to a
method, return an object from a method, or use arrays of objects.

Consider the InventoryItem class in Figure 10-19. The class represents items that a company
manufactures and holds in inventory. Each item has a number, description, and price. The
class contains a get and set method for each of the three fields.

Passing an Object to a Method
You can pass an object to a method in the same way you can pass a simple numeric or string
variable. For example, Figure 10-20 shows a program that declares an InventoryItem object
and passes it to a method for display. The InventoryItem is declared in the main program
and assigned values. Then the completed item is passed to a method, where it is displayed.
Figure 10-21 shows the execution of the program.

class InventoryItem
   Declarations
      private string inventoryNumber
      private string description
      private num price

   public void setInventoryNumber(string number)
      inventoryNumber = number
   return

   public void setDescription(string description)
      this.description = description
   return

   public void setPrice(num price)
      if(price < 0)
         this.price = 0
      else

endif

         this.price = price

   return

   public string getInventoryNumber()
   return inventoryNumber

   public string getDescription()
   return description

   public num getPrice()
   return price

endClass

Notice the uses of the
this reference to
differentiate between
the method parameter
and the class field.

Figure 10-19 InventoryItem class
© 2015 Cengage Learning

456

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The InventoryItem declared in the main program in Figure 10-20 is passed to the
displayItem() method in much the same way a numeric or string variable would be. The
method receives a copy of the InventoryItem that is known locally by the identifier item.
Within the method, the field values of the local item can be retrieved, displayed, and used in
arithmetic statements in the same way they could have been in the main program where the
InventoryItem was originally declared.

Returning an Object from a Method
Figure 10-22 shows a more realistic application that uses InventoryItem objects. In the main
program, an InventoryItem is declared and the user is prompted for a number. As long as the
user does not enter the QUIT value, a loop is executed in which the entered inventory item
number is passed to the getItemValues() method. Within that method, a local InventoryItem

start
   Declarations
      InventoryItem oneItem
   oneItem.setInventoryNumber("1276")
   oneItem.setDescription("Mahogany chest")
   oneItem.setPrice(450.00)
   displayItem(oneItem)
stop

public static void displayItem(InventoryItem item)
   Declarations
      num TAX_RATE = 0.06
      num tax
      num pr
      num total
   output "Item #", item.getInventoryNumber()
   output item.getDescription()
   pr = item.getPrice()
   tax = pr * TAX_RATE
   total = pr + tax
   output "Price is $", pr, " plus $", tax, " tax"
   output "Total is $", total
return

Figure 10-20 Application that declares and uses an InventoryItem object
© 2015 Cengage Learning

Figure 10-21 Execution of application in Figure 10-20
© 2015 Cengage Learning

457

Using Objects

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



object is declared. This local object gathers and holds the user’s input values. The user is
prompted for a description and price, and then the passed item number and newly obtained
description and price are assigned to the local InventoryItem object via its set methods. The
completed object is returned to the program, where it is assigned to the InventoryItem object.
That item is then passed to the displayItem() method. As in the previous example, the method
calculates tax and displays results. Figure 10-23 shows a typical execution.

start
   Declarations
      InventoryItem oneItem
      string itemNum
      string QUIT = "0"
   output "Enter item number or ", QUIT, " to quit… "
   input itemNum
   while itemNum <> QUIT
      oneItem = getItemValues(itemNum)
      displayItem(oneItem)
      output "Enter next item number or ", QUIT, " to quit… "
      input itemNum
   endwhile
stop

public static InventoryItem getItemValues(string number)
   Declarations
      InventoryItem inItem
      string desc
      num price
   output "Enter description… "
   input desc
   output "Enter price… "
   input price
   inItem.setInventoryNumber(number)
   inItem.setDescription(desc)
   inItem.setPrice(price)
return inItem

public static void displayItem(InventoryItem item)
   Declarations
      num TAX_RATE = 0.06
      num tax  
      num pr
      num total
   output "Item #", item.getInventoryNumber()
   output item.getDescription()
   pr = item.getPrice()
   tax = pr * TAX_RATE
   total = pr + tax
   output "Price is $", pr, " plus $", tax, " tax"
   output "Total is $", total
return

Figure 10-22 Application that uses InventoryItem objects
© 2015 Cengage Learning

458

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 10-22, notice that the return type for the getItemValues() method is
InventoryItem. A method can return only a single value. Therefore, it is convenient that the
getItemValues() method can encapsulate two strings and a number in a single
InventoryItem object that it returns to the main program.

Using Arrays of Objects
In Chapter 6, you learned that when you declare an array, you use the data type, an identifier,
and a size contained in brackets. For example, the following statements declare num and
string arrays, respectively:
num scores[10]
string names[5]

You can use the same syntax to declare object arrays: a data type (class), an identifier, and a
size in brackets. For example, you could declare an array of seven InventoryItem objects as
follows:

InventoryItem items[7]

Figure 10-23 Typical execution of program in Figure 10-22
© 2015 Cengage Learning

459

Using Objects

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Any individual items array element could be used in the same way as any single object of the
InventoryItem type. For example, the third element in the array could be passed to the
displayItem() method in Figure 10-22 using the following statement:

display(items[2])

The entire array can be passed to a method that defines an array of the correct type as a
parameter. For example, the statement displayArray(items) can be used to call a method
with the following header:

public static void displayArray(InventoryItem[] list)

Within this method, the array would be known as list.

Any public member of the InventoryItem class can be used with any object in the array by
using a subscript to identify the element. For example, the xth element in the items array can
use the public setInventoryNumber() method of the InventoryItem class by using the
following statement:

items[x].setInventoryNumber(34);

Figure 10-24 shows a complete program that declares seven InventoryItem objects, sets their
values, and displays them.

460

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



start
   Declarations
      num SIZE = 7
      InventoryItem items[SIZE]
      num sub
   sub = 0
   while sub < SIZE
      items[sub] = getItemValues()
      sub = sub + 1
   endwhile
   displayItems(items, SIZE)
stop

public static InventoryItem getItemValues()
   Declarations
      InventoryItem item
      num itemNum
      string desc
      num price
   output "Enter item number … "
   input itemNum
   output "Enter description… "
   input desc
   output "Enter price… "
   input price
   item.setInventoryNumber(number)
   item.setDescription(desc)
   item.setPrice(price)
return item

public static void displayItems(InventoryItem[] items, num SIZE)
   Declarations
      num TAX_RATE = 0.06
      num tax  
      num pr
      num total
      int x
   x = 0
   while x < SIZE
      output "Item number #", items[x].getInventoryNumber()
      output items[x].getDescription()  
      pr = items[x].getPrice()
      tax = pr * TAX_RATE
      total = pr + tax
      output "Price is $", pr, " plus $", tax, " tax"
      output "Total is $", total
      x = x + 1
   endwhile
return

Figure 10-24 Application that uses an array of InventoryItem objects
© 2015 Cengage Learning

461

Using Objects

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the program in Figure 10-24, a constant is declared for the size of the array, and then the
array is declared. The program uses a while loop to call a method named getItemValues()
seven times. The method accepts no parameters. It declares an InventoryItem object, and
then it prompts the user for an item number, description, and price. Those values are
assigned to the InventoryItem object using its public methods. The completed object is then
returned to the main program, which passes the array and its size to a method named
displayItems() that displays data for all the items.

The program in Figure 10-24 could have been written so that the entire array was passed to a
method to get the data, and then a loop could have been used within the method. The
program also could have been written so that the display method accepted only one
InventoryItem object instead of the entire array, and then it would have been necessary to
call the method seven times in a loop. As you have learned throughout this book, there are
often multiple ways to accomplish the same goal. A mixture of methods was used for the
program in Figure 10-24 to demonstrate how both approaches work.

TWO TRUTHS & A LIE

Using Objects

1. You can pass an object to a method.

2. Because only one value can be returned from a method, you cannot return an
object that holds more than one field.

3. You can declare an object locally within a method.

Chapter Summary
Classes are the basic building blocks of object-oriented programming. A class describes a
collection of objects; each object is an instance of a class. A class’s fields, or instance
variables, hold its data, and every object that is an instance of a class has access to the
same methods. A program or class that instantiates objects of another prewritten class is a
class client or class user. In addition to classes and objects, three important features of
object-oriented languages are polymorphism, inheritance, and encapsulation.

A class definition is a set of program statements that list the fields and methods each
object can use. A class definition can contain a name, data, and methods. Programmers
often use a class diagram to illustrate class features. Many methods contained in a class
can be divided into three categories: set methods, get methods, and work methods.

Thefalsestatementis#2.Anobjectcanbereturnedfromamethod.

462

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Object-oriented programmers usually specify that their data fields will have private access—
that is, the data cannot be accessed by any method that is not part of the class. The methods
frequently support public access, which means that other programs and methods may use
the methods that control access to the private data. In a class diagram, a minus sign (–)
precedes each item that is private; a plus sign (+) precedes each item that is public.

As classes grow in complexity, deciding how to organize them becomes increasingly
important. Depending on the class, you might choose to store the data fields by listing a
key field first. You also might list fields alphabetically, by data type, or by accessibility.
Methods might be stored in alphabetical order or in pairs of get and set methods.

An instance method operates correctly yet differently for every object instantiated from a
class. When an instance method is called, a this reference that holds the object’s memory
address is automatically and implicitly passed to the method.

A class may contain two types of methods: static methods, which are also known as class
methods and do not receive a this reference as an implicit parameter; and nonstatic
methods, which are instance methods and do receive a this reference implicitly.

You can use objects in many of the same ways you use items of simpler data types, such as
passing them to and from methods and creating arrays.

Key Terms
Object-oriented programming (OOP) is a programming model that focuses on an
application’s components and data and the methods you need to manipulate them.

A class describes a group or collection of objects with common attributes.

An object is one tangible example of a class; it is an instance of a class.

An instance is one tangible example of a class; it is an object.

An instantiation of a class is an instance or object.

To instantiate an object is to create it.

Attributes are the characteristics that define an object.

An is-a relationship exists between an object and its class.

A class’s instance variables are the data components that belong to every instantiated object.

Fields are object attributes or data.

The state of an object is the set of all the values or contents of its instance variables.

A class client or class user is a program or class that instantiates objects of another
prewritten class.

463

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Pure polymorphism describes situations in which one method is used with a variety of
arguments.

Inheritance is the process of acquiring the traits of one’s predecessors.

Encapsulation is the process of combining all of an object’s attributes and methods into a
single package.

Information hiding (or data hiding) is the concept that other classes should not alter an
object’s attributes—only the methods of an object’s own class should have that privilege.

A class definition is a set of program statements that define the fields and methods for a class.

A user-defined type, or programmer-defined type, is a type that is not built into a language
but is created by an application’s programmer.

An abstract data type (ADT) is a programmer-defined type, such as a class.

Primitive data types are simple numbers and characters that are not class types.

A class diagram consists of a rectangle divided into three sections that show the name, data,
and methods of a class.

A set method is an instance method that sets or changes the value of a data field defined in a
class.

A mutator method is an instance method that sets or changes the value of a data field defined
in a class.

A property provides methods that allow you to get and set a class field value using a simple
syntax.

A get method is an instance method that returns a value from a field defined in a class.

An accessor method is an instance method that returns a value from a field defined in a class.

A work method performs tasks within a class.

A help method or facilitator is a work method.

Private access specifies that data or methods cannot be used by any method that is not part
of the same class.

Public access specifies that other programs and methods may use the specified data or
methods within a class.

An access specifier is the adjective that defines the type of access outside classes will have to
the attribute or method.

An instance method operates correctly yet differently for each object. An instance method is
nonstatic and implicitly receives a this reference.

A this reference is an automatically created variable that holds the address of an object and
passes it to an instance method whenever the method is called.

464

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Static methods are those for which no object needs to exist; they are not instance methods
and they do not receive a this reference.

A class method is a static method; it is not an instance method and it does not receive a this

reference.

Nonstatic methods are methods that exist to be used with an object; they are instance
methods and receive a this reference.

Exercises

Review Questions

1. Which of the following means the same as object?

a. class
b. instance

c. field
d. category

2. Which of the following means the same as instance variable?

a. class
b. instance

c. category
d. field

3. A program that instantiates objects of another prewritten class is a(n) .

a. client
b. object

c. instance
d. GUI

4. The relationship between an instance and a class is a(n) relationship.

a. has-a
b. is-a

c. polymorphic
d. hostile

5. Which of these does not belong with the others?

a. instance variable
b. attribute

c. field
d. object

6. The process of acquiring the traits of one’s predecessors is .

a. polymorphism
b. encapsulation

c. inheritance
d. orientation

7. When discussing classes and objects, encapsulation means that .

a. all the fields belong to the same object
b. all the fields are private
c. all the fields and methods are grouped together
d. all the methods are public

465

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8. Every class definition must contain .

a. a name
b. data

c. methods
d. all of the above

9. Assume that a working program contains the following statement:
myDog.setName("Bowser")

Which of the following do you know?

a. setName() is a public method.
b. setName() accepts a string parameter.
c. both of the above
d. none of the above

10. Assume that a working program contains the following statement:
name = myDog.getName()

Which of the following do you know?

a. getName() returns a string.
b. getName() returns a value that is the same data type as name.
c. both of the above
d. none of the above

11. A class diagram .

a. provides an overview of a class’s data and methods
b. provides method implementation details
c. is never used by nonprogrammers because it is too technical
d. all of the above

12. Which of the following is the most likely scenario for a specific class?

a. Its data is private and its methods are public.
b. Its data is public and its methods are private.
c. Its data and methods are both public.
d. Its data and methods are both private.

13. An instance method .

a. is static
b. receives a this reference

c. both of the above
d. none of the above

14. Assume that you have created a class named Dog that contains a data field named
weight and an instance method named setWeight(). Further assume that the
setWeight() method accepts a numeric parameter named weight. Which of the
following statements correctly sets a Dog’s weight within the setWeight() method?

a. weight = weight

b. this.weight = this.weight

c. weight = this.weight

d. this.weight = weight

466

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15. A static method is also known as a(n) method.

a. instance
b. public

c. private
d. class

16. By default, methods contained in a class are methods.

a. static
b. nonstatic

c. class
d. public

17. Assume that you have created a class named MyClass, and that a working program
contains the following statement:

output MyClass.number

Which of the following do you know?

a. number is a numeric field.
b. number is a static field.

c. number is an instance variable.
d. all of the above

18. Assume that you have created an object named myObject and that a working
program contains the following statement:

output myObject.getSize()

Which of the following do you know?

a. getSize() is a static method.
b. getSize() returns a number.
c. getSize() receives a this reference.
d. all of the above

19. Assume that you have created a class that contains a private field named myField
and a nonstatic public method named myMethod(). Which of the following is true?

a. myMethod() has access to myField and can use it.
b. myMethod() does not have access to myField and cannot use it.
c. myMethod() can use myField but cannot pass it to other methods.
d. myMethod() can use myField only if it is passed to myMethod() as a parameter.

20. An object can be .

a. stored in an array
b. passed to a method

c. returned from a method
d. all of the above

Programming Exercises

1. Identify three objects that might belong to each of the following classes:

a. Building

b. Artist

c. BankLoan

467

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2. Identify three different classes that might contain each of these objects:

a. William Shakespeare

b. My favorite red sweater

c. Public School 23 in New York City

3. Design a class named TermPaper that holds an author’s name, the subject of the
paper, and an assigned letter grade. Include methods to set the values for each data
field and display the values for each data field. Create the class diagram and write
the pseudocode that defines the class.

4. Design a class named Automobile that holds the vehicle identification number,
make, model, and color of an automobile. Include methods to set the values for
each data field, and include a method that displays all the values for each field.
Create the class diagram and write the pseudocode that defines the class.

5. Complete the following tasks:

a. Design a class named CheckingAccount that holds a checking account number,
name of account holder, and balance. Include methods to set values for each
data field and a method that displays all the account information. Create the
class diagram and write the pseudocode that defines the class.

b. Design an application that declares two CheckingAccount objects and sets and
displays their values.

c. Design an application that declares an array of five CheckingAccount objects.
Prompt the user for data for each object, and then display all the values.

d. Design an application that declares an array of five CheckingAccount objects.
Prompt the user for data for each object, and then pass the array to a method
that determines the sum of the balances.

6. Complete the following tasks:

a. Design a class named StockTransaction that holds a stock symbol (typically
one to four characters), stock name, and price per share. Include methods to set
and get the values for each data field. Create the class diagram and write the
pseudocode that defines the class.

b. Design an application that declares two StockTransaction objects and sets and
displays their values.

c. Design an application that declares an array of 10 StockTransaction objects.
Prompt the user for data for each object, and then display all the values.

d. Design an application that declares an array of 10 StockTransaction objects.
Prompt the user for data for each object, and then pass the array to a method
that determines and displays the two stocks with the highest and lowest price
per share.

468

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7. Complete the following tasks:

a. Design a class named Pizza. Data fields include a string field for a topping
(such as pepperoni) and numeric fields for diameter in inches (such as 12)
and price (such as 13.99). Include methods to get and set values for each of
these fields. Create the class diagram and write the pseudocode that defines
the class.

b. Design an application that declares two Pizza objects and sets and displays
their values.

c. Design an application that declares an array of 10 Pizza objects. Prompt the
user for data for each Pizza, then display all the values.

d. Design an application that declares an array of 10 Pizza objects. Prompt the
user for a topping and diameter for each Pizza, and pass each object to a
method that computes the price and returns the complete Pizza object to the
main program. Then display all the Pizza values. A 12−inch pizza is $13.99, a
14−inch pizza is $16.99, and a 15−inch pizza is $19.99. Any other entered size is
invalid and should cause the price to be set to 0.

8. Complete the following tasks:

a. Design a class named BaseballGame that has fields for two team names and
a final score for each team. Include methods to set and get the values for
each data field. Create the class diagram and write the pseudocode that
defines the class.

b. Design an application that declares three BaseballGame objects and sets and
displays their values.

c. Design an application that declares an array of 12 BaseballGame objects.
Prompt the user for data for each object, and display all the values. Then pass
each object to a method that displays the name of the winning team or “Tie” if
the score is a tie.

Performing Maintenance

1. A file named MAINTENANCE10-01.txt is included with your downloadable
student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

469

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Find the Bugs

1. Your downloadable student files for Chapter 10 include DEBUG10-01.txt,
DEBUG10-02.txt, and DEBUG10-03.txt. Each file starts with some comments that
describe the problem. Comments are lines that begin with two slashes (//).
Following the comments, each file contains pseudocode that has one or more bugs
you must find and correct.

2. Your downloadable files for Chapter 10 include a file named DEBUG10-04.jpg that
contains a class diagram with syntax and/or logical errors. Examine the class
diagram and then find and correct all the bugs.

Game Zone

1. a. Playing cards are used in many computer games, including versions of such
classics as Solitaire, Hearts, and Poker. Design a Card class that contains a string
data field to hold a suit (spades, hearts, diamonds, or clubs) and a numeric data
field for a value from 1 to 13. Include get and set methods for each field. Write an
application that randomly selects two playing cards and displays their values.

b. Using two Card objects, design an application that plays a simple version of the
card game War. Deal two Cards—one for the computer and one for the player.
Determine the higher card, then display a message indicating whether the cards
are equal, the computer won, or the player won. (Playing cards are considered
equal when they have the same value, no matter what their suit is.) For this
game, assume that the Ace (value 1) is low. Make sure that the two Cards dealt
are not the same Card. For example, a deck cannot contain more than one
Queen of Spades.

Up for Discussion

1. In this chapter, you learned that instance data and methods belong to objects, but
that static data and methods belong to a class as a whole. Consider the real-life
class named StateInTheUnitedStates. Name some real-life attributes of this class
that are static attributes and instance attributes. Create another example of a real-
life class and discuss what its static and instance members might be.

2. Some programmers use a convention called Hungarian notation when naming
their variables and class fields. What is Hungarian notation, and why do many
object-oriented programmers feel it is not a valuable convention to use?

470

C H A P T E R 1 0 Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 11
More Object-Oriented
Programming
Concepts

In this chapter, you will learn about:

Constructors

Destructors

Composition

Inheritance

GUI objects

Exception handling

The advantages of object-oriented programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Constructors
In Chapter 10, you learned that you can create classes to encapsulate data and methods, and
that you can instantiate objects from the classes you define. For example, you can create an
Employee class that contains fields such as lastName, hourlyWage, and weeklyPay, and
methods that set and return values for those fields. When you instantiate an object with a
statement that uses the class type and an object identifier, such as Employee chauffeur, you
are actually calling a method named Employee(). A method that has the same name as a class
and that establishes an object is a constructor method, or more simply, a constructor. A
default constructor is one that requires no arguments. If a constructor requires arguments, it
is a nondefault constructor or a parameterized constructor. In object-oriented programming
(OOP) languages, you can write both default and nondefault constructors for a class; if so, the
constructors are overloaded. If you do not create either a default or nondefault constructor,
then a default constructor is created automatically by the compiler for every class you write.

In some programming languages, such as Visual Basic and C++, you do not need to use the constructor
name when declaring an object, but the constructor is called nevertheless. In other languages, like Java and
C#, you include the constructor name in the declaration.

The constructor for the Employee class establishes one Employee object. Depending on the
programming language, the automatically supplied default constructor might provide initial
values for the object’s data fields; for example, in many languages all numeric fields are set to
zero by default. If you do not want an object’s fields to hold default values, or if you want to
perform additional tasks when you create an instance of a class, you can write your own
constructor. Any constructor you write must have the same name as the class in which it is
defined, and it does not have a return type. Normally, you declare constructors to be public so
that other classes can instantiate objects that belong to the class.

You can create constructors for a class with or without parameters. Once you write a
constructor, regardless of whether you include parameters, the automatically supplied default
constructor no longer exists. When you write a constructor that does not include parameters,
your constructor becomes the default constructor for the class. In other words, a class can
have three types of constructors:

A class can contain a default (parameterless) constructor that is created automatically.
When a class contains an automatically created default constructor, it means that no
constructors have been explicitly written for the class.

A class can contain a default (parameterless) constructor that you create explicitly. A class
with an explicitly created default constructor no longer contains the automatically
supplied version, but it can coexist with a nondefault constructor.

A class can contain a nondefault constructor (with one or more parameters), which must
be explicitly created. A class with a nondefault constructor no longer contains the
automatically supplied default version, but it can coexist with an explicitly created default
constructor.

472

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Default Constructors
For example, if you want every Employee object to have a starting hourly wage of $10.00 as
well as the correct weekly pay for that wage, then you could write the default constructor for
the Employee class that appears in Figure 11-1. Any Employee object instantiated will have an
hourlyWage field equal to 10.00 and a weeklyPay field equal to 400.00. The lastName field will
hold the default value for strings in the programming language in which this class is
implemented because lastName is not assigned in the constructor.

The Employee constructor in Figure 11-1 calls the calculateWeeklyPay() method. You can write
any statement you want in a constructor; it is just a method. Although you usually have no reason
to do so, you could output a message from a constructor, accept input, declare local variables, or

class Employee
   Declarations
      private string lastName
      private num hourlyWage
      private num weeklyPay

   public Employee()
      hourlyWage = 10.00
      calculateWeeklyPay()
   return

   public void setLastName(string name)
      lastName = name
   return

   public void setHourlyWage(num wage)
      hourlyWage = wage
      calculateWeeklyPay()
   return

   public string getLastName()
   return lastName

   public num getHourlyWage()
   return hourlyWage

   public num getWeeklyPay()
   return weeklyPay

   private void calculateWeeklyPay()
      Declarations
         num WORK_WEEK_HOURS = 40
      weeklyPay = hourlyWage * WORK_WEEK_HOURS
   return
endClass

Figure 11-1 Employee class with a default constructor that sets hourlyWage and weeklyPay
© 2015 Cengage Learning

473

Understanding Constructors

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



perform any other task. You can place a constructor anywhere inside the class, outside of any
other method. Often, programmers list constructors first among the methods, because a
constructor is the first method called when an object is created.

Figure 11-2 shows a program in which two Employee objects are declared and their
hourlyWage values are displayed. In the output in Figure 11-3, you can see that even though
the setHourlyWage() method is never called directly in the program, the Employees possess
valid hourly wages as set by their constructors.

The Employee class in Figure 11-1 sets an Employee’s hourly wage to 10.00 at construction,
but the class also contains a setHourlyWage() method that a client application could use later
to change the initial hourlyWage value. A superior way to write the Employee class
constructor is shown in Figure 11-4. In this version of the constructor, a named constant with
the value 10.00 is passed to setHourlyWage(). Using this technique provides several
advantages:

The statement to call calculateWeeklyPay() is no longer required in the constructor
because the constructor calls setHourlyWage(), which calls calculateWeeklyPay().

In the future, if restrictions should be imposed on hourlyWage, the code will need to be
altered in only one location. For example, if setHourlyWage() is modified to disallow rates
that are too high and too low, the code will change only in the setHourlyWage() method
and will not have to be modified in the constructor. This reduces the amount of work
required and reduces the possibility for error.

start
   Declarations
      Employee myPersonalTrainer
      Employee myInteriorDecorator
   output "Trainer's wage: ",
      myPersonalTrainer.getHourlyWage()
   output "Decorator's wage: ",
      myInteriorDecorator.getHourlyWage()
stop

Figure 11-2 Program that declares Employee objects using class in Figure 11-1
© 2015 Cengage Learning

Figure 11-3 Output of program in Figure 11-2
© 2015 Cengage Learning

474

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Of course, if different hourlyWage requirements are needed at initialization than are required
when the value is set after construction, then different statements will be written in the
constructor than those written in the setHourlyWage() method.

Nondefault Constructors
You can write one or more nondefault constructors for a class. Nondefault constructors
accept one or more parameters. When you create any constructor, whether it is default or
nondefault, the automatically supplied default constructor is no longer accessible. You could
explicitly create a default (parameterless) constructor in addition to a nondefault one, in
which case the constructors would be overloaded.

For example, instead of forcing every Employee to be constructed with the same initial values,
you might choose to create Employee objects that each have a unique hourlyWage by passing
a numeric value for the wage to the constructor. Figure 11-5 shows an Employee constructor
that receives an argument. When you declare an object using the Employee class that contains
this constructor, you pass an argument to the constructor using a declaration similar to one
of the following:

Employee partTimeWorker(8.81), using an unnamed, literal constant

Employee partTimeWorker(BASE_PAY), using a named constant

Employee partTimeWorker(valueEnteredByUser), using a variable

In each of these cases, when the constructor executes, the numeric value within the
constructor call is passed to Employee(), where the parameter rate takes on the value of the
argument. The value is assigned to hourlyWage within the constructor.

public Employee()
   Declarations
      num DEFAULT_WAGE = 10.00
   setHourlyWage(DEFAULT_WAGE)
return

Figure 11-4 Improved version of the Employee class constructor
© 2015 Cengage Learning

public Employee(num rate)
   setHourlyWage(rate)
return

Figure 11-5 Employee constructor that accepts a parameter
© 2015 Cengage Learning

475

Understanding Constructors

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If you create an Employee class with a constructor such as the one shown in Figure 11-5, and
it is the only constructor in the class, then every Employee object you create must use a
numeric argument in its declaration. In other words, with this new version of the class that
contains a single nondefault constructor, the following declaration no longer works:

Employee partTimeWorker

Overloading Methods and Constructors
In Chapter 9, you learned that you can overload methods by writing multiple versions of a
method with the same name but different parameter lists. You can overload instance
methods and constructors in the same way. For example, Figure 11-6 shows a version of
the Employee class that contains two constructors. Recall that a method’s signature is
its name and list of argument types. The constructors in Figure 11-6 have different
signatures—one version requires no argument and the other requires a numeric argument.
In other words, this version of the class contains both a default constructor and a
nondefault constructor.

476

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you use the version of the class shown in Figure 11-6, then you can make statements
like the following:
Employee deliveryPerson
Employee myButler(25.85)

When you declare an Employee using the first statement, an hourlyWage of 10.00 is
automatically set because the statement uses the parameterless version of the constructor.

class Employee
   Declarations
      private string lastName
      private num hourlyWage
      private num weeklyPay

   public Employee()
      Declarations
         num DEFAULT_WAGE = 10.00
      setHourlyWage(DEFAULT_WAGE)
   return

   public Employee(num rate)
      setHourlyWage(rate)
   return

   public void setLastName(string name)
      lastName = name
   return

   public void setHourlyWage(num wage)
      hourlyWage = wage
      calculateWeeklyPay()
   return

   public string getLastName()
   return lastName

   public num getHourlyWage()
   return hourlyWage
   
   public num getWeeklyPay()
   return weeklyPay

   private void calculateWeeklyPay()
      Declarations
         num WORK_WEEK_HOURS = 40
      weeklyPay = hourlyWage * WORK_WEEK_HOURS
   return
endClass

Default constructor

Nondefault
constructor

Figure 11-6 Employee class with overloaded constructors
© 2015 Cengage Learning

477

Understanding Constructors

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you declare an Employee using the second statement, hourlyWage is set to the passed
value. Any method or constructor in a class can be overloaded, and you can provide as many
versions as you want, provided that each version has a unique signature. (In the next section,
you learn about destructors, which cannot be overloaded.) For example, you could add a third
constructor to the Employee class, as shown in Figure 11-7. This version can coexist with the
other two because the parameter list is different from either existing version. With this
version you can specify the hourly rate for the Employee as well as a name. If an application
makes a statement similar to the following, then this two-parameter version would execute:

Employee myMaid(22.50, "Parker")

You might create an Employee class with several constructor versions to provide flexibility for
client programs. For example, a particular client program might use only one version, a
different client might use another, and a third client might use them all.

Watch the video Constructors.

TWO TRUTHS & A LIE

Understanding Constructors

1. A constructor is a method that establishes an object.

2. A default constructor is defined as one that is created automatically.

3. Depending on the programming language, a default constructor might provide
initial values for the object’s data fields.

Thefalsestatementis#2.Adefaultconstructorisonethattakesnoarguments.
Althoughtheautomaticallycreatedconstructorforaclassisadefaultconstructor,
notalldefaultconstructorsarecreatedautomatically.

public Employee(num rate, string name)
   lastName = name
   setHourlyWage(rate)
return

Figure 11-7 A third possible Employee class constructor
© 2015 Cengage Learning

478

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Destructors
A destructor contains the actions you require when an instance of a class is destroyed. Most often,
an instance of a class is destroyed when the object goes out of scope. For example, when an object
is declared within a method, the object goes out of scope when the method ends. As with
constructors, if you do not explicitly create a destructor for a class, one is provided automatically.

The most common way to declare a destructor explicitly is to use an identifier that consists of
a tilde (~) followed by the class name. You cannot provide parameters to a destructor; it must
have an empty parameter list. As a consequence, destructors cannot be overloaded; a class
can have only one destructor. Like a constructor, a destructor has no return type.

The rules for creating and naming destructors vary among programming languages. For example, in Visual
Basic classes, the destructor is called Finalize.

Figure 11-8 shows an Employee class that contains only one field (idNumber), a constructor, and a
shaded destructor. Although it is unusual for a constructor or destructor to output anything,
these display messages so you can see when the objects are created and destroyed. When you
execute the client program in Figure 11-9, you instantiate two Employee objects, each with its
own idNumber value. When the program ends, the two Employee objects go out of scope, and
the destructor for each object is called automatically. Figure 11-10 shows the output.

class Employee
   Declarations
      private string idNumber
   public Employee(string empID)
      idNumber = empId
      output "Employee ", idNumber, " is created"
   return
   public ~Employee()
      output "Employee ", idNumber, " is destroyed"
   return
endClass

Figure 11-8 Employee class with destructor
© 2015 Cengage Learning

start
   Declarations
      Employee aWorker("101")
      Employee anotherWorker("202")
stop

Figure 11-9 Program that declares two Employee objects
© 2015 Cengage Learning

479

Understanding Destructors

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The program in Figure 11-9 never explicitly calls the Employee class destructor, yet you can
see from the output that the destructor executes twice. Destructors are invoked
automatically; you usually do not explicitly call one, although in some languages you can.
Interestingly, you can see from the output in Figure 11-10 that the last object created is the
first object destroyed; the same relationship would hold true no matter how many objects the
program instantiated if the objects went out of scope at the same time.

An instance of a class becomes eligible for destruction when it is no longer possible for any code to use it—
that is, when it goes out of scope. In many languages, the actual execution of an object’s destructor might
occur at any time after the object becomes eligible for destruction.

For now, you have little reason to create a destructor except to demonstrate how it is called
automatically. Later, when you write more sophisticated programs that work with files,
databases, or large quantities of computer memory, you might want to perform specific clean-
up or close-down tasks when an object goes out of scope. If you develop a game in which the
player attempts to eliminate monsters or pop bubbles, you might want to perform an action
such as adding points to the player’s score when an object in the game is destroyed. In these
examples, you could place appropriate instructions within a destructor.

TWO TRUTHS & A LIE

Understanding Destructors

1. Unlike constructors, you must explicitly create a destructor if you want one for a
class.

2. A destructor must have an empty parameter list.

3. Destructors cannot be overloaded; a class can have only one destructor.

Thefalsestatementis#1.Aswithconstructors,ifyoudonotexplicitlycreatea
destructorforaclass,oneisprovidedautomatically.

Figure 11-10 Output of program in Figure 11-9
© 2015 Cengage Learning

480

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Composition
A class can contain simple variables as data fields, and it can contain objects of another class
as data fields. For example, you might create a class named Date that contains a month, day,
and year, and add two Date fields to an Employee class to hold the Employee’s birth date and
hire date. Then you might create a class named Department that represents every department
in a company, and create the Department class to contain a supervisor, who is an Employee.
Figure 11- 11 contains a diagram of these relationships. When a class contains objects of
another class, the relationship is called a whole-part relationship or composition. The
relationship created is also called a has-a relationship because one class “has an” instance of
another—for example, a Department has an Employee and an Employee has a hire Date.

Placing one or more objects within another object is often known as composition when the parts cease to
exist if the whole ceases to exist, and aggregation when the parts can exist without the whole. For example,
the relationship of a Business to its Departments is composition because if the Business ceases to
exist, so do its Departments. However, the relationship of a Department to its Employees might be
called aggregation because the Employees continue to exist even if their Department does not. These
terms are defined more precisely in Chapter 13.

When your classes contain objects that are members of other classes, your programming task
becomes increasingly complex. For example, you sometimes must refer to a method by a very
long name. Suppose you create a Department class that contains an array of Employee objects
(those who work in the department), and a method named getHighestPaidEmployee()
that returns a single Employee object. The Employee class contains a method named
getHireDate()that returns a Date object—an Employee’s hire date. Further suppose the Date

class contains a method that returns the year portion of the Date, and that you create a
Department object named sales. An application might contain a statement such as the following,
which outputs the year that the highest-paid employee in the sales department was hired:

output sales.getHighestPaidEmployee().getHireDate().getYear()

month
day 
year

idNumber
name

deptNumber
deptName

month
day 
year

Department

supervisor

Employee

birthDate
hireDate

Date

Date

Figure 11-11 Diagram of typical composition relationships
© 2015 Cengage Learning

481

Understanding Composition

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Additionally, when classes contain objects that are members of other classes, all the
corresponding constructors and destructors execute in a specific order. As you work with
object-oriented programming languages, you will learn to manage these complex issues.

TWO TRUTHS & A LIE

Understanding Composition

1. A class can contain objects of another class as data fields.

2. Composition occurs when you use an object as a field within another class.

3. Composition is called an is-a relationship because one class “is an” instance of
another.

Understanding Inheritance
Understanding classes helps you organize objects in real life. Understanding inheritance helps
you organize them more precisely. Inheritance enables you to apply your knowledge of a
general category to more specific objects. When you use the term inheritance, you might
think of genetic inheritance. You know from biology that your blood type and eye color are
determined by inherited genes. You might choose to own plants and animals based on their
inherited attributes. You plant impatiens next to your house because they thrive in the shade;
you adopt a poodle because you know poodles don’t shed. Every plant and pet has slightly
different characteristics, but within a species, you can count on many consistent inherited
attributes and behaviors. In other words, you can reuse the knowledge you gain about general
categories and apply it to more specific categories.

Similarly, the classes you create in object-oriented programming languages can inherit data
and methods from existing classes. When you create a class by making it inherit from another
class, the new class contains fields and methods automatically, allowing you to reuse fields
and methods that are already written and tested.

You already know how to create classes and how to instantiate objects that are members
of those classes. For example, consider the Employee class in Figure 11-12. The class
contains two data fields, empNum and weeklySalary, as well as methods that get and set
each field.

Thefalsestatementis#3.Compositioniscalledahas-arelationshipbecauseone
class“hasan”instanceofanother.

482

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Suppose that you hire a new type of Employee who earns a commission as well as a weekly
salary. You can create a class with a name such as CommissionEmployee, and provide this class
with three fields (empNum, weeklySalary, and commissionRate) and six methods (to get and
set each of the three fields). However, this would duplicate much of the work that you already
have done when creating the Employee class. The wise and efficient alternative is to create the
CommissionEmployee class so it inherits all the attributes and methods of Employee. Then,
you can add just the single field and two methods (the get and set methods for the new field)
that are needed to complete the new class. Figure 11-13 depicts these relationships. The
complete CommissionEmployee class is shown in Figure 11-14.

class Employee
   Declarations
      private string empNum
      private num weeklySalary

   public void setEmpNum(string number)
      empNum = number
   return

   public string getEmpNum()
   return empNum

   public void setWeeklySalary(num salary)
      weeklySalary = salary
   return

   public num getWeeklySalary()
   return weeklySalary
endClass

Figure 11-12 An Employee class
© 2015 Cengage Learning

483

Understanding Inheritance

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recall that a plus sign in a class diagram indicates public access and a minus sign indicates private access.
Figure 11-13 and several other figures in this chapter are examples of UML diagrams. Chapter 13 describes
UML diagrams in more detail.

The class in Figure 11-14 uses the phrase inheritsFrom Employee (see shading) to indicate
inheritance. Each programming language uses its own syntax. For example, in Java you would write
extends, in Visual Basic you would write Inherits, and in C++ and C# you would use a colon between
the new class name and the one from which it inherits.

Employee

–empNum : string
–weeklySalary : num

+setEmpNum(number : string) : void
+getEmpNum() : string
+setWeeklySalary(salary : num) : void
+getWeeklySalary() : num

CommissionEmployee

–commissionRate : num

+setCommissionRate(rate : num) : void
+getCommissionRate() : num

Figure 11-13 CommissionEmployee inherits from Employee
© 2015 Cengage Learning

class CommissionEmployee inheritsFrom Employee
   Declarations
      private num commissionRate

   public void setCommissionRate(num rate)
      commissionRate = rate
   return

   public num getCommissionRate()
   return commissionRate
endClass

Figure 11-14 CommissionEmployee class
© 2015 Cengage Learning

484

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you use inheritance to create the CommissionEmployee class, you acquire the following
benefits:

You save time, because you need not re-create the Employee fields and methods.

You reduce the chance of errors, because the Employee methods have already been
written and tested.

You make it easier for anyone who has used the Employee class to understand the
CommissionEmployee class, because these users can concentrate on the new features only.

You reduce the chance for errors and inconsistencies in shared fields. For example, if your
company decides to change employee ID numbers from four digits to five, and you have
code in the Employee class constructor that ensures valid ID numbers, then you can
simply change the code in the Employee class; every CommissionEmployee object will
automatically acquire the change. Without inheritance, not only would you have to make
the change in multiple places, but the likelihood would increase that you would forget to
make the change in one of the classes or introduce an inconsistency when making a
change in one of the classes.

Imagine that besides CommissionEmployee, you want to create several other more specific
Employee classes (perhaps PartTimeEmployee, including a field for hours worked, or
DismissedEmployee, including a reason for dismissal). By using inheritance, you can develop
each new class correctly and more quickly. The ability to use inheritance makes programs
easier to write, easier to understand, and less prone to errors.

In part, the concept of class inheritance is useful because it makes class code reusable. However, you do
not use inheritance simply to save work. When properly used, inheritance always involves a general-to-
specific relationship that makes logical sense.

Understanding Inheritance Terminology
A class that is used as a basis for inheritance, like Employee, is called a base class. When you
create a class that inherits from a base class (such as CommissionEmployee), it is a derived
class or extended class. When two classes have a base-derived relationship, you can
distinguish the classes by using them in a sentence with the phrase is a. A derived class always
“is a” case or instance of the more general base class. For example, a Tree class may be a base
class to an Evergreen class. Every Evergreen is a Tree; however, it is not true that every Tree
is an Evergreen. Thus, Tree is the base class and Evergreen is the derived class. Similarly, a
CommissionEmployee is an Employee—not always the other way around—so Employee is the
base class and CommissionEmployee is derived.

You can use the terms superclass and subclass as synonyms for base class and derived class.
Thus, Evergreen can be called a subclass of the Tree superclass. You also can use the terms
parent class and child class. A CommissionEmployee is a child to the Employee parent.

As an alternative way to discover which of two classes is the base class and which is the
derived class, you can try saying the two class names together, although this technique might

485

Understanding Inheritance

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



not work with every base-subclass pair. When people say their names in the English language,
they state the more specific name before the all-encompassing family name, such as Mary
Johnson. Similarly, with classes, the order that “makes more sense” is the child-parent order.
Thus, because “Evergreen Tree” makes more sense than “Tree Evergreen,” you can deduce
that Evergreen is the child class. It also is convenient to think of a derived class as building
upon its base class by providing the “adjectives” or additional descriptive terms for the “noun.”
Frequently, the names of derived classes are formed in this way, as in CommissionEmployee or
EvergreenTree.

Finally, you usually can distinguish base classes from their derived classes by size. Although it
is not required, a derived class is generally larger than its base class, in the sense that it usually
has additional fields and methods. A subclass description may look small, but any subclass
contains all of its base class’s fields and methods as well as its own more specific fields and
methods.

Do not think of a subclass as a subset of another class—in other words, as possessing only parts of its base
class. In fact, a derived class usually contains more than its parent.

A derived class can be further extended. In other words, a subclass can have a child of its own.
For example, after you create a Tree class and derive Evergreen, you might derive a Spruce
class from Evergreen. Similarly, a Poodle class might derive from Dog, Dog from
DomesticPet, and DomesticPet from Animal. The entire list of parent classes from which a
child class is derived constitutes the ancestors of the subclass.

After you create the Spruce class, you might be ready to create Spruce objects. For example, you might
create theTreeInMyBackYard, or you might create an array of 1000 Spruce objects for a tree farm.
On the other hand, before you are ready to create objects, you might first want to create even more specific
child classes such as ColoradoSpruce and NorwaySpruce.

A child inherits all the data fields and methods of all its ancestors. In other words, when you
declare a Spruce object, it contains all the attributes and methods of both an Evergreen and a
Tree, and a CommissionEmployee contains all the attributes and methods of an Employee. In
other words, the components of Employee and CommissionEmployee are as follows:

Employee contains two fields and four methods, as shown in Figure 11-12.

CommissionEmployee contains three fields and six methods, even though you do not see
all of them in Figure 11-14. Two of its fields and four of its methods are defined in its
parent’s class.

Although a child class contains all the data fields and methods of its parent, a parent class
does not gain any child class data or methods. Therefore, when Employee and
CommissionEmployee classes are defined as in Figures 11-12 and 11-14, the statements in
Figure 11-15 are all valid in an application. The salesperson object can use all the methods of
its parent, and it can use its own setCommissionRate() and getCommissionRate() methods.
Figure 11-16 shows the output of the program as it would appear in a command-line
environment.

486

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The following statements would not be allowed in the EmployeeDemo application in Figure 11-15
because manager, as an Employee object, does not have access to the methods of the
CommissionEmployee child class:

manager.setCommissionRate(0.08)
output manager.getCommissionRate()

When you create your own inheritance chains, you want to place fields and methods at their most general
level. In other words, a method named grow() rightfully belongs in a Tree class, whereas it would be
appropriate to place a leavesTurnColor() method in a DeciduousTree class rather than separately
within Oak or Maple child classes.

It makes sense that a parent class object does not have access to its child’s data and methods.
When you create the parent class, you do not know how many future child classes might be
created, or what their data or methods might look like. In addition, derived classes are more
specific, so parent class objects cannot use them. For example, a Cardiologist class and an
Obstetrician class are children of a Doctor class. You do not expect all members of the general
parent class Doctor to have the Cardiologist’s repairHeartValve() method or the
Obstetrician’s performCaesarianSection() method. However, Cardiologist and
Obstetrician objects have access to the more general Doctor methods takeBloodPressure()

Don’t Do It
A base class object cannot
use methods that belong
to its child class.

Figure 11-16 Output of the program in Figure 11-15
© 2015 Cengage Learning

start
   Declarations
      Employee manager
      CommissionEmployee salesperson
   manager.setEmpNum("111")
   manager.setWeeklySalary(700.00)
   salesperson.setEmpNum("222")
   salesperson.setWeeklySalary(300.00)
   salesperson.setCommissionRate(0.12)
   output "Manager ", manager.getEmpNum(), manager.getWeeklySalary()
   output "Salesperson ", salesperson.getEmpNum(),
      salesperson.getWeeklySalary(), salesperson.getCommissionRate()
stop

Figure 11-15 EmployeeDemo application that declares two Employee objects
© 2015 Cengage Learning

487

Understanding Inheritance

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



and billPatients(). As with specialization of doctors, it is convenient to think of derived classes
as specialists. That is, their fields and methods are more specialized than those of the parent class.

In some programming languages, such as C#, Visual Basic, and Java, every class you create is a child of one
ultimate base class, often called the Object class. The Object class usually provides basic functionality that is
inherited by all the classes you create—for example, the ability to show its name or an object’s memory location.

Accessing Private Fields and Methods of a Parent Class
In Chapter 10 you learned that when you create classes, the most common scenario is for
methods to be public but for data to be private. Making data private is an important concept in
object-oriented programming. By making data fields private and allowing access to them only
through a class’s methods, you control the ways in which data items can be altered and used.

When a data field within a class is private, no outside class can use it—including a child class.
The principle of data hiding would be lost if you could access a class’s private data merely by
creating a child class. However, it can be inconvenient when the methods of a child class
cannot directly access the data fields it inherits.

Watch the video Inheritance.

For example, suppose that some employees do not earn a weekly salary as defined in the
Employee class, but are paid by the hour. You might create an HourlyEmployee class that
descends from Employee, as shown in Figure 11-17. The class contains two new fields,
hoursWorked and hourlyRate, and a get and set method for each.

Employee

-empNum : string
-weeklySalary : num

+setEmpNum(number: string) : void
+getEmpNum() : string
+setWeeklySalary(salary : num) : void
+getWeeklySalary() : num

HourlyEmployee

-hoursWorked : num
-hourlyRate : num

+setHoursWorked(hours : num) : void
+getHoursWorked() : num
+setHourlyRate(rate : num) : void
+getHourlyRate() : num

Figure 11-17 Class diagram for HourlyEmployee class
© 2015 Cengage Learning

488

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You can implement the new class as shown in Figure 11-18. Whenever you set either
hoursWorked or hourlyRate, you want to recalculate weeklySalary using the newly
modified values for the hours and rate. The logic makes sense, but when you write the
code in a programming language, it does not compile. The two shaded statements show
that the HourlyEmployee class is attempting to modify the weeklySalary field.
Although every HourlyEmployee has a weeklySalary field by virtue of being a child of
Employee, the HourlyEmployee class methods do not have access to the weeklySalary

field, because weeklySalary is private within the Employee class. In this
case, the private weeklySalary field is inaccessible to any class other than the one in
which it is defined.

One solution to this problem would be to make weeklySalary public in the parent
Employee class. Then the child class could use it. However, that action would violate the
important object-oriented principle of data hiding. Good object-oriented style dictates
that your data should be altered only by the methods you choose and only in ways that
you can control. If outside classes could alter an Employee’s private fields, then the fields
could be assigned values that the Employee class could not control. In such a case, the
principle of data hiding would be destroyed, causing the behavior of the object to be
unpredictable.

Therefore, OOP languages allow a medium-security access specifier that is more
restrictive than public but less restrictive than private. The protected access specifier
is used when you want no outside classes to be able to use a data field, except classes

class HourlyEmployee inheritsFrom Employee
   Declarations
      private num hoursWorked
      private num hourlyRate

   public void setHoursWorked(num hours)
      hoursWorked = hours
      weeklySalary = hoursWorked * hourlyRate
   return

   public num getHoursWorked()
   return hoursWorked

   public void setHourlyRate(num rate)
      hourlyRate = rate
      weeklySalary = hoursWorked * hourlyRate
   return

   public num getHourlyRate()
   return hourlyRate
endClass

Don't Do It
These statements cause
errors. The private
parent field
weeklySalary cannot
be accessed by child
class methods.

Figure 11-18 Implementation of HourlyEmployee class that attempts to access weeklySalary
© 2015 Cengage Learning

489

Understanding Inheritance

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



that are children of the original class. Figure 11-19 shows a rewritten Employee class that
uses the protected access specifier on one of its data fields (see shading). When this
modified class is used as a base class for another class, such as HourlyEmployee, the
child class’s methods will be able to access any protected items (fields or methods)
originally defined in the parent class. When the Employee class is defined with a
protected weeklySalary field, as shown in Figure 11-19, the code in the HourlyEmployee

class in Figure 11-18 works correctly.

Figure 11-20 contains the class diagram for the version of the Employee class shown in Figure
11-19. Notice that the weeklySalary field is preceded with an octothorpe (#)—the character
that conventionally is used in class diagrams to indicate protected class members.

Employee

-empNum : string
#weeklySalary : num

+setEmpNum(number: string) : void
+getEmpNum() : string
+setWeeklySalary(salary : num) : void
+getWeeklySalary() : num

Figure 11-20 Employee class with protected member
© 2015 Cengage Learning

class Employee
   Declarations
      private string empNum
      protected num weeklySalary

   public void setEmpNum(string number)
      empNum = number
   return

   public string getEmpNum()
   return empNum

   public void setWeeklySalary(num salary)
      weeklySalary = salary
   return

   public num getWeeklySalary()
   return weeklySalary
endClass

Figure 11-19 Employee class with a protected field
© 2015 Cengage Learning

490

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If weeklySalary is defined as protected instead of private in the Employee class, then either
the creator of the class knew that a child class would want to access the field or the class was
revised after it became known the child class would need access to the field.

If the Employee class’s creator did not foresee that a field would need to be accessible, or if it is
not preferable to revise the class, then weeklySalary will remain private. It is still possible to
correctly set an HourlyEmployee’s weekly pay—the HourlyEmployee is just required to use
the same means as any other class would. That is, the HourlyEmployee class can use the
public method setWeeklySalary() that already exists in the parent class. Any class, including
a child, can use a public field or method of the base class. So, assuming that weeklySalary
remains private in Employee, Figure 11-21 shows how HourlyEmployee could be written to
correctly set weeklySalary.

In the version of HourlyEmployee in Figure 11-21, the shaded statements within
setHoursWorked() and setHourlyRate() assign a value to the corresponding child class field
(hoursWorked or hourlyRate, respectively). Each method then calls the public parent class
method setWeeklySalary(). In this example, no protected access specifiers are needed for
any fields in the parent class, and the creators of the parent class did not have to foresee that a
child class would eventually need to access any of its fields. Instead, any child classes of
Employee simply follow the same access rules as any other outside class would. As an added
benefit, if the parent class method setWeeklySalary() contained additional code (for
example, to require a minimum base weekly pay for all employees), then that code would be
enforced even for HourlyEmployees.

class HourlyEmployee inheritsFrom Employee
   Declarations
      private num hoursWorked
      private num hourlyRate

   public void setHoursWorked(num hours)
      hoursWorked = hours
      setWeeklySalary(hoursWorked * hourlyRate)
   return

   public num getHoursWorked()
   return hoursWorked

   public void setHourlyRate(num rate)
      hourlyRate = rate
      setWeeklySalary(hoursWorked * hourlyRate)
   return

   public num getHourlyRate()
   return hourlyRate
endClass 

Figure 11-21 The HourlyEmployee class when weeklySalary remains private
© 2015 Cengage Learning

491

Understanding Inheritance

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



So, in summary, when you create a child class that must access a private field of its parent’s
class, you can take one of several approaches:

If you are the developer of the parent class, you can modify the parent class to make
the field public. Usually, this is not advised because it violates the principle of data
hiding.

If you are the developer of the parent class, you can modify the parent class to make the
field protected so that child classes have access to it, but other outside classes do not. This
approach is necessary if you do not want public methods to be able to access the parent
class field. Be aware that some programmers oppose making any data fields nonprivate.
They feel that public methods should always control data access, even by a class’s
children.

The child class can use a public method within the parent class that modifies the field,
just as any other outside class would. This is frequently, but not always, the best
option.

Using the protected access specifier for a field can be convenient, and it improves program
performance a little by using a field directly instead of “going through” another method. Also,
using the protected access specifier is occasionally necessary when no existing public
method accesses a field in a way required by the child class. However, protected data
members should be used sparingly. Whenever possible, the principle of data hiding should be
observed, and even child classes should have to go through methods to “get to” their parent’s
private data.

The likelihood of future errors increases when child classes are allowed direct access to a
parent’s fields. For example, if the company decides to add a bonus to every Employee’s
weekly salary, you might make a change in the setWeeklySalary() method. If a child class is
allowed direct access to the Employee field weeklySalary without using the
setWeeklySalary() method, then any child class objects will not receive the bonus. Classes
that depend on field names from parent classes are said to be fragile because they are prone
to errors—that is, they are easy to “break.”

Some OOP languages, such as C++, allow a subclass to inherit from more than one parent class. For
example, you might create an InsuredItem class that contains data fields such as value and purchase
date for each insured possession, and an Automobile class with appropriate data fields (for example,
vehicle identification number, make, model, and year). When you create an InsuredAutomobile class
for a car rental agency, you might want to include information and methods for Automobiles
and InsuredItems, so you might want to inherit from both. The capability to inherit from more than one
class is called multiple inheritance.

Sometimes, a parent class is so general that you never intend to create any specific instances of the class.
For example, you might never create an object that is “just” an Employee; each Employee is more
specifically a SalariedEmployee, HourlyEmployee, or ContractEmployee. A class such as
Employee that you create only to extend from, but not to instantiate objects from, is an abstract class. An
abstract class is one from which you cannot create any concrete objects, but from which you can inherit.

492

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Overriding Parent Class Methods in a Child Class
Overriding is the mechanism by which a child class method is used by default when a parent
class contains a method with the same signature. That is, by default, the child class version of
the method is used with any child class object.

For example, suppose that an Employee class contains a setEmpNum() method that accepts a
string parameter and assigns it to a private data field named empNum. If you create a
CommissionEmployee class that is a child of Employee, and if the CommissionEmployee class
does not contain its own setEmpNum() method that accepts a string parameter, the parent
class method executes when you use the method name with a child class object.

However, suppose that CommissionEmployee is a child of Employee and that it also contains a
setEmpNum() method that accepts a string parameter, but concatenates a “C” to the value
before assigning it to empNum. When you declare an Employee object and use the method
name with it, the parent class version of the method executes. When you declare a
CommissionEmployee object and use the method name with it, the child class version of the
method overrides the parent class version and executes appropriately.

Using Inheritance to Achieve Good Software Design
When an automobile company designs a new car model, it does not build every component of
the new car from scratch. The company might design a new feature; for example, at some
point a carmaker designed the first air bag. However, many of a new car’s features are simply
modifications of existing features. The manufacturer might create a larger gas tank or more
comfortable seats, but even these new features still possess many properties of their
predecessors in the older models. Most features of new car models are not even modified;
instead, existing components such as air filters and windshield wipers are included on the new
model without any changes.

Similarly, you can create powerful computer programs more easily if many of their
components are used either “as is” or with slight modifications. Inheritance makes your job
easier because you don’t have to create every part of a new class from scratch. Professional
programmers constantly create new class libraries for use with OOP languages. Having
classes in these libraries that are available to use and extend makes programming large
systems more manageable. When you create a useful, extendable superclass, you and other
future programmers gain several advantages:

Subclass creators save development time because much of the code needed for the class
has already been written.

Subclass creators save testing time because the superclass code has already been tested
and probably used in a variety of situations. In other words, the superclass code is reliable.

Programmers who create or use new subclasses already understand how the superclass
works, so the time it takes to learn the new class features is reduced.

When you create a new subclass, neither the superclass source code nor the translated
superclass code is changed. The superclass maintains its integrity.

493

Understanding Inheritance

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you consider classes, you must think about their commonalities, and then you can
create superclasses from which to inherit. You might be rewarded professionally when you
see your own superclasses extended by others in the future.

TWO TRUTHS & A LIE

Understanding Inheritance

1. When you create a class by making it inherit from another class, you save time
because you need not re-create the base class fields and methods.

2. A class that is used as a basis for inheritance is called a base class, derived class,
or extended class.

3. When a data field within a class is private, no outside class can use it—including a
child class.

An Example of Using Predefined Classes:
Creating GUI Objects
When you purchase or download a compiler for an object-oriented programming language, it
comes packaged with many predefined, built-in classes. The classes are stored in libraries or
packages—collections of classes that serve related purposes. Some of the most helpful are
the classes you can use to create graphical user interface (GUI) objects such as frames,
buttons, labels, and text boxes. You place these GUI components within interactive programs
so that users can manipulate them by typing on a keyboard, clicking a mouse, or touching or
swiping a screen. For example, if you want to place a clickable button on the screen using a
language that supports GUI applications, you instantiate an object that belongs to an existing
class with a name similar to Button. You then create objects with names such as yesButton
or buyProductNowButton. The Button class contains private data fields such as text and
height and public methods such as setText() and setHeight() that allow you to alter the
objects’ fields. For example, you might write a statement such as the following to change the
text on a Button object:

buyProductNowButton.setText("Click here to buy now")

If no predefined GUI object classes existed, you could create your own. However, this would
present several disadvantages:

It would be a lot of work. Creating graphical objects requires a substantial amount of code
and at least a modicum of artistic talent.

Thefalsestatementis#2.Aclassthatisusedasabasisforinheritanceiscalleda
baseclass,superclass,orparentclass.Aderivedclassisasubclass,extended
class,orchildclass.

494

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



It would be repetitious work. Almost all GUI programs require standard components
such as buttons and labels. If each programmer created the classes for these components
from scratch, much of this work would be repeated unnecessarily.

The components would look different in various applications. If each programmer created
his or her own component classes, objects like buttons would look different and operate in
slightly different ways. Users prefer standardization in their components—title bars on
windows that are a uniform height, buttons that appear to be pressed when clicked, frames
and windows that contain maximize and minimize buttons in predictable locations, and so
on. By using standard component classes, programmers are assured that the GUI
components in their programs have the same look and feel as those in other programs.

Programming languages that supply existing GUI classes often provide a visual
development environment in which you can create programs by dragging components such
as buttons and labels onto a screen and arranging them visually. (In several languages, the
visual development environment is known by the acronym IDE, which stands for integrated
development environment.) Then you write programming statements to control the actions
that take place when a user manipulates the controls—by clicking them using a mouse, for
example. Many programmers never create classes of their own from which they will
instantiate objects, but only write application classes that use built-in GUI component
classes. Some languages—for example, Visual Basic and C#—lend themselves very well to
this type of programming. In Chapter 12, you will learn more about creating programs that
use GUI objects.

TWO TRUTHS & A LIE

An Example of Using Predefined Classes: Creating GUI Objects

1. Collections of classes that serve related purposes are called annals.

2. GUI components are placed within interactive programs so that users can
manipulate them using input devices.

3. By using standard component classes, programmers are assured that the GUI
components in their programs have the same look and feel as those in other
programs.

Understanding Exception Handling
A great deal of the effort that goes into writing programs involves checking data items to
make sure they are valid and reasonable. Professional data-entry operators who create the
files used in business applications spend their entire working day entering facts and figures, so

Thefalsestatementis#1.Collectionsofclassesthatserverelatedpurposesare
storedinlibrariesorpackages.

495

Understanding Exception Handling

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



operators can and do make typing errors. When programs depend on data entered by average
users who are not trained typists, the likelihood of errors is even greater.

Programmers use the acronym GIGO to describe what happens when worthless or invalid input causes
inaccurate or unrealistic results. GIGO is an acronym for “garbage in, garbage out.”

In procedural programs, programmers handled errors in various ways that were effective, but
the techniques had some drawbacks. The introduction of object-oriented programming has
led to a new model called exception handling.

Drawbacks to Traditional Error-Handling Techniques
In traditional programming, probably the most common error-handling outcome was to
terminate the program, or at least to terminate the method in which the offending statement
executed. For example, suppose that a program prompts a user to enter an insurance
premium type from the keyboard, and that the entered value should be A or H for Auto or
Health. Figure 11-22 shows a segment of pseudocode that causes the determinePremium()
method to end if policyType is invalid; in the shaded if statement, the method ends abruptly
when policyType is not A or H. This method of handling an error is not only unforgiving, it isn’t
even structured. Recall that a structured method should have exactly one entry point and exactly
one exit point. The method in Figure 11-22 contains two exit points at the two return statements.

In the example in Figure 11-22, if policyType contains an invalid value, the method in which
the code appears is terminated. The client program might continue with an invalid value or it
might stop working. If the program that contains this method is part of a business program or
a game, the user may be annoyed. However, an early termination in a program that monitors
a hospital patient’s vital signs or navigates an airplane might have far more serious
consequences.

public void determinePremium()
   Declarations
      string policyType
      string AUTO = "A"
      string HEALTH = "H"
   output "Please enter policy type "
   input policyType
   if policyType <> AUTO AND policyType <> HEALTH then
      return
   else
      // Calculations for auto and health premiums go here
   endif
return

Don't Do It
A structured
method should
not have multiple
return statements.

Figure 11-22 A method that handles an error in an unstructured manner
© 2015 Cengage Learning

496

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Rather than ending a method prematurely just because it encounters a piece of invalid data, a
more elegant solution involves repeating data entry in a loop until the data item becomes
valid, as shown in the highlighted portion of Figure 11-23. As long as the value of policyType
is invalid, the user is prompted continuously to enter a new value. Only when policyType is
A or H does the method continue.

The error-handling logic shown in Figure 11-23 has at least two shortcomings:

The method is not as reusable as it could be.

The method is not as flexible as it might be.

One of the principles of modular and object-oriented programming is reusability. The
method in Figure 11-23 is reusable only under limited conditions. The determinePremium()
method allows the user to reenter policy data any number of times, but other programs in the
insurance system may need to limit the number of chances the user gets to enter correct data,
or may allow no second chance at all. A more flexible determinePremium() method would be
able to detect an error and then notify the calling program or method that an error has
occurred. Each client that uses the determinePremium() method then could handle the
mistake appropriately for the current application.

The other drawback to forcing the user to reenter data is that the technique works only
with interactive programs. A more flexible program accepts any kind of input, including
data stored in a file. Program errors can occur as a result of many factors—for example, a
disk drive might not be ready, a file might not exist in the specified location, or stored data
items might be invalid. You cannot continue to reprompt a storage device for valid data the
way you can reprompt a user in an interactive program; if stored data is invalid, it remains
invalid.

In the next section, you will learn object-oriented exception-handling techniques that
overcome the limitations of traditional error handling.

public void determinePremium()
   Declarations
      string policyType
      string AUTO = "A"
      string HEALTH = "H"
   output "Please enter policy type "
   input policyType
   while policyType <> AUTO AND policyType <> HEALTH
      output "You must enter ", AUTO, " or ", HEALTH
      input policyType
   endwhile
   // Calculations for auto and health premiums go here
return

Figure 11-23 A method that handles an error using a loop
© 2015 Cengage Learning

497

Understanding Exception Handling

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Object-Oriented Exception-Handling Model
Object-oriented programs employ a group of techniques for handling errors called exception
handling. The generic name used for errors in object-oriented languages is exceptions
because errors are not usual occurrences; they are the “exceptions” to the rule.

In object-oriented terminology, you try some code that might throw an exception. If an
exception is thrown, it is passed to a block of code that can catch the exception, which means
to receive it in a way similar to how a parameter is received by a method. In some languages,
the exception object that is thrown can be any data type—a number, a string, or a
programmer-created object. However, even when a language permits any data type to be
thrown, most programmers throw an object of the built-in class Exception, or they use
inheritance techniques to derive a class from a built-in Exception class.

For example, Figure 11-24 shows a determinePremium() method that throws an exception
only if policyType is neither H nor A. If policyType is invalid, an object of type Exception
named mistake is instantiated and thrown from the method by a throw statement. A throw
statement is one that sends an Exception object out of the current code block or method so
it can be handled elsewhere. If policyType is H or A, the method continues, the premium is
calculated, and the method ends normally.

When you create a segment of code in which something might go wrong, you place the code
in a try block, which is a block of code you attempt to execute while acknowledging that an
exception might occur. A try block consists of the keyword try followed by any number of
statements, including some that might cause an exception to be thrown. If a statement in the
block causes an exception, the remaining statements in the try block do not execute and the
try block is abandoned. For pseudocode purposes, you can end a try block with a sentinel
keyword such as endtry.

public void determinePremium()
   Declarations
      string policyType
      string AUTO = "A"
      string HEALTH = "H"
   output "Please enter policy type "
   input policyType
   if policyType <> AUTO AND policyType <> HEALTH then
      Declarations
         Exception mistake
      throw mistake
   else
      // Calculations for auto and health premiums go here
   endif
return

Figure 11-24 A method that creates and throws an Exception object
© 2015 Cengage Learning

498

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



You almost always code at least one catch block immediately following a try block. A catch
block is a segment of code written to handle an exception that might be thrown by the try
block that precedes it. Each catch block “catches” one type of exception that it handles—in
many languages the caught object must be of type Exception or one of its child classes. You
create a catch block using the following pseudocode elements:

The keyword catch, followed by parentheses that contain an Exception type and an
identifier

Statements that take action to handle the error condition

An endcatch keyword to indicate the end of the catch block in the pseudocode

Figure 11-25 shows a client program that calls the determinePremium() method. Because
determinePremium() has the potential to throw an exception, the call to the method is
contained in a try block. If determinePremium() throws an exception, the catch block in the
program executes; if all goes well and determinePremium() does not throw an exception, the
catch block is bypassed. A catch block looks like a method named catch(), which takes an
argument that is some type of Exception. However, it is not a method; it has no return type,
and you can’t call it directly.

In the program in Figure 11-25, a message is displayed when the exception is thrown.
Another application might take different actions. For example, you might write an application
in which the catch block forces the policyType to H or to A, or reprompts the user for a
valid value. Various programs can use the determinePremium() method and handle an error
in the way that is considered most appropriate.

In the method in Figure 11-25, the variable mistake in the catch block is an object of type Exception.
The object is not used within the catch block, but it could be. For example, depending on the language, the
Exception class might contain a method named getMessage() that returns a string explaining the
cause of the error. In that case, you could place a statement such as output mistake.getMessage()
in the catch block.

start
   try
      determinePremium()
   endtry
   catch(Exception mistake)
      output "A mistake occurred"  
   endcatch

      // Other statements that would execute whether
      // or not the exception was thrown could go here

stop

Figure 11-25 A program that contains a try…catch pair
© 2015 Cengage Learning

499

Understanding Exception Handling

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Even when a program uses a method that throws an exception, the exceptions are created and thrown only
occasionally, when something goes wrong. Programmers sometimes refer to the more common situation in
which nothing goes wrong as the sunny day case.

The general principle of exception handling in object-oriented programming is that a method
that uses data should be able to detect errors, but not be required to handle them. The
handling should be left to the application that uses the object, so that each application can use
each method appropriately.

Watch the video Exception Handling.

Using Built-in Exceptions and Creating Your Own Exceptions
Many OOP languages provide built-in types that are subclasses of the language’s basic
Exception type. For example, Java, Visual Basic, and C# each provide dozens of categories
of automatically created exception types with names like ArrayOutOfBoundsException,
which is thrown when you attempt to use an invalid subscript with an array; and
DivideByZeroException, which is thrown when a program attempts to divide a number
by zero.

Although some actions, such as dividing by zero, are errors in all programming situations, the
built-in Exceptions in a programming language cannot cover every condition that might be
an Exception in your applications. For example, you might want to declare an Exception
when your bank balance is negative or when an outside party attempts to access your e-mail
account. Most organizations have specific rules for exceptional data; for example, an
employee number must not exceed three digits, or an hourly salary must not be less than the
legal minimum wage. You can check for each of these potential error situations with if

statements, and create and throw Exceptions if needed. Then, the methods that catch your
Exceptions can react appropriately for their application.

To create your own throwable Exception, you usually extend a built-in Exception class. For
example, you might create a class named NegativeBankBalanceException or
EmployeeNumberTooLargeException. (When you create a class that derives from Exception,
it is conventional, but not required, to use Exception in the name.) By inheriting from the
Exception class, you gain access to methods contained in the parent class, such as those that
display a default message describing the Exception. Depending on the language you are
using, you might be able to extend from other throwable classes as well as Exception.

When you use built-in Exception types, they derive from the general Exception class. When
you create specialized Exception types of your own, you also frequently derive them from the
general Exception class. Either way, all the types can be caught by a catch block that is
written to catch the general Exception type. In most object-oriented programming
languages, a method can throw any number of exceptions. Either a general or more specific
catch block must be available for each type of exception that is thrown; otherwise, the
program terminates and issues an error message.

500

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding Exception Handling

1. In object-oriented terminology, you try some code that might throw an exception,
and the exception can then be caught and handled.

2. A catch block is a segment of code that can handle an exception that might be
thrown by the try block preceding it.

3. The general principle of exception handling in object-oriented programming is that a
method that uses data should be able both to detect and handle most common errors.

Reviewing the Advantages of Object-Oriented Programming
In Chapter 10 and this chapter, you have been exposed to many concepts and features of
object-oriented programming, which provide extensive benefits as you develop programs.
Whether you instantiate objects from classes you have created or from those created by
others, you save development time because each object automatically includes appropriate,
reliable methods and attributes. When using inheritance, you can develop new classes more
quickly by extending classes that already exist and work; you need to concentrate only on new
features added by the new class. When using existing classes, you need to concentrate only on
the interface to those classes, not on the internal instructions that make them work. By using
polymorphism, you can use reasonable, easy-to-remember names for methods and
concentrate on their purpose rather than on memorizing different method names.

TWO TRUTHS & A LIE

Reviewing the Advantages of Object-Oriented Programming

1. When you instantiate objects in programs, you save development time because
each object automatically includes appropriate, reliable methods and attributes.

2. When using inheritance, you can develop new classes more quickly by extending
existing classes that already work.

3. By using polymorphism, you can avoid the strict rules of procedural programming
and take advantage of more flexible object-oriented methods.

Thefalsestatementis#3.Thegeneralprincipleofexceptionhandlinginobject-
orientedprogrammingisthatamethodthatusesdatashouldbeabletodetect
errors,butnotberequiredtohandlethem.

Thefalsestatementis#3.Byusingpolymorphism,youcanusereasonable,easy-to-
remembernamesformethodsandconcentrateontheirpurposeratherthanon
memorizingdifferentmethodnames.

501

Reviewing the Advantages of Object-Oriented Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter Summary
A constructor is a method that instantiates an object. A default constructor is one that
requires no arguments; in OOP languages, a default constructor is created automatically
by the compiler for every class you write. If you want to perform specific tasks when you
create an instance of a class, then you can write your own constructor. In most
programming languages, a constructor has the same name as its class, and cannot have a
return type. Once you write a constructor for a class, you no longer receive the
automatically written default constructor.

A destructor contains the actions you require when an instance of a class is destroyed,
most often when the object goes out of scope. As with constructors, if you do not
explicitly create a destructor for a class, one is automatically provided. The most common
way to declare a destructor explicitly is to use an identifier that consists of a tilde (~)
followed by the class name. You cannot provide parameters to a destructor; as a
consequence, destructors cannot be overloaded. Like a constructor, a destructor has no
return type.

A class can contain objects of another class as data fields. Creating whole-part
relationships is known as composition or aggregation (has-a relationship).

When you create a class by making it inherit from another class, you are provided with
prewritten and tested data fields and methods automatically. Using inheritance helps you
save time, reduces the chance of errors and inconsistencies, and makes it easier for readers
to understand your classes. A class that is used as a basis for inheritance is called a base
class. A class that inherits from a base class is a derived class or extended class. The terms
superclass and parent class are synonyms for base class. The terms subclass and child class
are synonyms for derived class.

Some of the most useful classes packaged in language libraries are used to create graphical
user interface (GUI) objects such as frames, buttons, labels, and text boxes. Programming
languages that supply existing GUI classes often provide a visual development
environment in which you can create programs by dragging components such as buttons
and labels onto a screen and arranging them visually.

Exception-handling techniques are used to handle errors in object-oriented programs.
When you try a block of code, you attempt to use it, and if an exception occurs, it is
thrown. A catch block of the correct type can receive the thrown exception and handle it.
Many OOP languages provide built-in Exception types, and you can create your own
types by extending the Exception class.

When you use object-oriented programming techniques, you save development time
because each object automatically includes appropriate, reliable methods and attributes.
Efficiency is achieved through both inheritance and polymorphism.

502

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
A constructor is an automatically called method that instantiates an object.

A default constructor is one that requires no arguments.

A nondefault constructor or a parameterized constructor requires at least one argument.

A destructor is an automatically called method that contains the actions you require when an
instance of a class is destroyed.

A whole-part relationship is a relationship in which an object of one class is contained within
an object of another class.

Composition is the technique of placing an object within an object of another class.

A has-a relationship describes a whole-part relationship.

A base class is one that is used as a basis for inheritance.

A derived class or extended class is one that is extended from a base class.

Superclass and parent class are synonyms for base class.

Subclass and child class are synonyms for derived class.

The ancestors of a derived class are the entire list of parent classes from which the class is
derived.

Inaccessible describes any field or method that cannot be reached.

The protected access specifier is used when you want no outside classes to be able to use a
data field, except classes that are children of the original class.

Fragile describes classes that depend on field names from parent classes. They are prone to
errors—that is, they are easy to “break.”

Multiple inheritance is the capability to inherit from more than one class.

An abstract class is one from which you cannot instantiate concrete objects, but from which
you can inherit.

Overriding is the mechanism by which a child class method is used by default when a parent
class contains a method with the same signature.

Reliable describes code that has already been tested and used in a variety of situations.

Libraries are stored collections of classes that serve related purposes.

Packages are another name for libraries in some languages.

A visual development environment is one in which you can create programs by dragging
components such as buttons and labels onto a screen and arranging them visually.

IDE is the acronym for integrated development environment, which is the visual development
environment in some programming languages.

503

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception handling is a set of object-oriented techniques for handling errors.

Exception is the generic term used for an error in object-oriented languages. Presumably,
errors are not usual occurrences; they are the “exceptions” to the rule.

To try a statement or block of statements is to allow the statement(s) to possibly throw an
exception.

To throw an exception is to pass it out of a block where it occurs, usually to a block that can
handle it.

To catch an exception is to receive it from a throw so it can be handled.

A throw statement is one that sends an Exception object out of a block or method so it can
be handled elsewhere.

A try block is a block of code you attempt to execute while acknowledging that an exception
might occur; it consists of the keyword try followed by any number of statements, including
some that might cause an exception to be thrown.

A catch block is a segment of code written to handle an exception that might be thrown by
the try block that precedes it.

A sunny day case is a case in which nothing goes wrong.

Exercises

Review Questions

1. When you instantiate an object, the automatically created method that is called is
a(n) .

a. creator
b. initiator

c. architect
d. constructor

2. Every class has .

a. exactly one constructor
b. at least one constructor
c. at least two constructors
d. a default constructor and a programmer-written constructor

3. Which of the following can be overloaded?

a. constructors
b. instance methods

c. both of the above
d. none of the above

504

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4. Every default constructor .

a. is automatically created
b. sets a default value for every field in a class
c. requires no parameters
d. is the only constructor that is explicitly written in a class

5. When you write a constructor that receives a parameter, .

a. the automatically created default constructor no longer exists
b. the parameter must be used to set a data field
c. it becomes the default constructor
d. the constructor body must be empty

6. When you write a constructor that receives no parameters, .

a. the automatically created constructor no longer exists
b. it becomes known as the default constructor
c. both of the above
d. none of the above

7. Most often, a destructor is called when .

a. an explicit call is made to it
b. an object goes out of scope
c. an object is created
d. a value is returned from a class method

8. Which of the following is not a similarity between constructors and destructors?

a. Both can be called automatically.
b. Both have the same name as the class.
c. Both have no return type.
d. Both can be overloaded.

9. Advantages of creating a class that inherits from another include all of the
following except:

a. You save time because subclasses are created automatically from those that
come built in as part of a programming language.

b. You save time because you need not re-create the fields and methods in the
original class.

c. You reduce the chance of errors because the original class’s methods have
already been used and tested.

d. You make it easier for anyone who has used the original class to understand
the new class.

505

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10. Employing inheritance reduces errors because .

a. the new classes have access to fewer data fields
b. the new classes have access to fewer methods
c. you can copy and paste methods that you already created
d. many of the methods you need have already been used

and tested

11. A class that is used as a basis for inheritance is called a .

a. derived class
b. base class

c. child class
d. subclass

12. Which of the following is another name for a derived class?

a. base class
b. child class

c. superclass
d. parent class

13. Which of the following is not another name for a derived class?

a. extended class
b. subclass

c. child class
d. superclass

14. Which of the following is true?

a. A base class usually has more fields than its
descendent.

b. A child class can also be a parent class.
c. A class’s ancestors consist of its entire list of children.
d. To be considered object oriented, a class must have

a child.

15. A derived class inherits data and methods of its ancestors.

a. all
b. only the public

c. only the private
d. no

16. Which of the following is true?

a. A class’s data fields usually are public.
b. A class’s methods usually are public.
c. both of the above
d. none of the above

506

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



17. A is a collection of predefined, built-in classes that you can use when
writing programs.

a. vault
b. black box

c. library
d. store

18. An environment in which you can develop GUI programs by dragging components
to their desired positions is a(n) .

a. visual development environment
b. integrated compiler
c. text-based editor
d. GUI formatter

19. In object-oriented programs, errors are known as .

a. faults
b. gaffes

c. exceptions
d. omissions

20. The general principle of exception handling in object-oriented programming is
that a method that uses data should .

a. be able to detect errors, but not be required to handle them
b. be able to handle errors, but not detect them
c. be able to handle and detect errors
d. not be able to detect or handle errors

Programming Exercises
1. Complete the following tasks:

a. Design a class named Circle with fields named radius, area, and diameter.
Include a constructor that sets the radius to 1. Include get methods for each
field, but include a set method only for the radius. When the radius is set, do not
allow it to be zero or a negative number. When the radius is set, calculate the
diameter (twice the radius) and the area (the radius squared times pi, which is
approximately 3.14). Create the class diagram and write the pseudocode that
defines the class.

b. Design an application that declares two Circles. Set the radius of one manually,
but allow the other to use the default value supplied by the constructor. Then,
display each Circle’s values.

2. Complete the following tasks:

a. Design a class named PhoneCall with four fields: two strings that hold the 10-
digit phone numbers that originated and received the call, and two numeric
fields that hold the length of the call in minutes and the cost of the call. Include

507

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



a constructor that sets the phone numbers to Xs and the numeric fields to 0.
Include get and set methods for the phone number and call length fields, but do
not include a set method for the cost field. When the call length is set, calculate
the cost of the call at three cents per minute for the first 10 minutes, and two
cents per subsequent minute. Create the class diagram and write the
pseudocode that defines the class.

b. Design an application that declares three PhoneCalls. Set the length of one
PhoneCall to 10 minutes, another to 11 minutes, and allow the third object to
use the default value supplied by the constructor. Then, display each
PhoneCall’s values.

c. Create a child class named InternationalPhoneCall that inherits from
PhoneCall. Override the parent class method that sets the call length to
calculate the cost of the call at 40 cents per minute.

d. Create the logic for an application that instantiates a PhoneCall object and an
InternationalPhoneCall object and displays the costs for each.

3. Complete the following tasks:

a. The Rockford Daily Clarion wants you to design a class named Issue. Fields
include the issue number, total number of advertisements sold in the issue,
and total advertising revenue. Include get and set methods for each field.
Include a static method that displays the newspaper’s motto (“Everything you
need to know”). Include three overloaded constructors as follows:

A default constructor that sets the issue number to 1 and the other fields to 0

A constructor that allows you to pass values for all three fields

A constructor that allows you to pass an issue number and a number of
advertisements sold, but sets the advertising revenue to $50 per ad

Create the class diagram and write the pseudocode that defines the class.

b. Design an application that declares three Issue objects using a different
constructor version with each object. Display each Issue’s values and then
display the motto.

4. Complete the following tasks:

a. Create a class named Meal that includes a string variable for the meal’s
description, an array of strings that holds up to five of the Meal’s components
(for example, “roasted chicken”, “mashed potatoes”, and “green beans”), and a
numeric variable that holds the calorie count. Include a method that prompts the
user for a value for each field. Also create two overloaded methods named
display(). The first method takes no parameters and displays the Meal details.
The second takes a numeric parameter that indicates how many of the Meal’s
components to display, or an error message if the parameter value is less than 0 or
more than 5.

508

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



b. Create an application that declares two Meal objects, sets their values, and
demonstrates how both method versions can be called.

5. Complete the following tasks:

a. Create a class named Trip that includes four string variables: destination (for
example, “London”), means of transportation (for example, “air”), departure
date (for example, “12/15/2015”), and trip’s purpose (for example, “business”).
Include two overloaded constructors. The default constructor sets each field to
“XXX”. The nondefault constructor accepts four parameters—one for each
field. Include two overloaded display() methods. The parameterless version
displays all the Trip details. The second version accepts a string that represents
a destination and displays the Trip details only if the Trip’s destination matches
the parameter.

b. Create an application that instantiates several Trip objects and demonstrates all
the methods.

6. Complete the following tasks:

a. Design a class named Book that holds a stock number, author, title, price, and
number of pages. Include methods to set and get the values for each data field.
Also include a displayInfo() method that displays each of the Book’s data
fields with explanations.

b. Design a class named TextBook that is a child class of Book. Include a new data
field for the grade level of the book. Override the Book class displayInfo()
method to accommodate the new grade-level field.

c. Design an application that instantiates an object of each type and demonstrates
all the methods.

7. Complete the following tasks:

a. Design a class named Player that holds a player number and name for a sports
team participant. Include methods to set the values for each data field and
output the values for each data field.

b. Design two classes named BaseballPlayer and BasketballPlayer that are
child classes of Player. Include a new data field in each class for the player’s
position. Include an additional field in the BaseballPlayer class for batting
average. Include a new field in the BasketballPlayer class for free-throw
percentage. Override the Player class methods that set and output the data so
that you accommodate the new fields.

c. Design an application that instantiates an object of each type and demonstrates
all the methods.

509

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8. Complete the following tasks:

a. Create a class for a cell phone service named Message that includes a field for
the price of the message. Create get and set methods for the field.

b. Derive three subclasses—VoiceMessage, TextMessage, and PictureMessage.
The VoiceMessage class includes a numeric field to hold the length of the
message in minutes and a get and set method for the field. When a
VoiceMessage’s length value is set, the price is calculated at 4 cents per minute.
The TextMessage class includes a numeric field to hold the length of the
message in words and a get and set method for the field. When a TextMessage’s
length value is set, the price is calculated at 2 cents per word. The
PictureMessage class includes a numeric field that holds the size of the picture
in kilobytes and get and set methods for the field. When a PictureMessage’s
length value is set, the price is calculated at 1 cent per kilobyte.

c. Design a program that instantiates one object of each of the three classes, and
demonstrate using all the methods defined for each class.

9. Complete the following tasks:

a. Create a class named Order that performs order processing of a single item. The
class has four fields: customer name, customer number, quantity ordered, and
unit price. Include set and get methods for each field. The set methods prompt
the user for values for each field. This class also needs a computePrice()

method to compute the total price (quantity multiplied by unit price) and a
method to display the field values.

b. Create a subclass named ShippedOrder that overrides computePrice() by
adding a shipping and handling charge of $4.00.

c. Create the logic for an application that instantiates an object of each of these
two classes. Prompt the user for data for the Order object and display the
results; then prompt the user for data for the ShippedOrder object and display
the results.

d. Create the logic for an application that continuously prompts for order
information until the user enters ZZZ for the customer name or 10 orders
have been taken, whichever comes first. Ask the user whether each order will
be shipped, and create an Order or a ShippedOrder accordingly. Store each
order in an array element. When the user finishes entering data, display all the
order information taken as well as the total price that was computed for each
order.

10. Complete the following tasks:

a. Design a method that calculates the cost of a weekly cleaning job for Molly’s
Maid Service. Variables include a job location code of B for business, which
costs $200, or R for residential, which costs $140. The method should throw an
exception if the location code is invalid.

510

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



b. Write a method that calls the method designed in Exercise 10a. If the method
throws an exception, force the price of the job to 0.

c. Write a method that calls the method designed in Exercise 10a. If the method
throws an exception, require the user to reenter the location code.

d. Write a method that calls the method designed in Exercise 10a. If the method
throws an exception, force the location code to R and the price to $140.

11. Design a method that calculates the monthly cost to rent a roadside billboard.
Variables include the size of the billboard (S, M, or L for small, medium, or large)
and its location (H, M, or L for high-, medium-, or low-traffic areas). The method
should throw an exception if the size or location code is invalid. The monthly
rental cost is shown in Table 11-1.

Performing Maintenance
1. A file named MAINTENANCE11-01.txt is included with your downloadable

student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 11 include DEBUG11-01.txt, DEBUG11-02.
txt, and DEBUG11-03.txt. Each file starts with some comments that describe the
problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must find
and correct.

2. Your downloadable files for Chapter 11 include a file named DEBUG11-04.jpg that
contains a class diagram with syntax and/or logical errors. Examine the class
diagram and then find and correct all the bugs.

High Traffic Medium Traffic Low Traffic

Small size 100.00 65.00 35.00

Medium size 150.00 95.00 48.00

Large size 210.00 130.00 60.00

Table 11-1 Monthly billboard rental rates

511

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Game Zone

1. a. Computer games often contain different characters or creatures. For example,
you might design a game in which alien beings possess specific characteristics
such as color, number of eyes, or number of lives. Create an Alien class. Include
at least three data fields of your choice. Include a constructor that requires a
value for each data field and a method named toString() that returns a string
containing a complete description of the Alien.

b. Create two classes—Martian and Jupiterian—that descend from Alien.
Supply each with a constructor that sets the Alien data fields with values you
choose. For example, you can decide that a Martian has four eyes but a
Jupiterian has only two.

c. Create an application that instantiates one Martian and one Jupiterian. Call
the toString() method with each object and display the results.

2. In Chapter 2, you learned that in many programming languages you can generate a
random number between 1 and a limiting value named LIMIT by using a statement
similar to randomNumber = random(LIMIT). In Chapters 4 and 5, you created and
fine-tuned the logic for a guessing game in which the application generates a
random number and the player tries to guess it. As written, the game should work
as long as the player enters numeric guesses. However, if the player enters a letter
or other nonnumeric character, the game throws an automatically generated
exception. Improve the game by handling any exception so that the user is
informed of the error and allowed to enter data again.

3. a. In Chapter 10, you developed a Card class that contains a string data field to
hold a suit and a numeric data field for a value from 1 to 13. Now extend the
class to create a class called BlackjackCard. In the game of Blackjack, each card
has a point value as well as a face value. These two values match for cards with
values of 2 through 10, and the point value is 10 for jacks, queens, and kings
(face values 11 through 13). For a simplified version of the game, assume that
the value of the ace is 11. (In the official version of Blackjack, the player chooses
whether each ace is worth 1 or 11 points.)

b. Randomly assign values to 10 BlackjackCard objects, then design an
application that plays a modified version of Blackjack. The objective is to
accumulate cards whose total value equals 21, or whose value is closer to 21
than the opponent’s total value without exceeding 21. Deal five BlackjackCards
each to the player and the computer. Make sure that each BlackjackCard is
unique. For example, a deck cannot contain more than one queen of spades.
Determine the winner as follows:

If the player’s first two, first three, first four, or all five cards have a total
value of exactly 21, the player wins, even if the computer also achieves a
total of 21.

512

C H A P T E R 1 1 More Object-Oriented Programming Concepts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If the player’s first two cards do not total exactly 21, sum as many as needed to
achieve the highest possible total that does not exceed 21. For example, suppose
that the player’s five cards are valued as follows: 10, 4, 5, 9, 2. In that case, the
player’s total for the first three cards is 19; counting any more cards would cause
the total to exceed 21.

After you have determined the player’s total, sum the computer’s cards in
sequence. For example, suppose that the computer’s cards are 10, 10, 5, 6, 7. The
first two cards total 20; you would not use the third card because it would cause
the total to exceed 21.

The winner has the highest total among the cards used. For example, if the player’s
total using the first three cards is 19 and the computer’s total using the first two
cards is 20, the computer wins.

Display a message that indicates whether the game ended in a tie, the computer won,
or the player won.

Up for Discussion

1. Many programmers think object-oriented programming is a superior approach to
procedural programming. Others think it adds a level of complexity that is not
needed in many scenarios. Find and summarize arguments on both sides. With
which side do you agree?

2. Many object-oriented programmers are opposed to using multiple inheritance.
Find out why and decide whether you agree with this stance.

3. If you are completing all the programming exercises in this book, you can see how
much work goes into planning a full-blown professional program. How would you
feel if someone copied your work without compensating you? Investigate the
magnitude of software piracy in our society. What are the penalties for illegally
copying software? Are there circumstances in which it is acceptable to copy a
program? If a friend asked you to copy a program for him, would you? What should
we do about this problem, if anything?

513

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 12
Event-Driven GUI
Programming,
Multithreading, and
Animation

In this chapter, you will learn about:

The principles of event-driven programming

User-initiated actions and GUI components

Designing graphical user interfaces

Developing an event-driven application

Threads and multithreading

Creating animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Event-Driven Programming
From the 1950s, when businesses began to use computers, through the 1980s, almost all
interactive dialogues between people and computers took place at the command prompt.
(Programmers also call the command prompt the command line, and users of the Disk
Operating System often call the command line the DOS prompt.) In Chapter 1, you learned that
the command line is used to type entries to communicate with the computer’s operating
system—the software that runs a computer and
manages its resources. In the early days of
computing, interacting with an operating system
was difficult because users had to know the exact
syntax to use when typing commands, and they
had to spell and type those commands
accurately. Figure 12-1 shows the command
prompt in the Windows 8 operating system.

You can access the command prompt in a variety of ways, depending on the operating system you are
using. In most systems you can use a menu option or icon to get to the command prompt.

Fortunately for today’s computer users, operating system software allows them to use their
fingers, a mouse, or another pointing device to select screen controls, such as buttons and
scroll bars or pictures (also called icons). As you learned in Chapter 1, this type of
environment is a graphical user interface, or GUI. Computer users can expect to see a
standard interface in GUI programs. Rather than memorizing difficult commands that
must be typed at a command line, GUI users can select options from menus and click
buttons to make their preferences known to a program. The icons used on buttons and
other components are best understood when they follow convention—for example, an “X”
button is expected to mean “Close.” Sometimes, users can select icons that look like their
real-world counterparts and get the expected results. For example, users may select an icon
that looks like a pencil when they want to write a memo, or they may drag an icon shaped like
a folder to a recycling bin icon to delete the folder and its contents. Figure 12-2 shows a
Windows program named Paint in which icons representing paintbrushes and other objects
appear on clickable buttons.

Figure 12-1 Command prompt screen
© 2015 Cengage Learning

515

Understanding Event-Driven Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Performing an operation on a control or using an icon (for example, clicking or dragging it)
causes an event—an occurrence that generates a message sent to an object. GUI programs
frequently are called event-driven or event-based because actions occur in response to user-
initiated events such as tapping a screen or clicking a mouse button. When you program with
event-driven languages, the emphasis is on objects that users can manipulate, such as text
boxes, buttons, and menus, and on events that users can initiate with those objects, such as
typing, pointing, clicking, or double-clicking. The programmer writes instructions within
modules that execute in response to each type of event.

Throughout this book, the program logic you have developed has been procedural, and
not event-driven; each step occurs in the order the programmer determines. In a procedural
application, if you write statements that display a prompt and accept a user’s response, the
processing stops after the prompt is displayed, and the program goes no further until input is
received. When you write a procedural program, you have complete control over the order in
which all the statements will execute. If you call moduleA() before calling moduleB(), moduleB()
does not execute until moduleA() is finished.

In contrast, with most event-driven programs, the user might initiate any number of events in any
order. For example, when you use an event-driven word-processing program, you have dozens

Figure 12-2 A GUI application that contains buttons and icons
© 2015 Cengage Learning

516

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



of choices at your disposal at any moment. You can type words, select text with the mouse, click
a button to change the text style to bold or italics, choose a menu item such as Save or Print, and so
on. With each word-processing document you create, the program must be ready to respond
to any event you initiate. The programmers who created the word processor are not guaranteed
that you will select Bold before you select Italics, or that you will select Save before you select Quit,
so they must write programs that are more flexible than their procedural counterparts.

Within an event-driven program, a component from which an event is generated is the
source of the event. A button that users can click to cause an action is an example of a source;
a text box in which users enter typed characters is another source. An object that is
“interested in” an event to which you want it to respond is a listener. It “listens for” events so
it knows when to respond. Not all objects can receive all events—you probably have used
programs in which clicking many areas of the screen has no effect. If you want an object such
as a button to be a listener for an event such as a mouse click, you must write two types of
appropriate program statements. You write the statements that define the object as a listener
and the statements that constitute the event.

Although event-driven programming is newer than procedural programming, the
instructions that programmers write to respond to events are still simply sequences,
selections, and loops. Event-driven programs still have methods that declare variables, use
arrays, and contain all the attributes of their procedural-program ancestors. The user’s screen
in an event-driven program might contain buttons or check boxes with labels like Sort
Records, Merge Files, or Total Transactions, but each of these processes represents a method
that uses the same logic you have learned throughout this book for programs that did not
have a graphical interface. In object-oriented languages, the procedural modules that depend
on user-initiated events are often called scripts. Writing event-driven programs involves
thinking of possible events, writing scripts to execute actions, and writing the statements that
link user-initiated events to the scripts.

TWO TRUTHS & A LIE

Understanding Event-Driven Programming

1. GUI programs are called event-driven or event-based because actions occur in
response to user-initiated events such as clicking a mouse button.

2. With event-driven programs, the user might initiate any number of events in any order.

3. Within an event-driven program, a component from which an event is generated,
such as a button, is a listener. An object that is “interested in” an event is the
source of the event.

Thefalsestatementis#3.Withinanevent-drivenprogram,acomponentfromwhichan
eventisgeneratedisthesourceoftheevent,andanobjectthatis“interestedin”an
eventtowhichyouwantittorespondisalistener.

517

Understanding Event-Driven Programming

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



User-Initiated Actions and GUI Components
To understand GUI programming, you need to have a clear picture of the possible events a
user can initiate. A partial list is shown in Table 12-1. Most languages allow you to distinguish
between many additional events. For example, you might be able to initiate different events
when a mouse key is pressed, during the time it is held down, and when it is released.

You also need to be able to picture common GUI components. Table 12-2 describes some
common GUI components, and Figure 12-3 shows how they look on a screen.

Event Description of User’s Action

Tap Tapping on the screen

Swipe Quickly dragging a finger across the screen

Zoom Dragging across the screen with two fingers slightly apart to zoom
out, or closer together to zoom in

Key press Pressing a key on the keyboard

Mouse point or mouse over Placing the mouse pointer over an area on the screen

Mouse click or left mouse click Pressing the left mouse button

Right mouse click Pressing the right mouse button

Mouse double-click Pressing the left mouse button twice in rapid sequence

Mouse drag Holding down the left mouse button while moving the mouse over the
desk surface

Table 12-1 Common user-initiated events

Component Description

Label A rectangular area that displays text

Text box A rectangular area into which the user can type text

Check box A label placed beside a small square; you can click the square to display or
remove a check mark, which selects or deselects an option

Option
buttons

A group of controls that are similar to check boxes. When the controls are
square, users typically can select any number of them; they are called a check
box group. When the controls are round, they are often mutually exclusive and
are called radio buttons.

List box When the user clicks a list box, a menu of items appears. Depending on the
options the programmer sets, you might be able to make only one selection, or
you might be able to make multiple selections.

Button A rectangular control you can click; when you do, its appearance usually
changes to look pressed

Table 12-2 Common GUI components

518

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you program in a language that uses GUI components, you do not create them from
scratch. Instead, you call prewritten methods that draw the GUI components on the screen
for you. The components themselves are created using existing classes complete with names,
attributes, and methods. In some programming languages, you can work in a text
environment and write statements that instantiate GUI objects. In other languages, you can
work in a graphical environment, drag GUI objects onto your screen from a toolbox, and
arrange them appropriately for your application. Some languages offer both options. Either
way, you do not think about the details of creating the components. Instead, you concentrate
on the actions that should occur when a user initiates an event from one of the components.
Thus, GUI components are excellent examples of the best principles of object-oriented
programming—they represent objects with attributes and methods that operate like black
boxes, making them easy for you to use.

When you use existing GUI components, you instantiate objects, each of which belongs to a
prewritten class. For example, you might use a Button object when you want the user to click
a button to make a selection. Depending on the programming language, the Button class
might contain attributes or properties such as the text on the Button and its position on the
screen. The class might also contain methods such as setText() and setPosition(). For
example, Figure 12-4 shows how a built-in Button class might be written.

Label

Text box

Check box

List box

Button

Option buttons

Figure 12-3 Common GUI components
© 2015 Cengage Learning

519

User-Initiated Actions and GUI Components

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The x_position and y_position of the Button object in Figure 12-4 refer to horizontal and vertical
coordinates where the Button appears on an object, such as a window that appears on the screen during
program execution. A pixel is one of the tiny dots of light that form a grid on your screen. The term pixel
derives from combining the first syllables of picture and element. You will use x- and y-positions again when
you learn about animation later in this chapter.

Watch the video GUI Components.

The Button class shown in Figure 12-4 is an abbreviated version so you can easily see its
similarity to a class such as Employee, which you read about in Chapter 11. The figure shows
three fields and two set methods. A complete, working Button class in most programming
languages would contain many more fields and methods. For example, a full-blown class
might also contain get methods for the text and position, and other fields and methods to
manipulate a Button’s font, color, size, and so on.

To create aButtonobject in a client program, you would write a statement similar to the following:

Button myProgramButton

In this statement, Button is the data type and myProgramButton is the identifier for the object
created. To use a Button’s methods, you would write statements such as the following:
myProgramButton.setText("Click here")
myProgramButton.setPosition(10, 30)

Different GUI classes support different attributes and methods. For example, a CheckBox class
might contain a method named getCheckedStatus() that returns true or false, indicating
whether the CheckBox object has been checked. A Button, however, would have no need for
such a method.

class Button
   Declarations
      private string text
      private num x_position
      private num y_position
   
   public void setText(string messageOnButton)
      text = messageOnButton
   return

   public void setPosition(num x, num y)
      x_position = x
      y_position = y
   return
endClass

Figure 12-4 Button class
© 2015 Cengage Learning

520

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An important advantage of using GUI data-entry objects is that you often can control what users enter by
limiting their options. When you provide a finite set of buttons to click or a limited number of menu items, the
user cannot make unexpected, illegal, or bizarre choices. For example, if you provide only two buttons so the
user must click Yes or No, you can eliminate writing code to handle invalid entries.

TWO TRUTHS & A LIE

User-Initiated Actions and GUI Components

1. In a GUI program, a key press is a common user-initiated event and a check box is
a typical GUI component.

2. When you program in a language that supports event-driven logic, you call
prewritten methods that draw GUI components on the screen for you.

3. An advantage of using GUI objects is that each class you use to create the objects
supports identical methods and attributes.

Designing Graphical User Interfaces
You should consider several general design principles when creating a program that will use a GUI:

The interface should be natural and predictable.

The interface should be attractive, easy to read, and nondistracting.

To some extent, it’s helpful if the user can customize your applications.

The program should be forgiving.

The GUI is only a means to an end.

The Interface Should Be Natural and Predictable
The GUI program interface should represent objects like their real-world counterparts. In other
words, it makes sense to use an icon that looks like a recycling bin to let a user drag files or
other components to the bin and delete them. Using a recycling bin icon is “natural” in that
people use one in real life when they want to discard actual items; dragging files to the bin is also
“natural” because that’s what people do with real items they discard. Using a recycling bin for
discarded items is also predictable, because users are already familiar with the icon in other
programs. Some icons may be natural, but if they are not predictable as well, then they are not
as effective. An icon that depicts a recycling truck might seem just as natural as one that depicts
a bin, but because other programs do not use such imagery, it is not as predictable.

Thefalsestatementis#3.DifferentGUIclassessupportdifferentattributesand
methods.

521

Designing Graphical User Interfaces

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



GUIs should also be predictable in their layout. For example, when a user must enter personal
information in text boxes, the street address is expected to come before the city and state.
Also, a menu bar appears at the top of the screen in most GUI programs, and the first menu
item in many applications is File. If you design a program interface in which the menu runs
vertically down the right side of the screen, or in which File is the last menu option instead of
the first, you will confuse users. Either they will make mistakes when using your program or
they may give up using it entirely. It doesn’t matter if you can prove that your layout plan is
more efficient than the standard one—if you do not use a predictable layout, your program
will be rejected in the marketplace.

Many studies have proven that the Dvorak keyboard layout is more efficient for typists than the QWERTY
keyboard layout that most of us use. The QWERTY keyboard layout gets its name from the first six letter keys
in the top row. With the Dvorak layout, which is named for its inventor, the most frequently used keys are in
the home row, allowing typists to complete many more keystrokes per minute. However, the Dvorak
keyboard has not caught on because it is not predictable to users who know the QWERTY keyboard.

Stovetops often have an unnatural interface, making unfamiliar stoves more difficult for you to use. Most
stovetops have four burners arranged in two rows, but the knobs that control the burners frequently are
placed in a single horizontal row. Because there is not a natural correlation between the placement of a
burner and its control, you are likely to select the wrong knob when adjusting the burner’s flame or heating
element.

The Interface Should Be Attractive, Easy to Read, and
Nondistracting
If your interface is attractive, people are more likely to use it. If it is easy to read, users are less
likely to make mistakes. When it comes to GUI design, fancy fonts and weird color
combinations are the signs of amateur designers. In addition, you should make sure that
unavailable screen options are either dimmed (also called grayed) or removed, so the user
does not waste time clicking components that aren’t functional. An excellent way to learn
about good GUI design is to pay attention to the design features used in popular applications
and in Web sites you visit. Notice that the designs you like to use feel more “natural.”

Screen designs should not be distracting. When a screen has too many components,
users can’t find what they’re looking for. When a component is no longer needed, it
should be removed from the interface. GUI programmers sometimes refer to screen
space as real estate. Just as a plot of land becomes unattractive when it supports no open
space, your screen becomes unattractive when you fill the limited space with too many
components.

You also want to avoid distracting users with overly creative design elements. When users
click a button to open a file, they might be amused the first time a filename dances across the
screen or the speakers play a tune. However, after one or two experiences with your creative
additions, users find that intruding design elements hamper the actual work of the program.
Also, creative embellishments might consume extensive memory and CPU time, slowing an
application’s performance.

522

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To Some Extent, It’s Helpful If the User Can Customize Your
Applications
All users work in their own way. If you are designing an application that will use numerous
menus and toolbars, it’s helpful if users can position components in the order that’s easiest for
them. Users appreciate being able to change features like color schemes. Allowing a user to
change the background color in your application may seem frivolous to you, but to users who
are color blind or visually impaired, it might make the difference in whether they use your
application at all. Making programs easier to use for people with physical limitations is known
as enhancing accessibility.

Don’t forget that many programs are used internationally. If you can allow the user to work
with a choice of languages, you might be able to market your program more successfully in
other countries. If you can allow the user to convert prices to multiple currencies, you might
be able to make sales in more markets.

The Program Should Be Forgiving
Perhaps you have had the inconvenience of accessing a voice mail system in which you
selected several sequential options, only to find yourself at a dead end with no recourse but to
hang up and redial the number. Good program design avoids similar problems. You should
always provide an escape route to accommodate users who make bad choices or change their
minds. By providing a Back button or a working Escape key, you provide more functionality
to your users. It also can be helpful to include an option for the user to revert to the default
settings after making changes. Some users might be afraid to alter an application’s features if
they are not sure they can easily return to the original settings.

Users also appreciate being able to perform tasks in a variety of ways. For example, you might
allow a user to select a word on a screen by highlighting it using a mouse, by touching it on
the screen, or by holding down the Ctrl and Shift keys while pressing the right arrow key. A
particular technique might be easier for people with disabilities, and it might be the only one
available after the mouse batteries fail or the user accidentally disables the keyboard by
spilling coffee on it.

The GUI Is Only a Means to an End
The most important principle of GUI design is to remember that a GUI is only an interface.
Using a mouse to click items and drag them around is not the point of any business programs
except those that train people how to use a mouse. Instead, the point of a graphical interface
is to help people be more productive. To that end, the design should help the user see what
options are available, allow the use of components in the ordinary way, and not force the user
to concentrate on how to interact with your application. The real work of a GUI program—
making decisions, performing calculations, sorting records, and so on—is done after the user
clicks a button or makes a list box selection.

523

Designing Graphical User Interfaces

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Designing Graphical User Interfaces

1. To keep the user’s attention, a well-designed GUI interface should contain unique
and creative controls.

2. To be most useful, a GUI interface should be attractive, easy to read, and
nondistracting.

3. To avoid frustrating users, a well-designed program should be forgiving.

Developing an Event-Driven Application
In Chapter 1, you first learned the steps to developing a procedural computer program:

1. Understanding the problem

2. Planning the logic

3. Coding the program

4. Translating the program into machine language

5. Testing the program

6. Putting the program into production

7. Maintaining the program

When you develop an event-driven application, you expand on Step 2 (planning the logic) and
you might include four new substeps as follows:

2a. Creating wireframes

2b. Creating storyboards

2c. Defining the objects

2d. Defining the connections between the screens the user will see

For example, suppose that you want to create a simple, interactive program that determines
premiums for prospective insurance customers. A graphical interface will allow users to select
a policy type—health or auto. Next, users answer pertinent questions about their age, driving
record, and whether they smoke. Although most insurance premiums would be based on
more characteristics than these, assume that policy rates are determined using the factors
shown in Table 12-3. The final output of the program is a second screen that shows the
semiannual premium amount for the chosen policy.

Thefalsestatementis#1.AGUIinterfaceshouldbenaturalandpredictable.

524

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Creating Wireframes
A wireframe is a picture or sketch of a screen the user will see when running a program.
A wireframe, also called a page schematic or screen blueprint, is a visual guide that helps
developers and their user clients decide on the basic features of an interactive program or
Web site. Wireframes can be pencil sketches or they can be produced by software
applications. Typically, they do not contain graphics or show the final font styles that will
be used; instead, they focus on the functionality of an application. Figure 12-5 shows two
wireframes for the program that determines insurance premiums. They represent the
introductory screen, at which the user selects a premium type and answers questions, and
the final screen, which displays the semiannual premium.

Creating Storyboards
A storyboard contains a series of wireframes that represent a user’s experience with proposed
software. Filmmakers have long used storyboards to illustrate key moments in the plots they are
developing; similarly, GUI storyboards represent “snapshot” views of the screens the user will
encounter during the run of a program. If the user could view up to 10 screens during the insurance
premium program, then you would draw 10 storyboard cells, or wireframes. Sometimes, developers
will enhance wireframes with color and graphics when incorporating them into a storyboard.

Welcome to the Premium Calculator

Age Do you smoke?

How many traffic
tickets? Your Premium:

$500

Exit

50 or under

Over 50

No

Yes

0 or 1

2 or more

Screen 1 Screen 2

Health Auto

Calculate Now

Figure 12-5 Storyboard for the insurance program, which is composed of two wireframes
© 2015 Cengage Learning

Health Policy Premiums Auto Policy Premiums

Base rate: $500 Base rate: $750
Add $100 if over age 50 Add $400 if more than 2 tickets
Add $250 if smoker Subtract $200 if over age 50

Table 12-3 Insurance premiums based on customer characteristics
525

Developing an Event-Driven Application

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The two wireframes shown in Figure 12-5 represent the insurance application’s
storyboard.

Defining the Storyboard Objects in an Object Dictionary
An event-driven program may contain dozens or even hundreds of objects. To keep track of
them, programmers often use an object dictionary. An object dictionary is a list of the objects
used in a program, the screens where the objects are used, and any associated code (script).

Figure 12-6 shows an object dictionary for the insurance premium program. The type and
name of each object to be placed on a screen are listed in the columns on the left. The third
column shows the screen number on which the object appears. The fourth column names
any variables that are affected by an action on the object. The last column indicates whether
any code or script is associated with the object. For example, the label named welcomeLabel
appears on the first screen. It has no associated actions—nothing a user does to it executes
any methods or changes any variables; it is just a label. When a user clicks the calcButton,
however, a method named calcRoutine() is called. This method calculates the semiannual
premium amount and stores it in the premiumAmount variable. Depending on the
programming language, you might need to name calcRoutine() something similar to
calcButton.click(). In languages that use this format, a standard method named click()
holds the statements that execute when the user clicks the calcButton.

Object Type Name
Screen 
Number

Variables 
Affected Script?

Label welcomeLabel 1 none none

RadioButton healthRadioButton 1 premiumAmount none

RadioButton autoRadioButton 1 premiumAmount none

Label ageLabel 1 none none

RadioButton lowAgeRadioButton 1 premiumAmount none

RadioButton highAgeRadioButton 1 premiumAmount none

Label smokeLabel 1 none none

RadioButton smokeNoRadioButton 1 premiumAmount none

RadioButton smokeYesRadioButton 1 premiumAmount none

Label ticketsLabel 1 none none

RadioButton lowTicketsRadioButton 1 premiumAmount none

RadioButton highTicketsRadioButton 1 premiumAmount none

Button calcButton 1 premiumAmount calcRoutine()

Label premiumLabel 2 none none

Label premAmtLabel 2 none none

Button exitButton 2 none exitRoutine()

Figure 12-6 Object dictionary for insurance premium program
© 2015 Cengage Learning

526

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Defining Connections Between the User Screens
The insurance premium program is small, but with
larger programs you may need to draw connections
between the screens to show how they interact. Figure
12-7 shows an interactivity diagram for the screens
used in the insurance premium program. An
interactivity diagram shows the relationship between
screens in an interactive GUI program. Figure 12-7
shows that the first screen calls the second screen, and
the program ends.

Figure 12-8 shows how a diagram might look for a more complicated program in which the
user has several options available at Screens 1, 2, and 3. Notice how each of these screens may
lead to different screens, depending on the options the user selects.

Planning the Logic
In an event-driven program, you design the screens, define the objects, and define how the
screens will connect. Then you can start to plan the client program. For example, following
the storyboard plan for the insurance program (see Figure 12-5), you need to create the first
screen, which contains four labels, four sets of radio buttons, and a button. Figure 12-9 shows
the pseudocode that creates these components.

Screen 1 Screen 2

Figure 12-7 Interactivity diagram
for insurance premium program
© 2015 Cengage Learning

Screen 5

Screen 7 Screen 4 Screen 8

Screen 6 Screen 2 Screen 1 Screen 3 Screen 9

Figure 12-8 Interactivity diagram for a complicated program
© 2015 Cengage Learning

527

Developing an Event-Driven Application

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declarations
   Label welcomeLabel
   RadioButton healthRadioButton
   RadioButton autoRadioButton
   Label ageLabel
   RadioButton lowAgeRadioButton
   RadioButton highAgeRadioButton
   Label smokeLabel
   RadioButton smokeNoRadioButton
   RadioButton smokeYesRadioButton
   Label ticketsLabel
   RadioButton lowTicketsRadioButton
   RadioButton highTicketsRadioButton
   Button calcButton

welcomeLabel.setText("Welcome to the Premium Calculator")
welcomeLabel.setPosition(30, 10)

healthRadioButton.setText("Health")
healthRadioButton.setPosition(15, 40)

autoRadioButton.setText("Auto")
autoRadioButton.setPosition(50, 40)

ageLabel.setText("Age")
ageLabel.setPosition(5, 60)

lowAgeRadioButton.setText("50 or under")
lowAgeRadioButton.setPosition(5, 70)

highAgeRadioButton.setText("Over 50")
highAgeRadioButton.setPosition(5, 80)

smokeLabel.setText("Do you smoke?")
smokeLabel.setPosition(40, 60)

smokeNoRadioButton.setText("No")
smokeNoRadioButton.setPosition(40, 70)

smokeYesRadioButton.setText("Yes")
smokeYesRadioButton.setPosition(40, 80)

ticketsLabel.setText("How many tra tickets?")
ticketsLabel.setPosition(60, 50)

lowTicketsRadioButton.setText("0 or 1")
lowTicketsRadioButton.setPosition(60, 70)

highTicketsRadioButton.setText("2 or more")
highTicketsRadioButton.setPosition(60, 90)

calcButton.setText("Calculate Now")
calcButton.setPosition(60, 100)
calcButton.registerListener(calcRoutine())

ffic 

Figure 12-9 Component definitions for first screen of insurance program
© 2015 Cengage Learning

528

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you use an integrated development environment to create applications, you can
drag components like those in Figure 12-9 onto a screen without explicitly writing all the statements
shown in the pseudocode. In that case, the coding statements will be generated for you. It’s beneficial
to understand these statements so that you can more easily modify and debug your programs.

In Figure 12-9, the statement calcButton.registerListener(calcRoutine()) specifies that
calcRoutine() executes when a user clicks the calcButton. The syntax of this statement
varies among programming languages. With most object-oriented programming (OOP)
languages, you must register components, or sign them up so that they can react to events
initiated by other components. The details vary among languages, but the basic process is to
write a statement that links the appropriate method (such as the calcRoutine() or
exitRoutine() method) with an event such as a user’s button click. In many development
environments, the statement that registers a component to react to a user-initiated event is
written for you automatically when you click components while designing your screen.

In reality, you might generate more code than what is shown in Figure 12-9 when you create the insurance
program components. For example, each component might require a color and font. You also might want to
initialize some components with default values to indicate they are selected. For example, you might want
one radio button in a group to be selected already, which requires the user to click a different option only if
he does not want the default selection.

You also need to create the component that holds all the GUI elements in Figure 12-9.
Depending on the programming language, you might use a class with a name such as Screen,
Form, or Window. Each of these is a container, or a class of objects whose main purpose is to
hold other elements. The container class contains methods that allow you to set physical
properties such as height and width, as well as methods that allow you to add the appropriate
components to a container. Figure 12-10 shows how you would define a Screen class, set its
size, and add the necessary components.

Declarations
   Screen screen1
screen1.setSize(150, 150)
screen1.add(welcomeLabel)
screen1.add(healthRadioButton)
screen1.add(autoRadioButton)
screen1.add(ageLabel)
screen1.add(lowAgeRadioButton)
screen1.add(highAgeRadioButton)
screen1.add(smokeLabel)
screen1.add(smokeNoRadioButton)
screen1.add(smokeYesRadioButton)
screen1.add(ticketsLabel)
screen1.add(lowTicketsRadioButton)
screen1.add(highTicketsRadioButton)
screen1.add(calcButton)

Figure 12-10 Statements that create screen1
© 2015 Cengage Learning

529

Developing an Event-Driven Application

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Similarly, Figure 12-11 shows how you can create and define the components for the second
screen in the insurance program and how to add the components to the container. Notice the
label that holds the user’s insurance premium is not filled with text, because the amount is not
known until the user makes all the selections on the first screen.

After the GUI components are designed and arranged, you can plan the logic for each of the
methods or scripts that the program will use. For example, given the program requirements
shown earlier in Table 12-3, you can write the pseudocode for the calcRoutine() method of
the insurance premium program, as shown in Figure 12-12. The calcRoutine() method does
not execute until the user clicks the calcButton. At that point, the user’s choices are sent to
the method and used to calculate the premium amount.

Declarations
   Screen screen2
   Label premiumLabel
   Label premAmtLabel
   Button exitButton

screen2.setSize(100, 100)

premiumLabel.setText("Your Premium:")
premiumLabel.setPosition(5, 30)

premAmtLabel.setPosition(20, 50)

exitButton.setText("Exit")
exitButton.setPosition(60, 80)
exitButton.registerListener(exitRoutine())

screen2.add(premiumLabel)
screen2.add(premAmtLabel)
screen2.add(exitButton)

Figure 12-11 Statements that define and create screen2 and its components
© 2015 Cengage Learning

530

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The pseudocode in Figure 12-12 should look very familiar to you—it declares numeric
constants and a variable and uses decision-making logic you have used since the early
chapters of this book. After the premium is calculated based on the user’s choices, it is placed
in the label that appears on the second screen. The basic control structures of sequence,
selection, and loop will continue to serve you well, whether you are programming in a
procedural or event-driven environment.

The last two statements in the calcRoutine() method indicate that after the insurance
premium is calculated and placed in its label, the first screen is removed and the second
screen is displayed. Screen removal and display are accomplished differently in different
languages; this example assumes that the appropriate methods are named remove() and
display().

public void calcRoutine()
   Declarations
      num HEALTH_AMT = 500
      num HIGH_AGE = 100
      num SMOKER = 250
      num AUTO_AMT = 750
      num HIGH_TICKETS = 400
      num HIGH_AGE_DRIVER_DISCOUNT = 200
      num premiumAmount
   if healthRadioButton.getChecked() then
      premiumAmount = HEALTH_AMT
      if highAgeRadioButton.getChecked() then
         premiumAmount = premiumAmount + HIGH_AGE
      endif
      if smokeYesRadioButton.getChecked() then
         premiumAmount = premiumAmount + SMOKER
      endif
   else
      premiumAmount = AUTO_AMT
      if highTicketsRadioButton.getChecked() then
         premiumAmount = premiumAmount + HIGH_TICKETS
      endif
      if highAgeRadioButton.getChecked() then
         premiumAmount = premiumAmount - HIGH_AGE_DRIVER_DISCOUNT
      endif
   endif
   premAmtLabel.setText(premiumAmount)
   screen1.remove()
   screen2.display()
return

Figure 12-12 Pseudocode for calcRoutine() method of insurance premium program
© 2015 Cengage Learning

531

Developing an Event-Driven Application

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Two more program segments are needed to complete
the insurance premium program. These segments
include the main program that executes when the
program starts and the last method that executes
when the program ends. In many GUI languages, the
process is slightly more complicated, but the general
logic appears in Figure 12-13. The final method in the
program is associated with the exitButton object on
screen2. In Figure 12-13, this method is called
exitRoutine(). In this example, the main program
sets up the first screen and the last method removes
the last screen.

TWO TRUTHS & A LIE

Developing an Event-Driven Application

1. A storyboard represents a diagram of the logic used in an interactive program.

2. An object dictionary is a list of the objects used in a program, the screens where
the objects are used, and any associated code.

3. An interactivity diagram shows the relationship between screens in an interactive
GUI program.

Understanding Threads and Multithreading
A thread is the flow of execution of one set of program statements. When you execute a
program statement by statement, from beginning to end, you are following a thread.
Many applications follow a single thread; this means that the application executes only a
single program statement at a time. If a computer has more than one central processing
unit (CPU), then each can execute a thread at the same time. However, if a computer
has a single CPU and the system only supports single threading, then tasks must occur
one at a time. For example, Figure 12-14 shows how three tasks might execute in a
single thread in a computer with a single CPU. Each task must end before the next
task starts.

start
   screen1.display()
stop

public void exitRoutine()
   screen2.remove()
return

Figure 12-13 The main program
and exitRoutine() method for
the insurance program
© 2015 Cengage Learning

Thefalsestatementis#1.Astoryboardrepresentsapictureorsketchoftheseriesof
screenstheuserwillseewhenrunningaprogram.

532

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Even if the computer has only one CPU, all major OOP languages allow you to launch, or start,
multiple threads of execution by using a technique known as multithreading. With multithreading,
threads share the CPU’s time, as shown in Figure 12-15. The CPU devotes a small amount of time
to one task, and then devotes a small amount of time to another. The CPU never actually performs
two tasks at the same instant. Instead, it performs a piece of one task and then part of another. The
CPU performs so quickly that each task seems to execute without interruption.

Perhaps you have seen an expert chess player participate in games with several opponents at
once. The expert makes a move on the first chess board, and then moves to the second board
against a second opponent while the first opponent analyzes his next move. The master can
move to the third board, make a move, and return to the first board before the first opponent
is even ready to respond. To the first opponent, it might seem as though the expert is
devoting all of his time to the first game. Because the expert is so fast, he can play other

Task 1

Task 2

Task 3

Time

Figure 12-14 Executing multiple tasks as single threads in a single-processor system
© 2015 Cengage Learning

Part of
Task 1

Part of
Task 2

Part of
Task 3

Part of
Task 1

Part of
Task 2

Part of
Task 3

Time

Figure 12-15 Executing multiple threads in a single-processor system
© 2015 Cengage Learning

533

Understanding Threads and Multithreading

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



opponents while the first opponent contemplates his next move. Executing multiple threads
on a single CPU is a similar process. The CPU transfers its attention from thread to thread so
quickly that the tasks don’t even “miss” the CPU’s attention.

You use multithreading to improve the performance of your programs. Multithreaded
programs often run faster, but more importantly, they are more user-friendly. With a
multithreaded program, a user can continue to make choices by clicking buttons while
the program is reading a data file. An animated figure can appear on one part of the
screen while the user makes menu selections elsewhere on the screen. When you use the
Internet, the benefits of multithreading increase. For example, you can begin to read a long
text file, watch a video, or listen to an audio file while the file is still downloading. Web
users are likely to abandon a site if they cannot use it before a lengthy downloading
process completes. When a Web site employs multithreading to perform concurrent tasks,
visitors are less likely to abandon the Web site—this is particularly important if the site
sells a product or service or relies on advertising income that is based on the number
and duration of user visits.

Programmers sometimes describe thread execution as a lightweight process because it is not a full-blown
program. Rather, a thread must run within the context of a full, heavyweight program.

Writing good code to execute multithreading requires skill. Without careful coding, problems
such as deadlock and starvation can arise. Deadlock occurs when two or more threads wait
for each other to execute, and starvation occurs when a thread is abandoned because other
threads occupy all the computer’s resources.

When threads share an object, special care is needed to avoid unwanted results. For example,
consider a customer order program in which two clerks are allowed to fill orders
concurrently. Imagine the following scenario:

The first clerk accesses an inventory file and tells a customer that only one item is
available.

A second clerk accesses the file and tells a different customer that only one item
(the same item) is available.

The first customer places an order, and inventory is reduced to 0.

The second customer places an order, and inventory is reduced to –1.

Two items have been ordered, but only one exists, and the inventory file is now incorrect.
There will be confusion in the warehouse, problems in the Accounting department, and one
unsatisfied customer. Similar problems can occur in programs that reserve airline seats or
concert tickets. OOP languages provide sophisticated techniques, known as thread
synchronization, that help avoid these potential problems.

Object-oriented languages often contain a built-in Thread class that contains methods to help
handle and synchronize multiple threads. For example, a sleep() method is sometimes used
to pause program execution for a specified amount of time, perhaps a few seconds. Computer

534

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



processing speed is so rapid that sometimes you have to slow down processing for human
consumption. The next section describes one application that frequently requires using a
sleep() method—computer animation.

Watch the video Threads and Multithreading.

TWO TRUTHS & A LIE

Understanding Threads and Multithreading

1. In the last few years, few programs that follow a single thread have been written.

2. Single-thread programs contain statements that execute in very rapid sequence,
but only one statement executes at a time.

3. When you use a computer with multiple CPUs, the computer can execute multiple
instructions simultaneously.

Creating Animation
Animation is the rapid display of still images, each slightly different from the previous one,
that produces the illusion of movement. Cartoonists create animated films by drawing a
sequence of frames or cells. These individual drawings are shown to the audience in rapid
succession to create the sense of natural movement. You create computer animation using
the same techniques. If you display computer images as fast as your CPU can process them,
you might not be able to see anything. Most computer animation employs a Thread class
sleep() method to pause for short intervals between the display of animation cells so the
human brain has time to absorb each image’s content.

Many object-oriented languages offer built-in classes that contain methods you can use to
draw geometric figures. The methods typically have names like drawLine(), drawCircle(),
drawRectangle(), and so on. You place figures on the screen based on a graphing coordinate
system. Each component has a horizontal, or x-axis, position as well as a vertical, or y-axis,
position on the screen. The upper-left corner of a display is position 0, 0. The first, or
x-coordinate, value increases as you travel from left to right across the window. The second,
or y-coordinate, value increases as you travel from top to bottom. Figure 12-16 shows four
screen coordinate positions.

Thefalsestatementis#1.Manyapplicationsfollowasinglethread;thismeansthatat
anyonetimetheapplicationexecutesonlyasingleprogramstatement.

535

Creating Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Artists often spend a great deal of time creating the exact images they want to use in an
animation sequence. As a simple example, Figure 12-17 shows pseudocode for a
MovingCircle class. As its name implies, the class moves a circle across the screen. The
class contains data fields to hold x- and y-coordinates that identify the location at which a
circle appears. The constants SIZE and INCREASE define the size of the first circle drawn and
the relative increase in size and position of each subsequent circle. The MovingCircle class
assumes that you are working with a language that provides a drawCircle() method, which
creates a circle when given parameters for horizontal and vertical positions and radius.
Assuming you are working with a language that provides a sleep() method to accept a
pause time in milliseconds, the SLEEP_TIME constant provides a 100-millisecond gap before
the production of each new circle. For simplicity, the class also assumes that you are
working with a language in which no error occurs when the circles eventually move off the
screen. You might want to provide statements to stop the drawing when the circle size and
position exceed predetermined limits.

Position 20, 20

Position 20, 50

Position 100, 80

Position 80, 50

x-coordinates
y-coordinates

Figure 12-16 Selected screen coordinate positions
© 2015 Cengage Learning

536

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In most object-oriented languages, a method named main() executes automatically when a class
object is created. The main() method in the MovingCircle class executes a continuous loop.
A similar technique is used in many
languages that support GUI interfaces.
Program execution will cease only
when the user quits the application—
by clicking a window’s Close button,
for example. In the repaintScreen()

method of the MovingCircle class, a
circle is drawn at the x, y position,
then x, y, and the circle size are
increased. The application sleeps for
one-tenth of a second (the SLEEP_TIME
value), and then the repaintScreen()

method draws a new circle more to the
right, further down, and a little larger.
The effect is a moving circle that leaves
a trail of smaller circles behind as it
moves diagonally across the screen.
Figure 12-18 shows the output as a
Java version of the application
executes.

public class MovingCircle
   Declarations
      private num x = 20
      private num y = 20
      private num SIZE = 40
      private num INCREASE = SIZE / 10
      private num SLEEP_TIME = 100

   public void main()
      while true
         repaintScreen()
      endwhile
   return

   public void repaintScreen()
      drawCircle(x, y, SIZE)
      x = x + INCREASE
      y = y + INCREASE
      SIZE = SIZE + INCREASE
      Thread.sleep(SLEEP_TIME)
   return
endClass

Figure 12-17 The MovingCircle class
© 2015 Cengage Learning

Figure 12-18 Output of the MovingCircle application
© 2015 Cengage Learning

537

Creating Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Although an object-oriented language might make it easy to draw geometric shapes, you also
can substitute a variety of more sophisticated, predrawn animated images to achieve the
graphic effects you want within your programs. An image is loaded in a separate thread of
execution, which allows program execution to continue while the image loads. This is a
significant advantage because loading a large image can be time-consuming.

Many animated images are available on the Web for you to use freely. Use your search engine and keywords
such as gif files, jpeg files, and animation to find sources for free files.

TWO TRUTHS & A LIE

Creating Animation

1. Each component you place on a screen has a horizontal, or x-axis, position as well
as a vertical, or y-axis, position.

2. The x-coordinate value increases as you travel from left to right across a window.

3. You almost always want to display animation cells as fast as your processor can
handle them.

Chapter Summary
Interacting with a computer operating system from the command line is difficult; it is
easier to use an event-driven graphical user interface (GUI), in which users manipulate
objects such as buttons and menus. Within an event-driven program, a component from
which an event is generated is the source of the event, and an object that is “interested in”
an event listens for it.

A user can initiate many events, such as tapping a screen or clicking a mouse. Common
GUI components include labels, text boxes, buttons, check boxes, check box groups,
option buttons, and list boxes. GUI components are examples of the best principles of
object-oriented programming; they represent objects with attributes and methods that
operate like black boxes.

Thefalsestatementis#3.IfyoudisplaycomputerimagesasfastasyourCPUcan
processthem,youmightnotbeabletoseeanything.Mostcomputeranimation
employsamethodtopauseforshortperiodsoftimebetweenanimationcells.

538

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you create a program that uses a GUI, the interface should be natural, predictable,
attractive, easy to read, and nondistracting. It’s helpful if the user can customize your
applications. The program should be forgiving, and you should not forget that the GUI is
only a means to an end.

Developing event-driven applications requires more steps than developing procedural
programs. The steps include creating wireframes, creating storyboards, defining objects and
dictionaries for them, and defining the connections between the screens the user will see.

A thread is the flow of execution of one set of program statements. Many applications
follow a single thread; others use multithreading so that diverse tasks can execute
concurrently.

Animation is the rapid sequence of still images that produces the illusion of movement.
Many object-oriented languages contain built-in classes that contain methods you can use
to draw geometric figures on the screen. Each component has a horizontal, or x-axis,
position as well as a vertical, or y-axis, position on the screen.

Key Terms
The DOS prompt is the command line in the DOS operating system.

An operating system is the software that you use to run a computer and manage its
resources.

Icons are small pictures on the screen that help the user navigate a system.

An event is an occurrence that generates a message sent to an object.

In event-driven or event-based programs, actions occur in response to user-initiated events
such as tapping a screen or clicking a mouse.

The source of an event is the component from which the event is generated.

A listener is an object that is “interested in” an event and responds to it.

A script is a term in object-oriented programming used to describe procedural modules that
depend on user-initiated events.

A pixel is a picture element, or one of the tiny dots of light that form a grid on your screen.

Accessibility describes the screen design concerns that make programs easier to use for
people with physical limitations.

A wireframe is a picture or sketch of a screen the user will see when running a program.

A page schematic is a wireframe.

A screen blueprint is a wireframe.

A storyboard contains a series of wireframes that represent a user’s experience with proposed
software.

539

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An object dictionary is a list of the objects used in a program, the screens where the objects
are used, and any associated code (script).

An interactivity diagram shows the relationship between screens in an interactive GUI
program.

Registering components is the act of signing them up so they can react to events initiated by
other components.

A container is a class of objects whose main purpose is to hold other elements—for example,
a window.

A thread is the flow of execution of one set of program statements.

Multithreading is using multiple threads of program execution.

Deadlock is a flaw in multithreaded programs in which two or more threads wait for each
other to finish executing.

Starvation is a flaw in multithreaded programs in which a thread is unable to complete
because other threads occupy all the computer’s resources.

Thread synchronization is a set of techniques that coordinates threads of execution to help
avoid potential multithreading problems.

Animation is the rapid display of still images, each slightly different from the previous one,
that produces the illusion of movement.

The x-axis represents horizontal positions in a screen window.

The y-axis represents vertical positions in a screen window.

The x-coordinate value increases as you travel from left to right across a screen window.

The y-coordinate value increases as you travel from top to bottom across a screen
window.

Exercises

Review Questions

1. Compared to using a command line, an advantage to using an operating system
that employs a GUI is .

a. you can interact directly with the operating system
b. you do not have to deal with confusing icons
c. you do not have to memorize complicated commands
d. all of the above

540

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2. When users can initiate actions by clicking the mouse on an icon, the program
is -driven.

a. command
b. prompt

c. event
d. incident

3. A component from which an event is generated is the of the event.

a. source
b. icon

c. listener
d. base

4. An object that responds to an event is a .

a. source
b. snooper

c. transponder
d. listener

5. All of the following are user-initiated events except a .

a. key press
b. key drag

c. right mouse click
d. mouse drag

6. All of the following are typical GUI components except a .

a. button
b. text box

c. list box
d. handle

7. GUI components operate like .

a. black boxes
b. procedural functions

c. looping structures
d. command lines

8. Which of the following is not a principle of good GUI design?

a. The interface should be predictable.
b. The fancier the screen design, the better.
c. The program should be forgiving.
d. The user should be able to customize applications.

9. Which of the following aspects of a GUI layout is most predictable and natural for
the user?

a. A menu bar runs down the right side of the screen.
b. Help is the first option on a menu.
c. A dollar sign icon represents saving a file.
d. Pressing Esc allows the user to cancel a selection.

541

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10. In most GUI programming environments, the programmer can change all of the
following attributes of most components except their .

a. color
b. screen location
c. size
d. The programmer can change all of these attributes.

11. Depending on the programming language, you might to change a
screen component’s attributes.

a. use an assignment statement
b. call a module
c. enter a value into a list of properties
d. all of the above

12. When you create an event-driven application, which of the following must be done
before defining objects?

a. Translate the program.
b. Create wireframes and storyboards.
c. Test the program.
d. Code the program.

13. A is a sketch of a screen the user will see when running a program.

a. flowchart
b. hierarchy chart

c. storyboard
d. tale timber

14. An object is a list of objects used in a program.

a. thesaurus
b. glossary

c. index
d. dictionary

15. A(n) diagram shows the connections between the various screens a
user might see during a program’s execution.

a. interactivity
b. help

c. cooperation
d. communication

16. The flow of execution of one set of program statements is a .

a. thread
b. string

c. path
d. route

17. When a computer contains a single CPU, it can execute computer
instruction(s) at a time.

a. one
b. several

c. an unlimited number of
d. from several to thousands of

542

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



18. Multithreaded programs usually than their procedural
counterparts.

a. run faster
b. are harder to use

c. are older
d. all of the above

19. An object’s horizontal position on the computer screen is its .

a. a-coordinate
b. h-coordinate

c. x-coordinate
d. y-coordinate

20. You create computer animation by .

a. drawing an image and setting its animation property to true
b. drawing a single image and executing it on a multiprocessor system
c. drawing a sequence of frames that are shown in rapid succession
d. Animation is not used in computer applications.

Programming Exercises

1. Take a critical look at three GUI applications you have used—for example, a
spreadsheet, a word-processing program, and a game. Describe how well each
conforms to the GUI design guidelines listed in this chapter.

2. Select one element of poor GUI design in a program you have used. Describe how
you would improve the design.

3. Select a GUI program that you have never used before. Describe how well it
conforms to the GUI design guidelines listed in this chapter.

4. Design the wireframes and storyboard, interactivity diagram, object dictionary, and
any necessary scripts for an interactive program for customers of Sanderson’s Ice
Cream Sundaes.

Allow customers the option of choosing a three-scoop, two-scoop, or one-scoop
creation at a base price of $4.00, $3.00, or $2.20, respectively. Let the customer
choose chocolate, strawberry, or vanilla as the primary flavor. If the customer adds
nuts, whipped cream, or cherries to the order, add $0.50 for each to the base price.
After the customer clicks an Order Now button, display the price of the order.

5. Design the wireframes and storyboard, interactivity diagram, object dictionary, and
any necessary scripts for an interactive program for customers of Carrie’s Custom
T-Shirts.

Allow customers the option of choosing from five T-shirt sizes and styles—for
example, XL long sleeve or M short sleeve. Assume that each product has a unique
price that is displayed when the user clicks a Buy Now button.

543

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6. Design the wireframes and storyboard, interactivity diagram, object dictionary, and any
necessary scripts for an interactive program for customers of the Dharma Day Spa.

Allow customers the option of choosing a manicure ($10), pedicure ($25), or both
($32). After the customer clicks a Select button, display the price of the service.

7. Design the wireframes and storyboard, interactivity diagram, object dictionary, and
any necessary scripts for an interactive program for customers of the Friar Farm
Market.

Allow customers the option of choosing tomatoes ($3.00 per pound), peppers
($2.50 per pound), or onions ($2.25 per pound). The customer enters a weight in
pounds in a text box. After the customer clicks a Select button, display the price of
the order.

8. Design the wireframes and storyboard, interactivity diagram, object dictionary, and
any necessary scripts for an interactive program for clients of Larry’s Lawn Service.

Allow clients to choose the size of their yard so they can be charged accordingly.
For example, a lot that covers less than one-third of an acre costs $50 per service
call; a lot that covers one-third to two-thirds of an acre costs $72.50 per service
call; and a lot that covers more than two-thirds of an acre costs $84 per service call.
Also, allow clients to choose a schedule of weekly or semiweekly lawn maintenance.
After the customer clicks a Select button, display the price of the service per week.
Note that semiweekly service comes with a 10 percent discount.

Performing Maintenance

1. A file named MAINTENANCE12-01.txt is included with your downloadable
student files. Assume that this program is a working program in your organization
and that it needs modifications as described in the comments (lines that begin with
two slashes) at the beginning of the file. Your job is to alter the program to meet
the new specifications.

Find the Bugs

1. Your downloadable files for Chapter 12 include DEBUG12-01.txt, DEBUG12-02.
txt, and DEBUG12-03.txt. Each file starts with some comments that describe the
problem. Comments are lines that begin with two slashes (//). Following the
comments, each file contains pseudocode that has one or more bugs you must find
and correct.

2. Your downloadable files for Chapter 12 include a file named DEBUG12-04.jpg that
contains a storyboard to accompany the program in the DEBUG12-01.txt file. The
storyboard contains logical errors; examine the storyboard and then find and
correct all the bugs.

544

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Game Zone

1. Design the wireframes and storyboard, interactivity diagram, object dictionary, and
any necessary scripts for an interactive program that allows a user to play a card
game named Lucky Seven. In real life, the game can be played with seven cards,
each containing a number from 1 through 7, that are shuffled and dealt number-
side down. To start the game, a player turns over any card. The exposed number on
the card determines the position (reading from left to right) of the next card that
must be turned over. For example, if the player turns over the first card and its
number is 7, the next card turned must be the seventh card (counting from left to
right). If the player turns over a card whose number denotes a position that was
already turned, the player loses the game. If the player succeeds in turning over all
seven cards, the player wins.

Instead of cards, you will use seven buttons labeled 1 through 7 from left to right.
Randomly associate one of the seven values 1 through 7 with each button. (In other
words, the associated value might or might not be equivalent to the button’s
labeled value.) When the player clicks a button, reveal the associated hidden
value. If the value represents the position of a button already clicked, the player
loses. If the revealed number represents an available button, force the user to click
it—that is, do not take any action until the user clicks the correct button. After a
player clicks a button, remove the button from play.

For example, a player might click Button 7, revealing a 4. Then the player clicks
Button 4, revealing a 2. Then the player clicks Button 2, revealing a 7. The player
loses because Button 7 is already “used.”

2. In the Game Zone sections of Chapters 6 and 9, you designed and fine-tuned the
logic for the game Hangman, in which the user guesses letters in a series of hidden
words. Design the wireframes and storyboard, interactivity diagram, object dic-
tionary, and any necessary scripts for a version of the game in which the user clicks
lettered buttons to fill in the secret words. Draw a “hanged” person piece by piece
with each missed letter. For example, when the user chooses a correct letter, place
it in the appropriate position or positions in the word, but the first time the user
chooses a letter that is not in the target word, draw a head for the “hanged” man.
The second time the user makes an incorrect guess, add a torso. Continue with
arms and legs. If the complete body is drawn before the user has guessed all the
letters in the word, display a message indicating that the player has lost the game. If
the user completes the word before all the body parts are drawn, display a message
that the player has won. Assume that you can use built-in methods named
drawCircle() and drawLine(). The drawCircle() method requires three para-
meters—the x- and y-coordinates of the center, and a radius size. The drawLine()

method requires four parameters—the x- and y-coordinates of the start of the line,
and the x- and y-coordinates of the end of the line.

545

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Up for Discussion

1. Making exciting, entertaining, professional-looking GUI applications becomes
easier once you learn to include graphics images. You can copy these images from
many locations on the Web. Should there be any restrictions on their use? Does it
make a difference if you are writing programs for your own enjoyment as opposed
to putting them on the Web where others can see them? Is using photographs
different from using drawings? Does it matter if the photographs contain recog-
nizable people? Would you impose any restrictions on images posted to your
organization’s Web site?

2. Have you ever encountered any confusing icons—for example, one so abstract that
you could not easily determine its purpose? If so, describe your experience. If not,
find a confusing icon on the Web and describe how you would react if you found it
in an application.

3. Playing computer games has been shown to increase the level of dopamine in the
human brain. High levels of this substance are associated with addiction to drugs.
Suppose that you work for a computer game company that decides to research
how its products can produce more dopamine in the brains of players. Would you
support the company’s decision?

4. When people use interactive programs on the Web, do you feel it is appropriate to
track which buttons they click or to record the data they enter? When is it
appropriate, and when is it not? Does it matter how long the data is stored? Does it
matter if a profit is made from using the data?

5. Should there be limits on Web content? Consider sites that might display porno-
graphy, child abuse, suicide, or the assassination of a political leader. Does it make a
difference if the offensive images are shown as animation?

546

C H A P T E R 1 2 Event-Driven GUI Programming, Multithreading, and Animation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 13
System Modeling with
the UML

In this chapter, you will learn about:

System modeling

The Unified Modeling Language (UML)

UML use case diagrams

UML class and object diagrams

Other UML diagrams

Deciding when to use the UML and which UML diagrams to use

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding System Modeling
Computer programs often stand alone to solve a user’s specific problem. For example, a
program might exist only to print paychecks for the current week. Most computer programs,
however, are part of a larger system. Your company’s payroll system might consist of dozens
of programs, including programs that produce employee paychecks, apply raises to employee
salaries, alter employee deduction options, and create federal and state tax forms at the end of
the year. Each program you write as part of a system might be related to several others. Some
programs depend on input from other programs in the system or produce output to be fed
into other programs. Similarly, an organization’s accounting, inventory, and customer
ordering systems all consist of many interrelated programs. Producing a set of programs that
operate together correctly requires careful planning. System design is the detailed
specification of how all the parts of a system will be implemented and coordinated. Usually,
system design refers to computer system design, but even a noncomputerized, manual system
can benefit from good design techniques. Planning the parts of a system before creating them
is also called modeling.

Many textbooks cover the theories and techniques of system design and modeling. If you
continue to study in a Computer Information Systems program at a college or university,
you probably will be required to take a semester-long course in system design. Explaining
all the techniques of system design is beyond the scope of this book. However, some basic
principles parallel those you have used throughout this book in designing individual
programs:

Large systems are easier to understand when you break them down into subsystems.

Good modeling techniques are increasingly important as the size and complexity of
systems increase.

Good models promote communication among technical and nontechnical workers while
ensuring professional and efficient business solutions.

In other words, developing a model for a single program or an entire business system requires
organization and planning. In this chapter, you learn the basics of one popular design tool, the
Unified Modeling Language (UML), which is based on the preceding principles. The UML
allows you to envision systems with an object-oriented perspective: breaking a system into
subsystems, focusing on the big picture, and hiding the implementation details. In addition,
the UML provides a means for programmers and businesspeople to communicate about
system design. It also provides a way to divide responsibilities for large systems.
Understanding the principles of the UML helps you design a variety of system types and talk
about systems with the people who will use them.

In addition to modeling a system before creating it, system analysts sometimes model an existing system to
get a better picture of its operation. Scrutinizing an existing system and creating an improved one is called
reverse engineering.

548

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Understanding System Modeling

1. Large systems are easier to understand when you break them down into
subsystems.

2. Good modeling techniques are most important in small systems.

3. Good models often lead to superior business solutions.

What is the UML?
The UML is a standard way to specify, construct, and document systems that use object-
oriented techniques. The UML is a modeling language, not a programming language.
The systems you develop using the UML probably will be implemented later in object-
oriented programming languages such as Java, C++, C#, or Visual Basic. As with
flowcharts, pseudocode, hierarchy charts, and class diagrams, the UML has its own
notation that consists of a set of specialized shapes and conventions. You can use UML
shapes to construct different kinds of software diagrams and model different kinds of
systems. Just as you can use a flowchart or hierarchy chart to diagram real-life activities
or organizational relationships as well as computer programs, you can also use the UML
for many purposes, including modeling business activities, organizational processes, or
software systems.

You can purchase compilers for most programming languages from a variety of manufacturers, and you can
purchase several different flowcharting programs. Similarly, you can purchase a variety of tools from
multiple vendors to help you create UML diagrams.

The UML was created at Rational Software by Grady Booch, Ivar Jacobson, and Jim Rumbaugh. The Object
Management Group (OMG) adopted the UML as a standard for software modeling in 1997. The OMG
includes more than 800 software vendors, developers, and users who seek a common architectural
framework for object-oriented programming. The UML is in its second major version; the current version is
UML 2.4.1. You can view or download the entire UML specification and usage guidelines from the OMG
at www.uml.org.

When you draw a flowchart or write pseudocode, your purpose is to illustrate the individual
steps in a process. When you draw a hierarchy chart, you use more of a “big picture”
approach. As with a hierarchy chart, you use the UML to create top-view diagrams of

Thefalsestatementis#2.Goodmodelingtechniquesareincreasinglyimportantas
thesizeandcomplexityofsystemsincrease.

549

What is the UML?

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



business processes that let you hide details and focus on functionality. This approach lets you
start with a generic view of an application and introduce details and complexity later. UML
diagrams are useful as you begin designing business systems, when customers who are not
technically oriented must accurately communicate with the technical staff members who will
create the actual systems. The UML was intentionally designed to be nontechnical so that
developers, customers, and implementers (programmers) could all “speak the same language.”
If business and technical people can agree on what a system should do, the chances improve
that the final product will be useful.

The UML is very large; its documentation is more than 800 pages, and new diagram types are
added frequently. Currently, the UML provides 14 diagram types that you can use to model
systems. Each diagram type lets you see a business process from a different angle and appeals
to a different type of user. Just as an architect, interior designer, electrician, and plumber use
different diagram types to describe the same building, different computer users appreciate
different perspectives. For example, a business user most values a system’s use case diagrams
because they illustrate who is doing what. On the other hand, programmers find class and
object diagrams more useful because they help explain details of how to build classes and
objects into applications.

The UML superstructure groups the diagram types into two broad categories—structure
diagrams and behavior diagrams. A subcategory of behavior diagrams is interaction
diagrams. The UML diagram types are listed in Quick Reference 13-1.

QUICK REFERENCE 13-1 UML Diagrams

Category of diagrams Category function Diagram types in category

Structure diagrams Emphasize the “things”
in a system

Class diagrams
Object diagrams
Component diagrams
Composite structure diagrams
Package diagrams
Deployment diagrams
Profile diagrams

Behavior diagrams Emphasize what
happens in a system

Use case diagrams
Activity diagrams
State machine diagrams

Interaction diagrams Emphasize the flow of
control and data among
the system elements
being modeled

Sequence diagrams
Communication diagrams
Timing diagrams
Interaction overview diagrams

550

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An alternate way to categorize UML diagrams is to divide them into diagrams that illustrate
the static, or steady, aspects of a system and those that illustrate the dynamic, or changing,
aspects of a system. For example, the static elements of a restaurant system might include the
menu and employees, and the dynamic elements would include how the restaurant reacts to a
customer. Static diagrams include class, object, component, deployment, and profile
diagrams. Dynamic diagrams include use case, sequence, communication, state machine, and
activity diagrams.

Each UML diagram type supports multiple variations, and explaining them all would require
an entire textbook. This chapter presents an overview and simple examples of several diagram
types, which provides a good foundation for further study of the UML. You also can find
several tutorials on the UML at www.uml.org.

Watch the video The UML.

TWO TRUTHS & A LIE

What is the UML?

1. The UML is a standard way to specify, construct, and document systems that use
object-oriented methods; it is a modeling language.

2. The UML provides an easy-to-learn alternative to complicated programming
languages such as Java, C++, C#, or Visual Basic.

3. The UML documentation is more than 800 pages and provides more than 10
diagram types.

Thefalsestatementis#2.ThesystemsyoudevelopusingtheUMLprobablywillbe
implementedlaterinobject-orientedprogramminglanguagessuchasJava,C++,C#,
orVisualBasic.

Using UML Use Case Diagrams
The use case diagram shows how a business works from the perspective of those who
actually interact with the business, such as employees, customers, and suppliers. Although
users can also be governments, private organizations, machines, or other systems, it is easiest
to think of them as people, so users are called actors and are represented by stick figures in
use case diagrams. The actual use cases are represented by ovals.

Use cases do not necessarily represent all the functions of a system; they are the system
functions or services that are visible to the system’s actors. In other words, they represent the

551

Using UML Use Case Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



cases by which an actor uses and presumably
benefits from the system. Determining all the
cases for which users interact with systems
helps you divide a system logically into
functional parts.

Establishing use cases usually follows from
analyzing the main events in a system. For
example, from a librarian’s point of view, two
main events are acquireNewBook() and
checkOutBook(). Figure 13-1 shows a use case
diagram for these two events.

Many system developers would use the standard English form to describe activities in their UML diagrams—
for example, check out book instead of checkOutBook(), which looks like a programming method
call. Because you are used to seeing method names in camel casing and with trailing parentheses
throughout this book, this discussion of the UML continues with the same format.

Many systems have variations in use cases. The three possible types of variations are:

Extend

Include

Generalization

An extend variation is a use case variation that shows functions beyond those found in a
base case. In other words, an extend variation is usually an optional activity. For
example, checking out a book for a new library patron who doesn’t have a library card is
slightly more complicated than checking out a book for an existing patron. Each
variation in the sequence of actions required in a use case is a scenario. Each use case
has at least one main scenario, but the case might have several more that are extensions
or variations of the main one. Figure 13-2 shows how you would diagram the
relationship between the use case checkOutBook() and the more specific scenario
checkOutBookForNewPatron(). Extended use cases are shown in an oval with a dashed
arrow pointing to the more general base case.

librarian

checkOutBook( )

acquireNewBook( )

Figure 13-1 Use case diagram for librarian
© 2015 Cengage Learning

librarian

acquireNewBook( )

checkOutBook( ) checkOutBookForNewPatron( )

Figure 13-2 Use case diagram for librarian with scenario extension
© 2015 Cengage Learning

552

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



For clarity, you can add <<extend>> near the line that shows a relationship extension. Such a
feature, which adds to the UML vocabulary of shapes to make them more meaningful, is
called a stereotype. Figure 13-3 includes a stereotype.

In addition to extend relationships, use case diagrams can also show include relationships.
You use an include variation of a use case diagram when a case can be part of multiple use
cases. This concept is very much like that of a method or submodule. You show an include
variation use case in an oval with a dashed arrow pointing to the method’s use case. For
example, issueLibraryCard() might be a function of checkOutBook() used when a new
patron checks out a book, but it might also be a function of registerNewPatron(), which
occurs when a patron registers at the library but does not want to check out books yet. See
Figure 13-4.

You use a generalization variation when a use case is less specific than others and you want to
be able to substitute the more specific case for a general one. For example, a library has
certain procedures for acquiring new materials, whether they are videos, CDs, hardcover

<<extend>>

librarian

acquireNewBook( )

checkOutBook( ) checkOutBookForNewPatron( )

Figure 13-3 Use case diagram for librarian using stereotype
© 2015 Cengage Learning

<<extend>>

<<include>>

librarian

acquireNewBook( )

checkOutBook( )

issueLibraryCard( )

checkOutBookForNewPatron( )

<<include>>
registerNewPatron( )

Figure 13-4 Use case diagram for librarian using include variation
© 2015 Cengage Learning

553

Using UML Use Case Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



books, or paperbacks. However, the procedures might become more specific during a
particular acquisition—perhaps the librarian must procure plastic cases for circulating
videos or assign locked storage locations for CDs. Figure 13-5 shows the generalization
acquireNewItem() with two more specific situations: acquiring videos and acquiring
CDs. The more specific scenarios are attached to the general scenario with open-headed
dashed arrows.

Many use case diagrams show multiple actors. For example, Figure 13-6 shows that a library
clerk cannot perform as many functions as a librarian; the clerk can check out books and
register new patrons but cannot acquire new materials.

acquireVideo( )

<<extend>>

<<include>>

librarian

acquireNewItem( )

checkOutBook( )

issueLibraryCard( )

acquireCD( )

checkOutBookForNewPatron( )

<<include>>
registerNewPatron( )

Figure 13-5 Use case diagram for librarian with generalizations
© 2015 Cengage Learning

554

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



While designing an actual library system, you could add many more use cases and actors to
the use case diagram. The purpose of such a diagram is to encourage discussion between the
system developer and the library staff. Library staff members do not need to know the
technical details of the system that the analysts will eventually create, and they certainly do
not need to understand computers or programming. However, by viewing the use cases, the
library staff can visualize activities they perform while doing their jobs and correct the system
developer if inaccuracies exist. The final software products developed for such a system are
far more likely to satisfy users than those developed without this design step.

A use case diagram is only a tool to aid communication. No single “correct” use case diagram
exists; you might correctly represent a system in several ways. For example, you might choose
to emphasize the actors in the library system, as shown in Figure 13-7, or to emphasize
system requirements, as shown in Figure 13-8. Diagrams that are too crowded are neither
visually pleasing nor very useful. Therefore, the use case diagram in Figure 13-7 shows all the
specific actors and their relationships, but purposely omits more specific system functions. By
comparison, Figure 13-8 shows many actions that are often hidden from users, but purposely
omits more specific actors. For example, the activities carried out to manageNetworkOutage(),
if done properly, should be invisible to library patrons checking out books.

library clerk

acquireVideo( )

<<extend>>

<<include>>

librarian

acquireNewItem( )

checkOutBook( )

issueLibraryCard( )

acquireCD( )

checkOutBookForNewPatron( )

<<include>>
registerNewPatron( )

Figure 13-6 Use case diagram for librarian with multiple actors
© 2015 Cengage Learning

555

Using UML Use Case Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



library clerk librarian

library staff

adult patron child patron

patron

cooperating library

checkOutBook( )

checkOutVideo( )

checkOutReferenceMaterials( )

Figure 13-7 Use case diagram emphasizing actors
© 2015 Cengage Learning

Library System

library staff

patron

cooperating library

checkOutMaterials( )

acquireNewMaterials( )

manageNetworkOutage( )

removeOldMaterialsFromSystem( )

reshelveReturnedMaterials( )

Figure 13-8 Use case diagram emphasizing system requirements
© 2015 Cengage Learning

556

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 13-8, the relationship lines between the actors and use cases have been removed
because the emphasis is on the system requirements, and too many lines would make the
diagram confusing. When system developers omit parts of diagrams for clarity, they refer to
the missing parts as elided. For the sake of clarity, eliding extraneous information is perfectly
acceptable. The main purpose of UML diagrams is to facilitate clear communication.

TWO TRUTHS & A LIE

Using UML Use Case Diagrams

1. A use case diagram shows how a business works from the perspective of those
who actually interact with the business.

2. Users are called actors and are represented by stick figures in use case
diagrams. The actual use cases are represented by ovals.

3. Use cases are important because they describe all the functions of a system.

Using UML Class and Object Diagrams
You use a class diagram to illustrate the names, attributes, and methods of a class or set of
classes. (You saw some examples of class diagrams in Chapter 10.) Class diagrams are more
useful to a system’s programmers than to its users
because the diagrams closely correspond to the code
the programmers will write. A class diagram
illustrating a single class contains a rectangle divided
into three sections: The top section contains the name
of the class, the middle section contains the names of
the attributes, and the bottom section contains the
names of the methods. Figure 13-9 shows the class
diagram for a Book class. Each Book object contains an
idNum, title, and author. Each Book object also
contains methods to create a Book when it is acquired,
and to retrieve or get title and author information
when the Book object’s idNum is supplied.

Book

create()
getInfo(idNum)

idNum
title
author

Figure 13-9 Book class diagram
© 2015 Cengage Learning

Thefalsestatementis#3.Usecasesdonotnecessarilyrepresentallthefunctionsof
asystem;theyarethesystemfunctionsorservicesthatarevisibletothesystem’s
actors.

557

Using UML Class and Object Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the preceding section, you learned how to
use generalizations with use case diagrams
to show general and more specific use cases.
With use case diagrams, you drew an open-
headed arrow from the more specific case to
the more general one. Similarly, you can use
generalizations with class diagrams to show
more general (or parent) classes and more
specific (or child) classes that inherit
attributes from parents. (You learned about
parent and child classes in Chapter 11.) For
example, Figure 13-10 shows Book and
Video classes that are more specific than the
general LibraryItem class. All LibraryItem
objects contain an idNum and title, but
each Book item also contains an author, and
each Video item also contains a
runningTime. Child classes contain all the
attributes of their parents and usually contain additional attributes not found in the parent.

In Chapter 11, you learned that overriding is the mechanism by which a child class method is used by default
when a parent class contains a method with the same signature. That is, by default, the child class version of
the method is used with any child class object. The create() and getInfo() methods in the Book and
Video classes override the versions in the LibraryItem class.

Class diagrams can include symbols that show the relationships between objects. You can
show two types of relationships:

An association relationship

A whole-part relationship

An association relationship describes the
connection or link between objects. You
represent an association relationship
between classes with a straight line.
Frequently, you include information about
the arithmetic relationship or ratio (called
cardinality or multiplicity) of the objects.
For example, Figure 13-11 shows the
association relationship between a
Library and the LibraryItem objects it
lends. Exactly one Library object exists,
and it can be associated with any number
of LibraryItems from 0 to infinity, which

LibraryItem

create()
getInfo(idNum)

idNum
title

author

Book

create()
getInfo(idNum)

runningTime

Video

create()
getInfo(idNum)

Figure 13-10 LibraryItem class diagram
showing generalization
© 2015 Cengage Learning

Library

create()
getInfo()

communityName
directorName
streetAddress
phoneNumber

LibraryItem

create()
getInfo(idNum)

idNum
title

1 0..*

Figure 13-11 Class diagram with association
relationship
© 2015 Cengage Learning

558

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



is represented by an asterisk. Figure 13-12
adds the Patron class to the diagram and
shows how you indicate that any number
of Patron objects can be associated with
the Library, but that each Patron can
borrow only up to five LibraryItems at a
time, or currently might not be borrowing
any. In addition, each LibraryItem can be
associated with one Patron at most, but at
any given time might not be on loan.

As you learned in Chapter 11, a whole-
part relationship describes an association
that uses composition. In other words, it
is a relationship in which one or more
classes make up the parts of a larger whole
class. For example, 50 states make up the
United States, and 10 departments might
make up a company. This type of
relationship is represented by a filled
diamond at the “whole part” end of the
line that indicates the relationship. You
can also call a whole-part relationship a has-a relationship because the phrase describes the
association between the whole and one of its parts; for example, “The library has a Circulation
Department.” Figure 13-13 shows a whole-part relationship for a Library.

Library

create()
getInfo()

communityName
directorName
streetAddress
phoneNumber

Patron

create()
getInfo(idNum)
borrowItem()

idNum
name
address

LibraryItem

create()
getInfo(idNum)

idNum
title

1

1

0..*

0..*

0..5

0..1

Figure 13-12 Class diagram with several
association relationships
© 2015 Cengage Learning

Library

create()
getInfo()

communityName
directorName
streetAddress
phoneNumber

deptName
director

CirculationDepartment

deptName
director

ReferenceDepartment

Figure 13-13 Class diagram with whole-part relationship
© 2015 Cengage Learning

559

Using UML Class and Object Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When a part is completely owned by a whole and ceases to exist without the whole, then the relationship is
called composition, and the diamond in the UML diagram is filled as in Figure 13-13. For example,
composition describes the relationship between a Hotel and its Lobby. When the part also exists without
the whole or belongs to other wholes, then the relationship is called an aggregation, and the diamond is
open. For example, aggregation describes the relationship between a Customer and a Hotel because the
Customer exists without the Hotel and might also be part of a CarRental or Restaurant class.

Object diagrams are similar to class diagrams, but they model specific instances of classes.
You use an object diagram to show a snapshot of an object at one point in time, so you can
more easily understand its relationship to other objects. Imagine looking at the travelers in a
major airport. If you try to watch them all at once, you see a flurry of activity, but it is hard to
understand all the tasks a traveler must accomplish, such as buying a ticket and checking
luggage. However, if you concentrate on one traveler and follow his or her actions through
the airport from arrival to takeoff, you get a clearer picture of the required activities. An
object diagram serves the same purpose; you concentrate on a specific instance of a class to
better understand how a class works.

Figure 13-14 contains an object diagram showing the relationship between one Library,
LibraryItem, and Patron. Notice the similarities between Figures 13-12 and 13-14. If you
need to describe the relationships among three classes, you can use either model—a class
diagram or an object diagram—interchangeably. You simply use the model that seems clearer
to you and your intended audience.

Watch the video Class and Object Diagrams.

Library

communityName = "Oakwood"
directorName = "Hanna Scott"
streetAddress = "100 Main St."
phoneNumber = "622-1000"

Patron

idNum: 19876
name: "Carl Baker"
address: "185 Willow Rd."

LibraryItem

idNum: 23776
title: "The Color Purple"

Figure 13-14 Object diagram for Library
© 2015 Cengage Learning

560

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Using UML Class and Object Diagrams

1. Class diagrams are most useful to a system’s users because they are much
easier to understand than program code.

2. A class diagram illustrating a single class contains a rectangle divided into three
sections: The top section contains the name of the class, the middle section
contains the names of the attributes, and the bottom section contains the names
of the methods.

3. A whole-part relationship describes an association in which one or more classes
make up the parts of a larger whole class; this type of relationship is also called
an aggregation.

Using Other UML Diagrams
The wide variety of UML diagrams allows you to illustrate systems from many perspectives.
You have already read about use case diagrams, class diagrams, and object diagrams. This
section provides a brief overview of other UML diagram types.

Sequence Diagrams
You use a sequence diagram to show the timing of events in a single use case. A sequence
diagram makes it easier to see the order in which activities occur. The horizontal axis (x-axis)
of a sequence diagram represents objects, and the vertical axis (y-axis) represents time. You
create a sequence diagram by placing objects that are part of an activity across the top of the
diagram along the x-axis, starting at the left with the object or actor that begins the action.
Beneath each object on the x-axis, you place a vertical dashed line that represents the period
of time the object exists. Then, you use horizontal arrows to show how the objects
communicate with each other over time.

Thefalsestatementis#1.Classdiagramsaremoreusefultoasystem’s
programmersthantoitsusersbecausetheycloselyresemblecodethe
programmerswillwrite.

561

Using Other UML Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In a sequence diagram, time increases vertically down the diagram. A timing diagram is a type of sequence
diagram in which the time axis is represented horizontally.

For example, Figure 13-15 shows a sequence diagram for a scenario that a librarian can use to
create a book check-out record. The librarian begins a create() method with Patron idNum

and Book idNum information. The BookCheckOutRecord object requests additional Patron
information (such as name and address) from the Patron object with the correct Patron
idNum, and additional Book information (such as title and author) from the Book object with
the correct Book idNum. When BookCheckOutRecord contains all the data it needs, a
completed record is returned to the librarian.

In Figures 13-15 and 13-16, patronInfo and bookInfo represent group items that contain all of a
Patron’s and Book’s data. For example, patronInfo might contain idNum, lastName, firstName,
address, and phoneNumber, all of which have been defined as attributes of that class.

Communication Diagrams
A communication diagram emphasizes the organization of objects that participate in a
system. It is similar to a sequence diagram, except that it contains sequence numbers to
represent the precise order in which activities occur. Communication diagrams focus on
object roles instead of the times that messages are sent. Figure 13-16 shows the same

BookCheckOutRecord Patron Book

getInfo(idNum)

(patronInfo)

getInfo(idNum)

(bookInfo)

(checkOutRecord)

create(Patron idNum,
Book idNum)

librarian

Figure 13-15 Sequence diagram for checking out a Book for a Patron
© 2015 Cengage Learning

562

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



sequence of events as Figure 13-15, but the steps to creating a BookCheckOutRecord are
clearly numbered. Decimal numbered steps (1.1, 1.2, and so on) represent substeps of the
main steps. Checking out a library book is a fairly straightforward event, so a sequence
diagram sufficiently illustrates the process. Communication diagrams become more useful
with more complicated systems.

State Machine Diagrams
Like use case diagrams, state machine and activity diagrams both illustrate the behavior of a
system.

A state machine diagram shows the different statuses of a class or object at different points in
time. You use a state machine diagram to illustrate aspects of a system that show interesting
changes in behavior as time passes. Conventionally, you use rounded rectangles to represent
each state and labeled arrows to show the sequence in which events affect the states. A solid
dot indicates the start and stop states for the class or object. Figure 13-17 contains a state
machine diagram that describes the states of a Book.

1.3 getInfo(idNum)

1.4 (bookInfo)Book BookCheckOutRecord

1.1 getInfo(idNum)

1.2 (patronInfo)

Patron

librarian

Figure 13-16 Communication diagram for checking out a Book for a Patron
© 2015 Cengage Learning

563

Using Other UML Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To make sure that your diagrams are clear, you should use the correct symbol in each UML diagram you
create, just as you should use the correct symbol in each program flowchart. However, if you create a
flowchart and use a rectangle for an input or output statement where a parallelogram is conventional, others
will still understand your meaning. Similarly, with UML diagrams, the exact shape you use is not nearly as
important as the sequence of events and relationships between objects.

Activity Diagrams
The UML diagram that most closely resembles a conventional flowchart is an activity
diagram. In an activity diagram, you show the flow of actions of a system, including branches
that occur when decisions affect the outcome. Conventionally, activity diagrams use
flowchart start and stop symbols (called lozenges) to describe actions and solid dots to
represent start and stop states. Like flowcharts, activity diagrams use diamonds to describe
decisions. Unlike the diamonds in flowcharts, the diamonds in UML activity diagrams usually
are empty; the possible outcomes are documented along the branches emerging from the
decision symbol. As an example, Figure 13-18 shows a simple activity diagram with a single
branch.

Potential
adoption

Ordered

Received

Circulating

Retired

retire( )

catalogEntry( )

receive( )

libraryBoardApprove( )

publish( )

Figure 13-17 State machine diagram for states of a Book
© 2015 Cengage Learning

564

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Many real-life systems contain
actions that are meant to occur
simultaneously. For example,
when you apply for a home
mortgage with a bank, a bank
officer might perform a credit or
background check while an
appraiser determines the value of
the house you are buying. When
both actions are complete, the
loan process continues. UML
activity diagrams use forks and
joins to show simultaneous
activities. A fork is similar to a
decision, but whereas the flow of
control follows only one path
after a decision, a fork defines a
branch in which all paths are
followed simultaneously or
concurrently. A join, as its name

implies, reunites the flow of control after a fork. You indicate forks and joins with thick
straight lines. Figure 13-19 shows how you might model the way an interlibrary loan
system processes book requests. When a request is received, simultaneous searches begin
at three local libraries that are part of the library system.

queryLittletown( )queryOakwood( )

memberLibraryRequestsBook( )

sendBookToRequestingLibrary( )

queryLakeHeights( )

Figure 13-19 Activity diagram showing fork and join
© 2015 Cengage Learning

patronRequest( )

checkOutBook( )

retrieveBook( )contactInterLibraryLoan( )

[Library does not own Book] [Library owns Book]

Figure 13-18 Activity diagram showing branch
© 2015 Cengage Learning

565

Using Other UML Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An activity diagram can contain a time signal. A time signal indicates that a specific amount
of time should pass before an action starts. The time signal looks like two stacked triangles
(resembling the shape of an hourglass). Figure 13-20 shows a time signal indicating that if a
patron requests a book checked out to another patron, then only if the book’s due date has
passed should a request be issued to return the book. In activity diagrams for other systems,
you might see explanations at time signals, such as “10 hours have passed” or “at least January
1.” If an action is time-dependent, whether by a fraction of a second or by years, using a time
signal is appropriate.

Component and Deployment Diagrams
Component and deployment diagrams model the physical aspects of systems. You use a
component diagram when you want to emphasize the files, database tables, documents, and
other components used by a system’s software. You use a deployment diagram when you
want to focus on a system’s hardware. You can use a variety of icons in each type of diagram,
but each icon must convey meaning to the reader. Figures 13-21 and 13-22 show component
and deployment diagrams, respectively, that illustrate aspects of a library system. Figure 13-21
contains icons that symbolize paper and Internet requests for library items, the library
database, and two tables that constitute the database. Figure 13-22 shows some commonly
used icons that represent hardware components.

patronRequest( )

sendRequestForReturn( )

Book checked out
to another patron

Other actions when
book is available

Due date
has passed

Figure 13-20 A time signal starting an action
© 2015 Cengage Learning

566

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 13-21, notice the filled diamond connecting the two tables to the database. Just as it does in a
class diagram, the diamond aggregation symbol shows the whole-part relationship of the tables to the
database. You use an open diamond when a part might belong to several wholes; for example, Door and
Wall objects belong to many House objects. You use a filled diamond when a part can belong to only one
whole at a time (the Patron table can belong only to the Library database). You can use most UML
symbols in multiple types of diagrams.

Paper request Internet request

Library database

Patron table Book table

Figure 13-21 Component diagram
© 2015 Cengage Learning

567

Using Other UML Diagrams

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Profile Diagrams
The profile diagram is a newer UML diagram type. It is used to extend a UML model for a
particular domain (such as financial or healthcare applications) or a particular platform (such
as .NET or Java).

Diagramming Exception Handling
As you learned in Chapter 11, exception handling is a set of object-oriented techniques
used to handle program errors. When a segment of code might cause an error, you can place
that code in a try block. If the error occurs, an object called an exception is thrown, or sent,
to a catch block where appropriate action can be taken. For example, depending on the
application, a catch block might display a message, assign a default value to a field, or prompt
the user for direction.

In the UML, a try block is called a protected node and a catch block is a handler body node.
In a UML diagram, a protected node is enclosed in a rounded rectangle. Any exceptions that
might be thrown are listed next to arrows shaped like lightning bolts, which extend to the
appropriate handler body node.

Printer

Server A Server B

Console Console Console

Internet

Figure 13-22 Deployment diagram
© 2015 Cengage Learning

568

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 13-23 shows an example of an activity that uses exception handling. When a library
patron tries to check out a book, the patron’s card is scanned and the book is scanned. These
actions might cause three errors—the patron owes fines, and so cannot check out new books;
the patron’s card has expired, requiring a new card application; or the book might be on hold for
another patron. If no exceptions occur, the activity proceeds to the checkOutBook() process.

TWO TRUTHS & A LIE

Using Other UML Diagrams

1. You use a sequence diagram to show the timing of events in a single use case.

2. A communication diagram emphasizes the timing of events in multiple use cases.

3. The activity diagram is the UML diagram that most closely resembles a
conventional flowchart.

scanLibraryCard( )

scanBook( )

checkOutBook( )

BookOnHoldException

HighFineException

ExpiredCardException

confiscateCardProcess( )

applyForNewCardProcess( )

bookOnHoldProcess( )

Figure 13-23 Exceptions in the Book check-out activity
© 2015 Cengage Learning

Deciding When to Use the UML and Which UML
Diagrams to Use
The UML is widely recognized as a modeling standard, but it is also frequently criticized. The
criticisms include:

Size—The UML is often criticized as being too large and complex. Many of the diagrams
are infrequently used, and some critics claim several are redundant.

Thefalsestatementis#2.Acommunicationdiagramemphasizestheorganizationof
objectsthatparticipateinasystem.

569

Deciding When to Use the UML and Which UML Diagrams to Use

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Imprecision—The UML uses a combination of fairly strict diagram rules and fairly
loose English descriptions. In particular, problems occur when the diagrams are
applied to tasks other than those implemented in object-oriented programming
languages.

Complexity—Because of its size and imprecision, the UML is relatively difficult to learn.

Still, under the right circumstances, the UML can increase communication between
developers and users of a system. Each UML diagram type provides a different view of a
system. Just as a portrait artist, psychologist, and neurosurgeon each prefers a different
conceptual view of your head, the users, managers, designers, and technicians of computer
and business systems each prefer specific system views. Very few systems require diagrams
of all UML types; you can illustrate the objects and activities of many systems by using a
single diagram, or perhaps one that is a hybrid of two or more basic types. No view is
superior to the others; you can achieve the most complete picture of any system by using
several views. Finally, don’t be intimidated by the UML. Making a diagram that is clear to
the audience but that does not follow specifications precisely is better than following the
rules but creating a diagram that is difficult to understand. The most important reason to
use any UML diagram is to communicate clearly and efficiently with the people for whom
you are designing a system.

TWO TRUTHS & A LIE

Deciding When to Use the UML and Which UML Diagrams to Use

1. The UML has been hailed as a practically perfect design tool because it is concise
and easy to learn.

2. Very few systems require diagrams of all UML types; you can illustrate the objects
and activities of many systems by using a single diagram, or perhaps one that is a
hybrid of two or more basic types.

3. The most important reason to use any UML diagram is to communicate clearly
and efficiently with the people for whom you are designing a system.

Thefalsestatementis#1.TheUMLisoftencriticizedasbeingtoolargeand
complex.Manyofthediagramsareinfrequentlyused,andsomecriticsclaimthat
severalofthediagramsareredundant.Becauseofitssizeandimprecision,theUML
isrelativelydifficulttolearn.

570

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter Summary
System design is the detailed specification of how all the parts of a system will be
implemented and coordinated. Good designs make systems easier to understand. The
UML (Unified Modeling Language) provides a means for programmers and
businesspeople to communicate about system design.

The UML is a standard way to specify, construct, and document systems that use object-
oriented methods. The UML has its own notation, with which you can construct software
diagrams that model different kinds of systems. The UML provides 14 diagram types that
you use at the beginning of the design process.

A use case diagram shows how a business works from the perspective of those who
actually interact with the business. The diagram often includes actors, represented by
stick figures, and use cases, represented by ovals. Use cases can include variations such as
extend relationships, include relationships, and generalizations.

You use a class diagram to illustrate the names, attributes, and methods of a class or set of
classes. A class diagram of a single class contains a rectangle divided into three sections:
the name of the class, the names of the attributes, and the names of the methods. Class
diagrams can show generalizations and the relationships between objects. Object
diagrams are similar to class diagrams, but they model specific instances of classes at one
point in time.

You use a sequence diagram to show the timing of events in a single use case. A
communication diagram emphasizes the organization of objects that participate in a
system. It is similar to a sequence diagram, except that it contains sequence numbers
to represent the precise order in which activities occur. A state machine diagram
shows the different statuses of a class or object at different points in time. In an activity
diagram, you show the flow of actions of a system, including branches that occur when
decisions affect the outcome. UML activity diagrams use forks and joins to show
simultaneous activities. You use a component diagram when you want to emphasize
the files, database tables, documents, and other components used by a system’s
software. You use a deployment diagram when you want to focus on a system’s
hardware. A profile diagram is used to extend a UML model for a particular domain or
platform. Exception handling is diagrammed in the UML using a rounded rectangle to
represent a try block protected node. Any exceptions that might be thrown are listed
next to arrows shaped like lightning bolts, which extend to the appropriate handler
body node.

Each UML diagram type provides a different view of a system. Very few systems
require diagrams of all types; the most important reason to use any UML diagram is
to communicate clearly and efficiently with the people for whom you are designing a
system.

571

Chapter Summary

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
System design is the detailed specification of how all the parts of a system will be
implemented and coordinated.

Modeling is the designing of applications before writing code for them.

The Unified Modeling Language (UML) is a standard way to specify, construct, and document
systems that use object-oriented methods.

Reverse engineering is the process of creating an improved model of an existing system.

Structure diagrams emphasize the “things” in a system.

Behavior diagrams emphasize what happens in a system.

Interaction diagrams emphasize the flow of control and data among the system elements
being modeled.

The use case diagram is a UML diagram that shows how a business works from the
perspective of those who actually interact with the business.

An extend variation is a use case variation that shows functions beyond those found in a
base case.

A scenario is a variation in the sequence of actions required in a use case.

A stereotype is a feature that adds to the UML vocabulary of shapes to make them more
meaningful for the reader.

An include variation is a use case variation in a case that can be part of multiple use cases in a
UML diagram.

A generalization variation is used in a UML diagram when a use case is less specific than
others and you want to be able to substitute the more specific case for a general one.

Elided describes the omitted parts of UML diagrams that are edited for clarity.

An association relationship describes the connection or link between objects in a UML
diagram.

Cardinality and multiplicity refer to the arithmetic relationships between objects.

An aggregation is a whole-part relationship in which the part or parts can exist without the
whole.

An object diagram is a UML diagram that is similar to a class diagram, but it models a
specific instance of a class.

A sequence diagram is a UML diagram that shows the timing of events in a single use case.

A communication diagram is a UML diagram that emphasizes the organization of objects
that participate in a system.

572

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A state machine diagram is a UML diagram that shows the different statuses of a class or
object at different points in time.

An activity diagram is a UML diagram that shows the flow of actions of a system, including
branches that occur when decisions affect the outcome.

A fork is a feature of a UML activity diagram; it is similar to a decision, but whereas the flow
of control follows only one path after a decision, a fork defines a branch in which all paths are
followed simultaneously or concurrently.

A join is a feature of a UML activity diagram; it reunites the flow of control after a fork.

A time signal is a UML diagram symbol indicating that a specific amount of time has passed
before an action is started.

A component diagram is a UML diagram that emphasizes the files, database tables,
documents, and other components used by a system’s software.

A deployment diagram is a UML diagram that focuses on a system’s hardware.

A profile diagram is used to extend a UML model for a particular domain or platform.

A protected node is the UML diagram name for an exception-throwing try block.

A handler body node is the UML diagram name for an exception-handling catch block.

Exercises

Review Questions

1. The detailed specification of how all the parts of a system will be implemented and
coordinated is called .

a. programming
b. paraphrasing

c. structuring
d. system design

2. The primary purpose of good modeling techniques is to .

a. reduce dependency between modules
b. promote communication
c. reduce the need for structure
d. increase functional cohesion

3. The UML provides standard ways to do all of the following to business systems
except them.

a. construct
b. document

c. describe
d. destroy

573

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4. The UML is commonly used to model all of the following except .

a. computer programs
b. business activities

c. organizational processes
d. software systems

5. The UML was intentionally designed to be .

a. low-level, detail-oriented
b. used with Visual Basic

c. inexpensive
d. nontechnical

6. The UML diagrams that show how a business works from the perspective of those
who actually interact with the business, such as employees or customers,
are diagrams.

a. communication
b. state machine

c. use case
d. class

7. Which of the following would be portrayed as an extend relationship in a use case
diagram for a hospital?

a. the relationship between the head nurse and the floor nurses
b. admitting a patient who has never been admitted before
c. serving a meal
d. scheduling the monitoring of patients’ vital signs

8. The people shown in use case diagrams are called .

a. actors
b. clowns

c. workers
d. relatives

9. One aspect of use case diagrams that makes them difficult to learn is
that .

a. they require programming experience to understand
b. they use a technical vocabulary
c. there is no single right answer for any case
d. all of the above

10. The arithmetic association relationship between a college student and college
courses would be expressed as .

a. 1 0
b. 1 1

c. 1 0..*
d. 0..* 0..*

11. In the UML, object diagrams are most similar to diagrams.

a. use case
b. activity

c. class
d. sequence

574

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12. In any given situation, you should choose the type of UML diagram that is .

a. shorter than others
b. clearer than others
c. more detailed than others
d. closest to the programming language you will use to implement the system

13. A whole-part relationship can be described as a(n) relationship.

a. parent-child
b. has-a

c. is-a
d. creates-a

14. The timing of events is best portrayed in a(n) diagram.

a. sequence
b. use case

c. communication
d. association

15. A communication diagram is closest to a(n) diagram.

a. activity
b. use case

c. deployment
d. sequence

16. A(n) diagram shows the different statuses of a class or object at
different points in time.

a. activity
b. state machine

c. sequence
d. deployment

17. The UML diagram that most closely resembles a conventional flowchart is
a(n) diagram.

a. activity
b. state machine

c. sequence
d. deployment

18. You use a diagram when you want to emphasize the files, database
tables, documents, and other components used by a system’s software.

a. state machine
b. component

c. deployment
d. use case

19. The UML diagram that focuses on a system’s hardware is a(n)
diagram.

a. deployment
b. sequence

c. activity
d. use case

20. When using the UML to describe a single system, most designers would
use .

a. a single type of diagram
b. at least three types of diagrams
c. most of the available types of diagrams
d. all the types of diagrams

575

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Exercises

1. Complete the following tasks:

a. Develop a use case diagram for a convenience food store. Include an actor
representing the store manager and use cases for orderItem(), stockItem(),
and sellItem().

b. Add more use cases to the diagram you created in Exercise 1a. Include two
generalizations for stockItem() called stockPerishable() and
stockNonPerishable(). Also include an extension to sellItem() called
checkCredit() for cases in which a customer purchases items using a credit
card.

c. Add a customer actor to the use case diagram you created in Exercise 1b. Show
that the customer participates in sellItem(), but not in orderItem() or
stockItem().

2. Develop a use case diagram for a department store credit card system. Include at
least two actors and four use cases.

3. Develop a use case diagram for a college registration system. Include at least three
actors and five use cases.

4. Develop a use case diagram for a day care center. Include at least three actors and
five use cases.

5. Develop a class diagram for a Yard class that describes objects serviced by a
landscaping maintenance company. Include at least four attributes and three
methods.

6. Develop a class diagram for a Shape class. Include generalizations for child classes
Rectangle, Circle, and Triangle.

7. Develop a class diagram for a Message class for a cell phone company. Include
generalizations for child classes TextMessage, VideoMessage, and VoiceMessage.

8. Develop a class diagram for a Property class for a real estate company.
Include generalizations for child classes Residential and Commercial. Include
subclasses for Residential that include SingleFamilyResidence and
AttachedResidence.

9. Develop a class diagram for a college registration system. Include at least three
classes that cooperate to register students.

10. Develop a sequence diagram that shows how a clerk at a mail-order company
places a customer Order. The Order accesses Inventory to check availability.
Then, the Order accesses Invoice to produce a customer invoice that returns to
the clerk.

576

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11. Develop a state machine diagram that shows the states of an Employee from
Applicant to Retiree.

12. Develop a state machine diagram that shows the states of a Movie from Concept to
Production.

13. Develop an activity diagram that illustrates how to throw a party.

14. Develop an activity diagram that illustrates how to clean a room.

15. Develop the UML diagram of your choice that illustrates some aspect of your life.

16. Complete the following tasks:

a. Develop the UML diagram of your choice that best illustrates some aspect of a
place you have worked.

b. Develop a different UML diagram type that illustrates the same functions as the
diagram you created in Exercise 16a.

Performing Maintenance

1. A file named MAINTENANCE13-01.jpg is included with your downloadable
student files. Assume that this UML diagram describes a working system in your
organization and that it needs modifications as described in the comments (lines
that begin with two slashes) at the beginning of the file. Your job is to alter the
diagram to meet the new specifications.

Find the Bugs

1. Your downloadable student files for Chapter 13 include DEBUG13-01.jpg,
DEBUG13-02.jpg, DEBUG13-03.jpg, and DEBUG13-4.jpg. Each file contains some
comments that describe a problem and a UML diagram that has one or more bugs
you must find and correct.

Game Zone

1. Develop a use case diagram for a baseball game. Include actors representing a
player and an umpire. Create use cases for hitBall(), runBases(), and
makeCallAtBase(). Include two generalizations for makeCallAtBase() named
callSafe() and callOut().

2. Develop a class diagram for a CardGame class. Include generalizations for child
classes SolitaireCardGame and OpponentCardGame.

3. Choose a child’s game such as Hide and Seek or Duck, Duck, Goose and describe it
using UML diagrams of your choice.

577

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Up for Discussion

1. Which do you think you would enjoy more on the job—designing large systems
that contain many programs, or writing the programs themselves? Why?

2. In earlier chapters, you considered ethical dilemmas in writing programs that
select candidates for organ transplants. Are the ethical responsibilities of a system
designer different from those of a programmer? If so, how?

578

C H A P T E R 1 3 System Modeling with the UML

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 14
Using Relational
Databases

In this chapter, you will learn about:

Relational database fundamentals

Creating databases and table descriptions

Primary keys

Database structure notation

Working with records within a table

Creating queries

Relationships between tables

Poor table design

Anomalies, normal forms, and normalization

Database performance and security issues

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding Relational Database Fundamentals
In Chapter 7, you learned that when you store data items for use within computer systems,
they are often stored in a data hierarchy that is organized as follows:

Characters are the smallest usable units of data—for example, a letter, digit, or
punctuation mark is a character. When characters are stored in a computer, they are
created from smaller pieces called bits, which represent computer circuitry. However,
human users seldom care about bits; characters have meaning to users.

Fields are formed from groups of characters and each represents a piece of information,
such as firstName, lastName, or socialSecurityNumber.

Records are formed from groups of related fields. The fields go together because they
represent attributes of some entity, such as an employee, a customer, an inventory item,
or a bank account.

Files are composed of associated records; for example, a file might contain a record for
each employee in a company or each account at a bank.

Most organizations store many files that contain the data they need to operate their
businesses; for example, businesses often need to maintain files of data about employees,
customers, inventory items, and orders. Many organizations use a database to organize and
coordinate the information in these files. A database holds a group of files that an
organization needs to support its applications. In a database, the files often are called tables
because you can arrange their contents in rows and columns. Real-life examples of these
tables abound. For example, consider the listings in a telephone book. Each listing might
contain four columns, as shown in Figure 14-1—last name, first name, street address, and
phone number. You can see that each column represents a field and that each row represents
one record. You can picture a table within a database in the same way.

Arrays (stored in memory) and tables (stored in databases) are similar in that both contain rows and
columns. In an array, each element must have the same data type. The same is not true for tables stored in
databases.

Last Name First Name Address Phone

Abbott William 123 Oak Lane 490-8920

Ackerman Kimberly 467 Elm Drive 787-2781

Adams Stanley 8120 Pine Street 787-0129

Adams Violet 347 Oak Lane 490-8912

Adams William 12 Second Street 490-3667

Figure 14-1 A telephone book table
© 2015 Cengage Learning

580

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sometimes, one record or row is also called an entity; however, many definitions of entity exist in database
texts. For example, some developers refer to a table as an entity. One column (field) can also be called an
attribute.

Figure 14-1 includes five records, each representing a unique person. It is relatively easy to
scan this short list of names to find a person’s phone number; of course, telephone books
contain many more records. The records are in alphabetical order by last name. Some users
might prefer alternate orders. For example, telemarketers or phone company employees
might prefer to have records organized in telephone-number order, and door-to-door
salespeople might prefer street-address order. Using a computerized database is convenient
because the stored data can easily be sorted and displayed to fit each user’s needs.

Unless you are using a telephone book for a very small town, a last name alone often is not
sufficient to identify a person. In the example in Figure 14-1, three people have the last name
of Adams. For these records, you need to examine the first name before you can determine
the correct phone number. In a large city, many people might have the same first and last
names; in that case, you might also need to examine the street address to identify a person. As
with the telephone book, most computerized database tables need to have a way to identify
each record uniquely, even if it means using multiple columns. A value that uniquely
identifies a record is called a primary key, or a key for short. Key fields often are defined as a
single table column, but as with the telephone book, keys can be constructed from multiple
columns; such a key is a compound key, composite key, or concatenated key.

Telephone books are republished periodically because changes have occurred—people have
left or moved into the city, canceled service, or changed phone numbers. With computerized
database tables, you also need to add, delete, and modify records, although usually with more
frequency than phone books are published.

Not all data is as simple as the text data used in most of the examples in this chapter. For example,
applications like Facebook and YouTube store blobs. A blob is a binary large object, or BLOb, which is a
collection of binary data such as an image, video, or audio clip stored in a database system.

Computerized database tables frequently contain thousands of records, or rows, and each row
might contain entries in dozens of columns. Handling and organizing all the data in an
organization’s tables requires sophisticated software. Database management software is a set
of programs that allows users to:

Create table descriptions.

Identify keys.

Add, delete, and update records within a table.

Arrange records within a table so they are sorted by different fields.

Write questions that select specific records from a table for viewing.

Write questions that combine information from multiple tables. This is possible because
the database management software establishes and maintains relationships between the

581

Understanding Relational Database Fundamentals

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



columns in the tables. A group of database tables from which you can make these
connections is a relational database.

Create reports for interpreting data, and create forms for viewing and entering data using
interactive screens.

Keep data secure by employing sophisticated security measures.

Each database management software package operates differently; however, with each, you
perform the same types of tasks.

TWO TRUTHS & A LIE

Understanding Relational Database Fundamentals

1. Files are composed of associated records, and records are composed
of fields.

2. In a database, files often are called tables because you can arrange their
contents in rows and columns.

3. Key fields always are defined as a single table column.

Creating Databases and Table Descriptions
Creating a useful database requires planning and analysis. You must decide what data will be
stored, how that data will be divided between tables, and how the tables will interrelate. Before
you create any tables, you must create the database itself. With most database software
packages, creating the database that will hold the tables requires nothing more than naming it
and indicating the physical location, perhaps a hard disk drive, where the database will be
stored. When you save a table, it is conventional to provide a name that begins with the prefix
tbl—for example, tblCustomers. Your databases often become filled with a variety of objects—
tables, forms for data entry, reports that organize the data for viewing, queries that select
subsets of data for viewing, and so on. Using naming conventions, such as beginning each table
name with a prefix that identifies it as a table, helps you keep track of the objects in your system.

When you save a table description, many database management programs suggest a default, generic table
name such as Table1. Usually, a more descriptive name is more useful as you create objects.

Thefalsestatementis#3.Keyfieldsoftenaredefinedasasingletablecolumn,
butkeyscanbeconstructedfrommultiplecolumns;suchakeyisacompound
key.

582

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Before you can enter data into a database table, you must design the table. It is important to
think carefully about the original design of a database. After the database has been created
and data has been entered, it could be difficult and time consuming to make changes.

At minimum, designing a table requires that you choose columns for it and then provide
names and data types for each column. A table description closely resembles the list of
variables that you have used with every program throughout this book. For example, assume
you are designing a customer database table. Figure 14-2 shows some column names and data
types you might use.

The table description in Figure 14-2 uses just two
data types—text and numeric. Text columns can
hold any type of characters—letters or digits.
Numeric columns can hold numbers only.
Depending on the database management
software, you might have many more
sophisticated data types at your disposal. For
example, some database software divides the
numeric data type into several subcategories such
as integer values (whole number only) and
double-precision numbers (which contain
decimals). Other options might include special
categories for currency numbers (representing

dollars and cents), dates, and Boolean columns (representing true or false). At the least, all
database software recognizes the distinction between text and numeric data.

Throughout this book, you have been aware of the distinction that computers make between text and
numeric data. Because of the way computers handle data, every type of software observes this distinction.
Throughout this book, the term string has been used to describe text fields. The term text is used in this
chapter only because popular database packages use this term.

Unassigned variables within computer programs might be empty (containing a null value), or they might
contain unknown or garbage values. Similarly, columns in database tables might also contain null or unknown
values. When a field in a database contains a null value, it does not mean that the field holds a 0 or a space; it
means that no data has been entered for the field at all. Although null and empty are used synonymously by
many database developers, the terms have slightly different meanings to some professionals, such as Visual
Basic programmers.

The table description in Figure 14-2 uses one-word column names and camel casing, in
the same way that variable names have been defined throughout this book. Many
database software packages allow multiple-word column names with embedded spaces,
but many database table designers prefer single-word names because they resemble
variable names in computer program code. In addition, when you write programs that
access a database table, the single-word field names can be used “as is,” without special
syntax to indicate the names that represent a single field. Also, when you use a single
word to label each database column, it is easier to understand whether one column or
several are being referenced.

Column Data Type

customerID text

lastName text

firstName text

streetAddress text

balanceOwed numeric

Figure 14-2 Customer table description
© 2015 Cengage Learning

583

Creating Databases and Table Descriptions

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The customerID column in Figure 14-2 is defined as text. If customerID numbers are
composed entirely of digits, this column could also be defined as numeric. However, many
database designers feel that columns should be defined as numeric only if necessary—that is,
only if they might be used in arithmetic calculations. The description in Figure 14-2 follows
this convention by declaring customerID as text.

Watch the video Creating Databases.

Many database management software packages allow you to add a narrative description of
each data column to a table. These comments become part of the table, but do not affect the
way it operates; they simply serve as documentation for those who are reading a table
description. For example, you might want to make a note that customerID should consist of
five digits, or that balanceOwed should not exceed a given limit. In some database programs,
the comment fields are called memos.

In addition to making comments about fields, some database software allows you to enforce
data-entry rules for the fields. For example, you might be able to specify that certain fields
cannot be left empty, or that values for a numeric field must fall between specified high and
low limits, or that values for a text field must match one of a few allowable entries.

TWO TRUTHS & A LIE

Creating Databases and Table Descriptions

1. When you save a table, it is conventional to provide a name that begins with
the prefix table.

2. Designing a table involves deciding what columns your table needs, providing
names for them, and providing a data type for each column.

3. Many database table designers prefer single-word column names because they
resemble variable names in programs, they can be easily used in programs, and
they make it easier to understand whether one column or several are being
referenced.

Identifying Primary Keys
In most database tables, you want to identify a column or a combination of columns as the
table’s primary key. The primary key in a table is the column that makes each record different
from all others. For example, in the customer table in Figure 14-2, the logical choice for a

Thefalsestatementis#1.Whenyousaveatable,itisconventionaltoprovideaname
thatbeginswiththeprefixtbl.

584

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



primary key is the customerID column—each record entered into the customer table has a
unique value in this column. Many customers might have the same first name or last name
(or both), and multiple customers might have the same street address or balance due.
However, each customer possesses a unique ID.

Other typical examples of primary keys include:

A student ID number in a table that contains college student information

A part number in a table that contains inventory items

A state abbreviation in a table that contains sales information for each state in the United
States

In some database software packages, such as Microsoft Access, you indicate a primary key simply by
selecting a column name and clicking a button that is labeled with a key icon.

In each of these examples, the primary key uniquely identifies the row. For example, each
student has a unique ID number assigned by the college. Other columns in a student table
would not be adequate keys—many students have the same last name, first name, hometown,
or major. Often, keys are numbers. Usually, assigning a number to each row in a table is the
simplest and most efficient method of obtaining a useful key. However, a table’s key can be a
text field, as in the state abbreviation example.

Sometimes, several columns could serve as the key. For example, if an employee record
contains both a company-assigned employee ID and a Social Security number, then both
columns are candidate keys. After you choose a primary key from candidate keys, the
remaining candidate keys become alternate keys. (Many database developers would object to
using a Social Security number as a primary key because of privacy issues.)

The primary key is important for several reasons:

You can configure your database software to prevent multiple records from containing
the same value in this column, thus helping to avoid data-entry errors.

You can sort your records in this order before displaying or printing them.

You use the primary key column when setting up relationships between this table and
others that will become part of the same database.

You need to understand the concept of the primary key when you normalize a database—
a concept you will learn more about later in this chapter.

In some tables, when no identifying number has been assigned to the rows, a primary key
must be constructed from multiple columns, making it a compound key. For example,
consider Figure 14-3, which might be used by a residence hall administrator to store data
about students living on a university campus. Each room in a building has a number and two
students, each assigned to either bed A or bed B.

585

Identifying Primary Keys

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Figure 14-3, no single column can serve as a primary key. Many students live in the same
residence hall, and the same room numbers exist in the different residence halls. In addition,
some students have the same last name, first name, or major. It is even possible that two
students with the same first name, last name, or major are assigned to the same room. In this
case, the best primary key is a multicolumn key that combines residence hall, room number,
and bed number (hall, room, and bed). “Adams 101 A” identifies a single room and student,
as does “Churchill 102 B”. A primary key should be immutable, meaning that a value does not
change during normal operation. In other words, in Figure 14-3, “Adams 102 A” will always
pertain to a fixed location, even though the resident or her major might change. Of course,
the school might choose to change the name of a residence hall–for example, to honor a
benefactor—but that action would fall outside the range of “normal operation.”

As an alternative to selecting three columns to create the compound key in the table in
Figure 14-3, many database designers would prefer that the college uniquely number every
bed on campus and add a new column for it. Many database designers feel that a primary key
should be short to minimize the amount of required storage in all the tables that refer to it.

Analyzing existing data is not a foolproof way to select a good key; you must also consider
likely future data. Even if only one student was named Smith, for example, or only one
Psychology major was listed in Figure 14-3, those fields still would not be good primary key
candidates because of the potential for future Smiths and Psychology majors within the
database.

Usually, after you have identified the necessary fields, data types, and primary key, you are
ready to save your table description and begin to enter data.

hall room bed lastName firstName major

Adams 101 A Fredricks Madison Chemistry

Adams 101 B Garza Lupe Psychology

Adams 102 A Liu Jennifer CIS

Adams 102 B Smith Crystal CIS

Browning 101 A Patel Sarita CIS

Browning 101 B Smith Margaret Biology

Browning 102 A Jefferson Martha Psychology

Browning 102 B Bartlett Donna Spanish

Churchill 101 A Wong Cheryl CIS

Churchill 101 B Smith Madison Chemistry

Churchill 102 A Patel Jennifer Psychology

Churchill 102 B Jones Elizabeth CIS

Figure 14-3 Table containing residence hall student records
© 2015 Cengage Learning

586

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Identifying Primary Keys

1. The primary key in a table is the record that has different data in its columns
from all other records.

2. A multicolumn key is needed when no single column in a table contains unique
data for a record.

3. Data is usually entered into database tables after all the fields and keys have
been determined.

Understanding Database Structure Notation
A shorthand way to describe a table is to use the table name followed by parentheses that contain a
list of all the field names, with the primary key underlined. (Some database designers insert an
asterisk after the key instead of underlining it.) Thus, when a table is named tblStudents and
contains columns named idNumber, lastName, firstName, and gradePointAverage, and
idNumber is the key, you can reference the table using the following notation:

tblStudents(idNumber, lastName, firstName, gradePointAverage)

Although this shorthand notation does not provide information about data types or range
limits on values, it does provide a quick overview of the table’s structure. The key does not
have to be the first attribute listed in a table reference, but frequently it is.

TWO TRUTHS & A LIE

Understanding Database Structure Notation

1. A shorthand way to describe a table is to use the table name followed by
parentheses that contain a list of all the field names.

2. Typically, when you describe a table using database structure notation, the
primary key is underlined.

3. Database structure notation provides information about column names, their
data types, and their range limits.

Thefalsestatementis#1.Theprimarykeyinatableisthecolumnthatmakeseach
recorddifferentfromallothers.

Thefalsestatementis#3.Althoughthisshorthandnotationdoesnotprovide
informationaboutdatatypesorrangelimitsonvalues,itdoesprovideaquick
overviewofthetable’sstructure.

587

Understanding Database Structure Notation

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Records within Tables
The records in most databases are continuously changing. Personnel must frequently add,
delete, update, and sort database records.

Entering data into an existing table is not difficult, but it can require a good deal of time and
accurate typing. Depending on the application, the contents of the tables might be entered
over the course of months or years by many data-entry personnel. Most database software
prohibits data entries that are the wrong data type. In addition, you might set up a table to
prevent duplicate data in specific fields, or to prevent data entry outside of specified bounds in
certain fields. With some database software, you type data into rows representing each record
and columns representing each field in each record, much as you would enter data into a
spreadsheet. With other software, you can create on-screen forms to make data entry more
user-friendly. Some software allows you to specify that no partial records can be added; that
is, no fields can be left blank.

In some applications, data values are entered manually by typists. In others, values are
scanned from an original source, greatly reducing the chances for error. For example,
purchases can be scanned at the point of sale in a retail store, and patient wristbands and
medicines can be scanned by healthcare workers in a hospital.

Deleting and modifying records in a database table are also relatively easy tasks. Products are
discontinued, customers change addresses, and so on. Keeping data records up to date is a
vital part of any database management system.

In many database systems, some “deleted” records are not physically removed. Instead, they are just
marked as deleted so that they will not be used to process active records. For example, a company might
want to retain data about former employees, but not process them with current personnel reports. On the
other hand, an employee record that was entered by mistake would be permanently removed from the
database.

Database management software generally allows you to sort a table based on any column,
letting you view the data in the way that is most useful to you. For example, you might
want to view inventory items in alphabetical order, or from the most to the least
expensive. You also can sort by multiple columns—for example, you might sort employees
by first name within last name (so that Aaron Black is listed before Andrea Black), or by
department within first name within last name (so that Aaron Black in Department 1 is
listed before another Aaron Black in Department 6). When sorting records on multiple
fields, the software first uses a primary sort—for example, by last name. After all records
with the same primary sort key are grouped, the software sorts by the secondary key—for
example, first name.

After rows are sorted, they usually can be grouped. For example, you might want to sort
customers by their zip code, or employees by the department in which they work; in addition,
you might want counts or subtotals at the end of each group. Database software allows you to
create displays in the formats that suit your needs.

588

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Working with Records within Tables

1. Depending on the application, the contents of tables in a database system might
be entered over the course of months or years by many data-entry personnel.

2. In most organizations, much of the important data is permanent.

3. Database management software generally allows you to sort and group data,
letting you view the data in the way that is most useful to you.

Creating Queries
Data tables often contain hundreds or thousands of rows; making sense out of that much information
is a daunting task. Frequently, you want to view subsets of data from a table you have created. For
example, you might want to examine only those customers with an address in a specific state, only
those inventory items whose quantity in stock has fallen below the normal reorder point, or only those
employees who participate in an insurance plan. Besides limiting records, you might also want to limit
the view of columns within records. For example, student records might contain dozens of fields, but
a school administrator might only be interested in looking at names and grade point averages. The
questions you use to extract the appropriate records from a table and specify the fields to be viewed
are called queries; a query is a question using syntax that the database software can understand.

Depending on the software, you might create a query by filling in blanks (a process called
query by example) or by writing statements similar to those in many programming
languages. The most common language that database administrators use to access data in
their tables is Structured Query Language, or SQL. The basic form of the SQL statement that
retrieves selected records from a table is SELECT-FROM-WHERE. This statement:

Selects the columns you want to view

From a specific table

Where one or more conditions are met

SQL frequently is pronounced sequel; however, several SQL product Web sites insist that the official
pronunciation is S-Q-L. Similarly, some people pronounce GUI as gooey and others insist that it should be
G-U-I. In general, a preferred pronunciation evolves in an organization. The TLA, or three-letter abbreviation,
is the most popular type of abbreviation in technical terminology.

Thefalsestatementis#2.Inmostorganizations,muchoftheimportantdataisina
constantstateofchange.Keepingdatarecordsuptodateisavitalpartofany
databasemanagementsystem.

589

Creating Queries

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



For example, suppose that a customer table named tblCustomers contains data about your
business customers and that the structure of the table is as follows:

tblCustomers(custId, lastName, state)

Then, a statement such as the following would display a new table containing two columns—
custId and lastName—and only as many rows as needed to hold those customers whose
state column contains “WI”:

SELECT custId, lastName FROM tblCustomers WHERE state = "WI"

Conventionally, SQL keywords such as SELECT, FROM, and WHERE appear in uppercase;
this book follows that convention. Besides using = to mean equal to, you can use the
comparison operators > (greater than), < (less than), >= (greater than or equal to), and
<= (less than or equal to). As you have already learned from working with programming
variables throughout this book, text field values are contained within quotation marks,
but numeric values are not.

In database management systems, a particular way of looking at a database by selecting
specific fields and records, or placing records in a selected order, is sometimes called a view.
The different views provided by database software are virtual views; they do not affect the
physical organization or contents of the database.

To create a view that contains all fields for each record in a table, you can use the asterisk as a
wildcard; a wildcard is a symbol that means “any” or “all.” For example, the following
statement would select all columns for every customer whose state is “WI”, not just
specifically named columns:

SELECT * FROM tblCustomers WHERE state = "WI"

To select all customers from a table, you can omit the WHERE clause in a SELECT-FROM-WHERE
statement. The following statement selects all columns for all customers in the table:

SELECT * FROM tblCustomers

You learned about making selections in computer programs much earlier in this book, and
you have probably noticed that SELECT-FROM-WHERE statements serve the same purpose as
programming decisions. As with decision statements in programs, SQL allows you to create
compound conditions using AND or OR operators. In addition, you can precede any condition
with a NOT operator to achieve a negative result. In summary, Figure 14-4 shows a database
table named tblInventory with the following structure:

tblInventory(itemNumber, description, quantityInStock, price)

The table contains five records. Figure 14-5 lists several typical SQL SELECT statements you
might use with tblInventory and explains each.

590

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



itemNumber description quantityInStock price

144 Pkg 12 party plates 250 $14.99

231 Helium balloons 180 $2.50

267 Paper streamers 68 $1.89

312 Disposable tablecloth 20 $6.99

383 Pkg 20 napkins 315 $2.39

Figure 14-4 The tblInventory table
© 2015 Cengage Learning

SQL Statement Explanation

SELECT itemNumber, price FROM
tblInventory

SELECT * FROM tblInventory
WHERE price > 5.00

SELECT itemNumber FROM tblInventory
WHERE quantityInStock > 200 AND price
> 10.00

SELECT description, price FROM
tblInventory WHERE description = "Pkg
20 napkins" OR itemNumber < 200

SELECT itemNumber FROM tblInventory
WHERE NOT price < 14.00

Shows only the item number and price
for all five records.

Shows all fields from only those
records where price is over $5.00–
items 144 and 312.

Shows item number 144–the only record
that has a quantity greater than 200
as well as a price greater than $10.00.

Shows the description and price fields
for the package of 12 party plates and
the package of 20 napkins. Each
selected record must satisfy only one
of the two criteria.

Shows the item number for the only
record where the price is not less
than $14.00–item 144.

Figure 14-5 Sample SQL statements and explanations
© 2015 Cengage Learning

591

Creating Queries

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TWO TRUTHS & A LIE

Creating Queries

1. A query is a question you use to extract appropriate fields and records from a table.

2. The most common language that database administrators use to access data
in their tables is Structured Query Language, or SQL.

3. The basic form of the SQL command that retrieves selected records from a
table is RETRIEVE-FROM-SELECTION.

Understanding Relationships Between Tables
Most database applications require many tables, and require that the tables be related. The
connection between two tables is a relationship, and the database containing the relationships
is a relational database. Connecting two tables based on the values in a common column is
called a join operation, or more simply, a join; the column on which they are connected is the
join column. The table displayed as the result of the query provides a virtual view—it uses data
from each joined table without disrupting the contents of the originals. For example, in Figure
14-6, the customerNumber column is the join column that could produce a virtual view when
a user asks to see the name of a customer associated with a specific order number. Three
types of relationships can exist between tables:

One-to-many

Many-to-many

One-to-one

Thefalsestatementis#3.ThebasicformoftheSQLcommandthatretrieves
selectedrecordsfromatableisSELECT-FROM-WHERE.

214

215

216

217

218

customerNumber customerName

Kowalski

Jackson

Lopez

Thompson

Vitale

215

215

217

218

215

216

214

10467

10472

10473

10468

10469

10470

10471

2

1

10

1

4

12

4

HP203

HP203

JK109

JK109

HP203

ML318

JK109

10/15/2014

10/16/2014

10/17/2014

10/15/2014

10/16/2014

10/16/2014

10/16/2014

customerNumberorderNumber orderQuantity orderItem orderDate

tblCustomers tblOrders

Figure 14-6 Sample customers and orders
© 2015 Cengage Learning

592

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding One-To-Many Relationships
In a one-to-many relationship, one row in a table can be related to many rows in another
table. It is the most common type of relationship between tables. Consider the following
tables:

tblCustomers(customerNumber, customerName)
tblOrders(orderNumber, customerNumber, orderQuantity, orderItem, orderDate)

The tblCustomers table contains one row for each customer, and customerNumber is the
primary key. The tblOrders table contains one row for each order, and each order is assigned
an orderNumber, which is the primary key in this table.

In most businesses, a single customer can place many orders. In the sample data in Figure 14-6,
customer 215 has placed three orders. One row in the tblCustomers table can correspond to, and
be related to, many rows in the tblOrders table. This means there is a one-to-many relationship
between the two tables tblCustomers and tblOrders. The “one” table (tblCustomers) is the base
table in this relationship, and the “many” table (tblOrders) is the related table.

When two tables have a one-to-many relationship, the relationship is based on the values in one
or more columns in the tables. In this example, the column, or attribute, that links the two tables
together is the customerNumber attribute. In the tblCustomers table, customerNumber is the
primary key, but in the tblOrders table, customerNumber is not a key—it is a nonkey attribute.
When a column that is not a key in a table contains an attribute that is a key in a related table, the
column is called a foreign key. When a base table is linked to a related table in a one-to-many
relationship, the primary key of the base table is always related to the foreign key in the related
table. In the example in Figure 14-6, customerNumber in the tblOrders table is a foreign key.

A key in a base table and the foreign key in the related table do not need to have the same name; they only
need to contain the same type of data. Some database management software programs automatically
create a relationship if the columns in two tables you select have the same name and data type. However, if
this is not the case (for example, if the column is named customerNumber in one table and custID in
another), you can explicitly instruct the software to create the relationship.

Understanding Many-To-Many Relationships
Another example of a one-to-many relationship is depicted with the following tables:
tblItems(itemNumber, itemName,itemPurchaseDate, itemPurchasePrice, itemCategoryId)
tblCategories(categoryId, categoryName, categoryInsuredAmount)

Assume that you are creating these tables to keep track of all the items in your household for
insurance purposes. You want to store data about your sofa, stereo, refrigerator, and so on. The
tblItems table contains the item number, name, purchase date, and purchase price of each item.
In addition, this table contains the ID number of the category (Appliance, Jewelry, Antique, and
so on) to which the item belongs. You need these categories because your insurance policy has
specific coverage limits for different types of property. For example, with many insurance
policies, antiques might have a different coverage limit than appliances, or jewelry might have a
different limit than furniture. Sample data for these tables is shown in Figure 14-7.

593

Understanding Relationships Between Tables

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The primary key of the tblItems table is itemNumber, a unique identifying number that you
have assigned to each item you own. (You might even prepare labels with these numbers and
stick a label on each item in an inconspicuous place.) The tblCategories table contains the
category names and the maximum insured amounts for the specific categories. For example,
one row in this table has a categoryName of “Jewelry” and a categoryInsuredAmount of
$15,000. The primary key for the tblCategories table is categoryId, a uniquely assigned
value for each property category.

The two tables in Figure 14-7 have a one-to-many relationship. Which is the “one” table and
which is the “many” table? Or, asked in another way, which is the base table and which is the
related table? You have probably determined that tblCategories is the base table (the “one”
table) because one category can describe many items that you own. Therefore, tblItems is
the related table (the “many” table); that is, many items fall into each category. The two tables
are linked with the category ID attribute, which is the primary key in the base table
(tblCategories) and a foreign key in the related table (tblItems).

In Figure 14-7, one row in the tblCategories table relates to multiple items you own. The
opposite is not true—one item in the tblItems table cannot relate to multiple categories in
the tblCategories table. The row in the tblItems table that describes the “rectangular pine
coffee table” relates to one specific category in the tblCategories table—the Furniture

1

2

3

4

5

6

7

categoryId categoryName categoryInsuredAmount

Appliance

Jewelry

Antique

Clothing

Furniture

Electronics

Miscellaneous

$30,000

$15,000

$10,000

$25,000

$5,000

$2,500

$5,000

Sofa

Rectangular pine coffee table

Round pine end table

Stereo

Refrigerator

Diamond ring

TV

1

6

7

2

3

4

5

1/13/2003

4/21/2013

4/21/2013

2/10/2005

5/12/2005

2/12/2006

7/11/2006

$6,500

$300

$200

$1,200

$750

$42,000

$285

5

5

5

6

1

2

6

itemNameitemNumber itemPurchaseDate itemPurchasePrice itemCategoryId

tblCategories

tblItems

Figure 14-7 Sample items and categories: a one-to-many relationship
© 2015 Cengage Learning

594

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



category. However, what if you own a rectangular pine coffee table that has a built-in
refrigerator, or a diamond ring that is an antique?

The structure of the tables shown in Figure 14-7 and the relationship between those tables are
designed to keep track of possessions for insurance purposes. If you needed help categorizing
your sofa with a built-in DVD player, you might call your insurance agent. If the agent says
that the item is considered a piece of furniture for insurance purposes, then the existing table
structures and relationships are adequate. If the agent says the sofa is considered a special
type of hybrid item that has a specific maximum insured amount, you could create a new row
in the tblCategories table to describe this special hybrid category—perhaps Electronic
Furniture. This new category would acquire a category number, and you could associate the
DVD-sofa with the new category using the foreign key in the tblItems table.

However, suppose that your insurance agent didn’t know whether to categorize the sofa as
furniture or electronics, or suppose that the agent told you different insurance values applied
if the item needed to be replaced because of a structural problem or an electronic problem. In
those cases, the item would present a problem to your database. You may want to categorize
your new sofa as both a furniture item and an electronic item. The existing table structures,
with their one-to-many relationship, would not support this because the current design limits
any specific item to only one category. When you insert a row into the tblItems table to
describe the new DVD-sofa, you can assign the Furniture code to the foreign key
itemCategoryId, or you can assign the Electronics code, but not both.

If you want to assign the new DVD-sofa to both categories (Furniture and Electronics), you
have to change the design of the table structures and relationships, because there is no longer
a one-to-many relationship between the two tables. Now, there is a many-to-many
relationship—one in which multiple rows in each table can correspond to multiple rows in
the other. In this example, one row in the tblCategories table (for example, Furniture) can
relate to many rows in the tblItems table (for example, sofa and coffee table), and one row in
the tblItems table (for example, the sofa with the built-in DVD player) can relate to multiple
rows in the tblCategories table.

The tblItems table contains a foreign key named itemCategoryId. If you want to change the
application so that one specific row in the tblItems table can link to many rows (and,
therefore, many categoryIds) in the tblCategories table, you cannot continue to maintain
the foreign key itemCategoryId in the tblItems table, because one item may be assigned to
many categories. You could change the structure of the tblItems table so that you can assign
multiple itemCategoryIds to one specific row in that table, but as you will learn later in this
chapter, that approach leads to many problems using the data. Therefore, it is not an option.

The simplest way to support a many-to-many relationship between the tblItems and
tblCategories tables is to remove the itemCategoryId attribute (what was once the foreign
key) from the tblItems table, producing:

tblItems(itemNumber, itemName, itemPurchaseDate, itemPurchasePrice)

The tblCategories table structure remains the same:

tblCategories(categoryId, categoryName, categoryInsuredAmount)

595

Understanding Relationships Between Tables

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



With just the preceding two tables, there is no way to know that any specific rows in the
tblItems table link to any specific rows in the tblCategories table, so you create a new table
called tblItemsCategories that contains the primary keys from the two tables you want to
link in a many-to-many relationship. This table is depicted as:

tblItemsCategories(itemNumber, categoryId)

Notice that this new table contains a compound primary key—both itemNumber and
categoryId are underlined. The itemNumber value of 1 might be associated with many
categoryIds. Therefore, itemNumber alone cannot be the primary key because the same value
may occur in many rows. Similarly, a categoryId might relate to many different
itemNumbers; this would disallow using just the categoryId as the primary key. However,
combining the two attributes itemNumber and categoryId results in a unique primary key
value for each row of the tblItemsCategories table.

A table such as tblItemsCategories that contains common fields from multiple tables is known
by several terms, including junction table, bridge table, join table, map table, cross-reference table,
linking table, many-to-many resolver, and association table. Junction tables can also contain additional
fields.

The purpose of all this is to create a many-to-many relationship between the tblItems

and tblCategories tables. The tblItemsCategories table contains two attributes;
together, these attributes are the primary key. In addition, each of these attributes
separately is a foreign key to one of the two original tables. The itemNumber attribute in
the tblItemsCategories table is a foreign key that links to the primary key of the
tblItems table. The categoryId attribute in the tblItemsCategories table links to the
primary key of the tblCategories table. Now, there is a one-to-many relationship
between the tblItems table (the “one,” or base table) and the tblItemsCategories table
(the “many,” or related table), and a one-to-many relationship between the tblCategories
table (the “one,” or base table) and the tblItemsCategories table (the “many,” or related
table). This, in effect, implies a many-to-many relationship between the two base tables
(tblItems and tblCategories).

Figure 14-8 shows the new tables holding a few items. The sofa (itemNumber 1) in the
tblItems table is associated with the Furniture category (categoryId 5) in the
tblCategories table because the first row of the tblItemsCategories table contains a 1
and a 5. Similarly, the stereo (itemNumber 2) in the tblItems table is associated with the
Electronics category (categoryId 6) in the tblCategories table because the
tblItemsCategories table has a row containing the values 2, 6.

596

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The fancy sofa with the built-in DVD player (itemNumber 3 in the tblItems table) occurs in
two rows in the tblItemsCategories table: once with a categoryId of 5 (Furniture) and
once with a categoryId of 6 (Electronics). Similarly, the coffee table with the built-in
refrigerator (a piece of furniture that is an appliance) and Grandpa’s pocket watch (an antique
piece of jewelry) both belong to multiple categories. The tblItemsCategories table, then,
allows the establishment of a many-to-many relationship between the two base tables,
tblItems and tblCategories.

Understanding One-To-One Relationships
In a one-to-one relationship, a row in one table corresponds to exactly one row in another
table. This type of relationship is easy to understand, but is the least frequently encountered.
When one row in a table corresponds to a row in another table, the columns could be
combined into a single table. A common reason you create a one-to-one relationship is
security. For example, Figure 14-9 shows two tables, tblEmployees and tblSalaries. Each
employee in the tblEmployees table has exactly one salary in the tblSalaries table. The
salaries could have been added to the tblEmployees table as another column; the salaries are
separate because you want some clerks to be allowed to view only names, addresses, and other
nonsensitive data, so you give them permission to access only the tblEmployees table. Others

itemNumber

1

2

3

3

4

4

5

5

5

6

5

6

1

5

2

3

categoryId

1

2

3

4

5

6

7

categoryId categoryName categoryInsuredAmount

Appliance

Jewelry

Antique

Clothing

Furniture

Electronics

Miscellaneous

$30,000

$15,000

$10,000

$25,000

$5,000

$2,500

$5,000

tblCategoriestblItemsCategories

Sofa

Stereo

Sofa with DVD player

Coffee table with built-in refrigerator

Grandpa’s pocket watch

1

2

3

4

5

1/13/2003

2/10/2005

5/24/2010

6/24/2007

4/7/1925

$6,500

$1,200

$8,500

$12,000

$100

itemNameitemNumber itemPurchaseDate itemPurchasePrice

tblItems

Figure 14-8 Sample items, categories, and item categories: a many-to-many relationship
© 2015 Cengage Learning

597

Understanding Relationships Between Tables

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



who work in payroll or administration can create queries and view joined tables that include
the salary information.

Another reason to create tables with one-to-one relationships is to avoid extensive empty
columns, or nulls, if a subset of columns is applicable only to specific types of rows in the main
table. For example, if a table with 1,000 employee records contains a field for termination
date, but only 10 percent of the employees have ever been terminated, you might want to
create a one-to-one table for terminated employees only, with associated ID numbers and
termination dates.

TWO TRUTHS & A LIE

Understanding Relationships Between Tables

1. In a one-to-many relationship, one row in a table can be related to many rows
in another table; this is the most common type of relationship between tables.

2. In a many-to-many relationship, multiple rows in a table each correspond to a
single row in many different tables.

3. In a one-to-one relationship, a row in one table corresponds to exactly one
row in another table; this type of relationship is easy to understand, but
is the least frequently encountered.

Recognizing Poor Table Design
As you create database tables to hold the data used by an organization, you will often find the
table design, or structure, inadequate to support the needs of the application. In other words,
even if a table contains all the attributes required by a specific application, the structural
design of the table may make the application cumbersome to use and prone to data errors.

Parker

Walters

Shannon

101

102

103

Laura

David

Ewa

3

4

3

empLastempId empFirst empDept

4/07/2000

1/19/2001

2/28/2013

empHireDate empId

101

102

103

$42,500

$28,800

$36,000

empSalary

tblSalariestblEmployees

Figure 14-9 Employees and salaries tables: a one-to-one relationship
© 2015 Cengage Learning

Thefalsestatementis#2.Amany-to-manyrelationshipisoneinwhichmultiplerows
ineachtablecancorrespondtomultiplerowsintheother.

598

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



For example, assume that you have been hired by an Internet-based college to design a
database to keep track of its students. After meeting with the college administrators, you
determine that you need to know the following information:

Students’ names

Students’ addresses

Students’ cities

Students’ states

Students’ zip codes

ID numbers for classes in which students are enrolled

Titles for classes in which students are enrolled

In a real-life example, you could think of many other data requirements for the college. The
number of attributes is small in this example for simplicity.

Figure 14-10 contains the tblStudents table. Assume that because the Internet-based college
is new, only three students have already enrolled. Besides the columns you identified as being
necessary, notice the addition of the studentId attribute. Given the earlier discussions, you
probably recognize that this is the best choice for a primary key, because many students can
have the same names and even the same addresses. Although the table in Figure 14-10
contains a column for each data requirement from the preceding list, the table is poorly
designed and will create many problems.

What if a college administrator wanted to view a list of courses offered by the Internet-based
college? You can see six courses listed for the three students, so you can assume that at least
six courses are offered. But, could there also be a Psychology course, or a class whose code is
CIS102? You can’t tell from the table because no students have enrolled in those classes. It
would be good to know all the classes offered by your institution, regardless of whether any
students have enrolled in them.

Consider another potential problem: What if student Mason withdraws from the school, and
his row is deleted from the table? You would lose some valuable information that has nothing
to do with student Mason, but is important for running the college. For instance, if Mason’s

Rodriguez

Jones

Mason

1

2

3

123 Oak

234 Elm

456 Pine

60193

54984

52004

CIS101
PHI150
BIO200

Computer Literacy
Ethics
Genetics

CHM100
MTH200

HIS202

Chemistry
Calculus

World History

Schaumburg

Wild Rose

Dubuque

IL

WI

IA

namestudentId address city state zip class classTitle

Figure 14-10 tblStudents table before normalization
© 2015 Cengage Learning

599

Recognizing Poor Table Design

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



row is deleted, you no longer know from the remaining data in the table whether the college
offers any History classes, because Mason was the only student enrolled in a class with the
HIS prefix (the HIS202 class).

Why is it so important to discuss the deficiencies of the existing table structure? You
have probably heard the saying, “Pay me now or pay me later.” This is especially true for
table design. If you do not take the time to ensure well-designed table structures during
the initial database design, users will spend plenty of time later fixing data errors, typing
the same information multiple times, and being frustrated by the inability to cull
important subsets of information from the database. If you had created this table
structure as a solution to the college’s needs, you probably would not be hired for future
database projects.

TWO TRUTHS & A LIE

Recognizing Poor Table Design

1. The structural design of a table is excellent when the table contains all the
attributes required by a specific application.

2. In a poorly designed database, you might risk losing important data when
specific records are deleted.

3. If you do not take the time to ensure well-designed table structures during
the initial database design, users will spend plenty of time later fixing data
errors, typing the same information multiple times, and being frustrated by
the inability to cull important subsets of information from the database.

Understanding Anomalies, Normal Forms,
and Normalization
Database management programs can maintain all the relationships you need. As you add,
delete, and modify records within your database tables, the software keeps track of all the
relationships you have established, so that you can view any needed joins any time you want.
However, the software can maintain useful relationships only if you have planned ahead to
create a set of database tables that satisfies the users’ needs, supports all the applications you
will need, and avoids potential problems. This process is called normalization.

Thefalsestatementis#1.Evenifatablecontainsalltheattributesrequiredby
aspecificapplication,thestructuraldesignofthetablemaymaketheapplication
cumbersometouseandpronetodataerrors.

600

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The normalization process helps you reduce data redundancies and anomalies. Data
redundancy is the unnecessary repetition of data. An anomaly is an irregularity in a
database’s design that causes problems and inconveniences. Three common types of
anomalies are:

Update anomalies

Delete anomalies

Insert anomalies

If you look ahead to the college database table in Figure 14-11, you will see an example of an
update anomaly, or a problem that occurs when the data in a table needs to be altered.
Because the table contains redundant data, if student Rodriguez moves to a new residence,
you have to change the address, city, state, and zip values in more than one location. Of
course, this table example is small; imagine if additional data were stored about Rodriguez,
such as birth date, e-mail address, major field of study, and previous schools attended.

The database table in Figure 14-10 contains a delete anomaly, or a problem that occurs when
a row is deleted. If student Jones withdraws from the college and his entries are deleted from
the table, important data regarding the classes CHM100 and MTH200 are lost.

With an insert anomaly, problems occur when new rows are added to a table. In the table in
Figure 14-10, if a new student named Reed has enrolled in the college but has not yet registered
for specific classes, then you can’t insert a complete row for student Reed; the only way to do so
would be to “invent” at least one phony class for him. (Some database software allows
incomplete rows.) It would be valuable to the college to be able to maintain data on all enrolled
students, regardless of whether they have registered for specific classes—for example, the
college might want to send catalogs and registration information to these students.

When you normalize a database table, you walk through a series of steps that allows you to
remove redundancies and anomalies. Normalization involves altering a table so that it satisfies
one or more of three normal forms, or sets of rules for constructing a well-designed database.
The three normal forms are:

First normal form, also known as 1NF, in which you eliminate repeating groups

Second normal form, or 2NF, in which you eliminate partial key dependencies

Third normal form, or 3NF, in which you eliminate transitive dependencies

Each normal form is structurally better than the one preceding it. Each form is cumulative—
that is, all databases in 2NF are also in 1NF, and all databases in 3NF are in both 1NF and
2NF. In any well-designed database, you almost always want to convert all tables to 3NF.

In a 1970 paper titled “A Relational Model of Data for Large Shared Data Banks,” Dr. E. F. Codd listed seven
normal forms. For business applications, 3NF is usually sufficient, and so only 1NF through 3NF are
discussed in this chapter.

601

Understanding Anomalies, Normal Forms, and Normalization

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



First Normal Form
A table that contains repeating groups is unnormalized. A repeating group is a subset of rows
in a database table that all depend on the same key. A table in 1NF contains no repeating
groups of data.

The table in Figure 14-10 violates this 1NF rule. The class and classTitle attributes repeat
multiple times for some of the students. For example, student Rodriguez is taking three
classes; her class attribute contains a repeating group. To remedy this situation, and to
transform the table to 1NF, you simply repeat the rows for each repeating group of data.
Figure 14-11 contains the revised table.

The repeating groups have been eliminated from the table in Figure 14-11. However, there is
still a problem—the primary key, studentId, is no longer unique for each row in the table.
For example, the table now contains three rows in which studentId equals 1. You can fix this
problem and create a primary key simply by adding the class attribute to the primary key,
creating a compound key. (Other problems still exist, as you will see later in this chapter.) The
table’s key then becomes a combination of studentId and class. By knowing the studentId

and class, you can identify one, and only one, row in the table—for example, a combination
of studentId 1 and class BIO200 identifies a single row. Using the notation discussed earlier
in this chapter, the table in Figure 14-11 can be described as:

tblStudents(studentId, name, address, city, state, zip, class, classTitle)

Both the studentId and class attributes are underlined, showing that they are both part of
the key. When you combine two columns to create a compound key, you are concatenating
the columns.

The table in Figure 14-11 is now in 1NF because there are no repeating groups and the
primary key attributes are defined. Satisfying the “no repeating groups” condition is also called
making the columns atomic attributes—making them as small as possible to contain an
undividable piece of data. In 1NF, all values for an intersection of a row and column must be
atomic. Recall the table in Figure 14-10, in which the class attribute for studentId 1
(Rodriguez) contained three entries: CIS101, PHI150, and BIO200. This violated the 1NF
atomicity rule because these three classes represented a set of values rather than one specific

Rodriguez

Jones

Mason

1

2

3

123 Oak

234 Elm

456 Pine

60193

54984

52004

CIS101 Computer Literacy

CHM100

HIS202

Chemistry

World History

Schaumburg

Wild Rose

Dubuque

IL

Rodriguez1 123 Oak 60193 PHI150 EthicsSchaumburg IL

Rodriguez1 123 Oak 60193 BIO200 GeneticsSchaumburg IL

WI

Jones2 234 Elm 54984 MTH200 CalculusWild Rose WI

IA

namestudentId address city state zip class classTitle

Figure 14-11 tblStudents table in 1NF
© 2015 Cengage Learning

602

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



value. The table in Figure 14-11 does not repeat this problem because, for each row in the
table, the class attribute contains one and only one value. The same is true for the other
attributes that were part of the repeating group.

Database developers also refer to series of operations or transactions as atomic transactions when they
execute completely or not at all. Making actions atomic guarantees that no actions will be only partially
completed, which could cause more problems than if the tasks were not started at all.

Think back to the earlier discussion about why we normalize tables in the first place. Does
Figure 14-11 still have redundancies? Are there still anomalies? The answer is Yes to both
questions. Recall that you want to have the tables in 3NF before actually defining them in the
database. Currently, the table in Figure 14-11 is only in 1NF.

In Figure 14-11, notice that Student 1, Rodriguez, is taking three classes. If you were
responsible for typing data into this table, would you want to type this student’s name,
address, city, state, and zip code for each of the three classes? For one of her classes, you
might mistype her name as “Rodrigues.” Or, you might misspell the city of Schaumburg as
“Schamburg” for one of Rodriguez’s classes. A college administrator might look at the table
and not know the correct spelling for the name or city, and if the administrator queried the
database to select or count the number of classes being taken by students residing in
Schaumburg, one of Rodriguez’s classes would be missed.

Misspellings are examples of data integrity errors. You learn more about this type of error later in this
chapter.

Consider the student Jones, who is taking two classes. If Jones changes his residence, how
many times will you need to retype his new address, city, state, and zip code? What if Jones is
taking six classes?

Second Normal Form
To improve the design of the table in Figure 14-11 and bring the table to 2NF, you need to
eliminate all partial key dependencies; that is, no column should depend on only part of the
key. For a table to be in 2NF, it must be in 1NF and all nonkey attributes must be dependent
on the entire primary key.

In the table in Figure 14-11, the key is a combination of studentId and class. Consider the
name attribute. Does the name “Rodriguez” depend on the entire primary key? In other words,
do you need to know that the studentId is 1 and that the class is CIS101 to determine that
the name is “Rodriguez”? No, it is sufficient to know that the studentId is 1 to know that the
name is “Rodriguez”. Therefore, the name attribute is only partially dependent on the primary
key, and so the table violates 2NF. The same is true for the other attributes of address, city,
state, and zip. If you know, for example, that studentId is 3, then you also know that the
student’s city is “Dubuque”; you do not need to know any class codes.

603

Understanding Anomalies, Normal Forms, and Normalization

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Similarly, examine the classTitle attribute in the first row of the table in Figure 14-11. This
attribute has a value of “Computer Literacy”. In this case, you do not need to know both the
studentId and the class to predict the classTitle “Computer Literacy”. Rather, just the
class attribute, which is only part of the compound key, is required. Also, class “PHI150” will
always have the associated classTitle “Ethics”, regardless of the particular students who are
taking that class. So, classTitle represents a partial key dependency.

You bring a table into 2NF by eliminating the partial key dependencies. To accomplish this, you
create multiple tables so that each nonkey attribute of each table is dependent on the entire
primary key for the specific table within which the attribute occurs. If the resulting tables are
still in 1NF and there are no partial key dependencies, then those tables will also be in 2NF.

Figure 14-12 contains three tables: tblStudents, tblClasses, and tblStudentClasses. To
create the tblStudents table, you simply take the attributes from the original table that
depend on the studentId attribute and group them into a new table—name, address, city,
state, and zip all can be determined by the studentId alone. The primary key to the
tblStudents table is studentId. Similarly, you can create the tblClasses table simply by
grouping the attributes from the 1NF table that depend on the class attribute. In this
application, only one attribute from the original table, the classTitle attribute, depends on
the class attribute. The first two tables in Figure 14-12 can be notated as:
tblStudents(studentId, name, address, city, state, zip)
tblClasses(class, classTitle)

Jones

Mason

2

3

234 Elm

456 Pine

54984

52004

Wild Rose

Dubuque

Rodriguez1 123 Oak 60193Schaumburg IL

WI

IA

namestudentId address city state zip

1

2

3

CIS101

CHM100

HIS202

1 PHI150

1 BIO200

2 MTH200

studentId class

CIS101 Computer Literacy

CHM100

HIS202

Chemistry

World History

PHI150 Ethics

BIO200 Genetics

MTH200 Calculus

class classTitle

tblStudents

tblClasses tblStudentClasses

Figure 14-12 tblStudents table in 2NF
© 2015 Cengage Learning

604

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The tblStudents and tblClasses tables contain all the attributes from the original table.
Remember the prior redundancies and anomalies. Several improvements have occurred:

You have eliminated the update anomalies. The name “Rodriguez” occurs just once in the
tblStudents table. The same is true for Rodriguez’s address, city, state, and zip code. The
original table contained three rows for student Rodriguez. By eliminating the
redundancies, you have fewer anomalies. If Rodriguez changes her residence, you only
need to update one row in the tblStudents table.

You have eliminated the insert anomalies. With the new configuration, you can insert a
complete row into the tblStudents table even if the student has not yet enrolled in any
classes. Similarly, you can add a complete row to the tblClasses table for a new class
offering even though no students are currently taking the class.

You have eliminated the delete anomalies. Recall from the original table that Mason was
the only student taking HIS202. This caused a delete anomaly because the HIS202 class
would disappear if Mason was removed. Now, if you delete Mason from the tblStudents

table in Figure 14-12, the HIS202 class remains in the tblClasses list.

If you create the first two tables shown in Figure 14-12, you have eliminated many of the
problems associated with the original version. However, if you have those two tables alone,
you have lost some important information that you originally had while at 1NF—specifically,
which students are taking which classes or which classes are being taken by which students.
When breaking up a table into multiple tables, you need to consider the type of relationship
among the resulting tables—you are designing a relational database, after all.

You know that the Internet-based college application requires that you keep track of which
students are taking which classes. This implies a relationship between the tblStudents and
tblClasses tables. Your job is to determine what type of relationship exists between the two
tables. Recall from earlier in the chapter that the two most common types of relationships are
one-to-many and many-to-many. This application requires that one specific student can
enroll in many different classes, and that one specific class can be taken by many different
students. Therefore, a many-to-many relationship exists between the tables tblStudents and
tblClasses.

As you learned in the earlier example of categorizing insured items, you create a many-to-
many relationship between two tables by creating a third table that contains the primary keys
from the two tables that you want to relate. In this case, you create the tblStudentClasses

table in Figure 14-12 as:

tblStudentClasses(studentId, class)

If you examine the rows in the tblStudentClasses table, you can see that the student with
studentId 1, Rodriguez, is enrolled in three classes; studentId 2, Jones, is taking two classes;
and studentId 3, Mason, is enrolled in only one class. Finally, the table requirements for the
Internet-based college have been fulfilled.

Or have they? Earlier, you saw the many redundancies and anomalies that were eliminated by
structuring the tables into 2NF, and the 2NF table structures certainly result in a much better
database than the 1NF structures. But look again at the tblStudents table in Figure 14-12. As

605

Understanding Anomalies, Normal Forms, and Normalization

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



the college expands, what if you need to add 50 new students to this table, and all of the new
students reside in Schaumburg, IL? If you were the data-entry person, would you want to type
the city of “Schaumburg”, the state of “IL”, and the zip code of “60193” 50 times? This data is
redundant, and you can improve the design of the tables to eliminate this redundancy.

Third Normal Form
3NF requires that a table be in 2NF and that it have no transitive dependencies. A transitive
dependency occurs when the value of a nonkey attribute determines, or predicts, the value of
another nonkey attribute. Clearly, the studentId attribute of the tblStudents table in Figure
14-12 is a determinant—if you know a particular studentId value, you can also know that
student’s name, address, city, state, and zip. However, this is not considered a transitive
dependency because the studentId attribute is the primary key for the tblStudents table, and,
after all, the primary key’s job is to determine the values of the other attributes in the row.

A problem arises, however, if a nonkey attribute determines another nonkey attribute. The
tblStudents table in Figure 14-12 has five nonkey attributes: name, address, city, state, and zip.

The name is a nonkey attribute. If you know the value of name is “Rodriguez”, do you also
know the one specific address where Rodriguez resides? In other words, is this a transitive
dependency? No, it isn’t. Even though only one student is named Rodriguez now, there may
be more in the future. So, though it may be tempting to consider that the name attribute is a
determinant of address, it isn’t. If your boss said, “Look at the tblStudents table and tell me
Jones’s address,” you couldn’t if you had 10 students named Jones.

The address attribute is a nonkey attribute. Does it predict anything? If you know that the
value of address is “20 N. Main Street”, can you determine which student is associated with
that address? No, because in the future, many students might live at 20 N. Main Street, but
they might live in different cities, or two students might live at the same address in the same
city. Therefore, address does not cause a transitive dependency.

Similarly, the city and state attributes are not keys, but they also are not determinants
because knowing their values alone is not sufficient to predict another nonkey attribute value.
You might argue that if you know a city’s name, you know the state, but many states contain
cities named Union or Springfield, for example.

What about the nonkey attribute zip? If you know that the zip code is 60193, can you
determine the value of any other nonkey attributes? Yes, a zip code of 60193 indicates that the
city is Schaumburg and the state is IL. This is the “culprit” that is causing the redundancies in
the city and state attributes. The attribute zip is a determinant because it determines city
and state; therefore, the tblStudents table contains a transitive dependency and is not in 3NF.

To convert the tblStudents table to 3NF, simply remove the attributes that are determined
by, or are functionally dependent on, the zip attribute. For example, if attribute zip

determines attribute city, then attribute city is considered to be functionally dependent on
attribute zip. So, as Figure 14-13 shows, the new tblStudents table is defined as:

tblStudents(studentId, name, address, zip)

606

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A functionally dependent relationship is sometimes written using an arrow that extends from the depended-
upon attribute to the dependent attribute—for example, zip city.

Figure 14-13 also shows the tblZips table, which is defined as:

tblZips(zip, city, state)

The new tblZips table is related to the tblStudents table by the zip attribute. Using the two
tables together, you can determine that studentId 3, Mason, in the tblStudents table resides
in the city of Dubuque and the state of IA attributes stored in the tblZips table. When you
encounter a table with a functional dependence, you almost always can reduce data
redundancy by creating two tables, as in Figure 14-13. With the new configuration, a data-
entry operator must still type a zip code for each student, but you have eliminated redundancy
and the possibility of introducing data-entry errors in city and state names.

Is the student-to-zip-code relationship a one-to-many, many-to-many, or one-to-one
relationship? You know that one row in the tblZips table can relate to many rows in the
tblStudents table—that is, many students can reside in zip code 60193. However, the opposite
is not true—one row in the tblStudents table (a particular student) cannot relate to many rows
in the tblZips table, because a particular student can only reside in one zip code. Therefore,
there is a one-to-many relationship between the base table, tblZips, and the related table,
tblStudents. The link to the relationship is the zip attribute, which is a primary key in the
tblZips table and a foreign key in the tblStudents table.

This was a lot of work, but it was worth it. The tables are in 3NF, and the redundancies and
anomalies that would have contributed to an unwieldy, error-prone, inefficient database
design have been eliminated.

Rodriguez

Jones

Mason

1

2

3

123 Oak

234 Elm

456 Pine

60193

54984

52004

namestudentId address zip

1

2

3

CIS101

CHM100

HIS202

1 PHI150

1 BIO200

2 MTH200

studentId class

CIS101 Computer Literacy

CHM100

HIS202

Chemistry

World History

PHI150 Ethics

BIO200 Genetics

MTH200 Calculus

class classTitle

tblStudents

60193

54984

52004

Schaumburg

Wild Rose

Dubuque

IL

WI

IA

city statezip

tblZips

tblClasses tblStudentClasses

Figure 14-13 The complete Students database
© 2015 Cengage Learning

607

Understanding Anomalies, Normal Forms, and Normalization

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recall that the definition of 3NF is 2NF plus no transitive dependencies. What if you were
considering changing the structure of the tblStudents table by adding an attribute to hold
the students’ Social Security numbers (ssn)? If you know a specific ssn value, you also know a
particular student name, address, and so on; in other words, a specific value for ssn

determines one and only one row in the tblStudents table. No two students should have the
same Social Security number. However, studentId is the primary key; ssn is a nonkey
determinant, which by definition seems to violate the requirements of 3NF. However, if you
add ssn to the tblStudents table, the table is still in 3NF because a determinant is allowed in
3NF if the determinant is also a candidate key. Recall that a candidate key is an attribute that
could qualify as the primary key but has not been used as the primary key. In the example
concerning the zip attribute of the tblStudents table (see Figure 14-11), zip was a
determinant of the city and state attributes. Therefore, the tblStudents table was not in
3NF because many rows in the tblStudents table could have the same value for zip,
meaning zip was not a candidate key. The situation with the ssn column is different because
ssn could be used as a primary key for the tblStudents table.

Watch the video Normalization.

Although Social Security numbers are often considered unique, many organizations refuse to use them as
unique identifiers for several reasons. Millions of people use the same number as another person because of
identity theft or mistakes. At one point, more than 5000 people were using the same number from an
advertisement by a wallet manufacturer. Also, some people can have multiple numbers in cases of domestic
violence or federal witness protection.

In general, you try to create a database in the highest normal form. However, when data items are stored in
multiple tables, it takes longer to access related information than when it is all stored in a single table. So, for
performance, you sometimes might denormalize a table, or reduce it to a lower normal form, by placing
some repeated information back into the table. Deciding on the best form in which to store a body of data is
a sophisticated art.

Quick Reference 14-1 summarizes the characteristics of the first three normal forms.

QUICK REFERENCE 14-1 The Normal Forms

Normal form Abbreviation Table characteristics
First normal form 1NF No repeating groups
Second normal form 2NF In first normal form and no nonkey column

depends on just part of the primary key
Third normal form 3NF In second normal form and the only

determinants are candidate keys

608

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Not every table starts as denormalized. For example, a table might already be in third normal form when you
first encounter it. On the other hand, a table might not be normalized, but after you put it in 1NF, you may find
that it also satisfies the requirements for 2NF and 3NF.

TWO TRUTHS & A LIE

Understanding Anomalies, Normal Forms, and Normalization

1. Normalization helps you reduce data redundancies and anomalies.

2. Data redundancy is the unnecessary repetition of data.

3. First normal form is structurally better than third normal form.

Database Performance and Security Issues
Frequently, a company’s database is its most valuable resource. If buildings, equipment, or
inventory items are damaged or destroyed, they can be rebuilt or re-created. However, the
information contained in a database is often irreplaceable. A company that has spent years
building valuable customer profiles cannot re-create them at the drop of a hat; a company
that loses billing or shipment information might not simply lose the current orders—the
affected customers might defect to competitors who can serve them better. Keeping data
secure is often a company’s most economically crucial responsibility.

You can study entire books to learn all the details involved in data security. The major issues
include:

Providing data integrity

Recovering lost data

Avoiding concurrent update problems

Providing authentication and permissions

Providing encryption

Providing Data Integrity
Database software provides the means to ensure that data integrity is enforced; a database has
data integrity when it follows a set of rules that makes the data accurate and consistent. These
rules are sometimes called integrity constraints. For example, you might specify that a
quantity in an inventory record can never be negative, or that a price can never be higher than

Thefalsestatementis#3.Thirdnormalformisstructurallybetterthanfirstand
secondnormalform.Inanywell-designeddatabase,youalmostalwayswantto
convertalltablesto3NF.

609

Database Performance and Security Issues

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



a predetermined value. In addition, you can enforce integrity between tables; for example, you
might prohibit entering an insurance plan code for an employee if the code is not one of the
types offered by the organization.

Recovering Lost Data
An organization’s data can be destroyed in many ways—legitimate users can make mistakes,
hackers or other malicious users can enter invalid data, and hardware problems can wipe out
records or entire databases. Recovery is the process of returning the database to a correct
form that existed before an error occurred.

Periodically making a backup copy of a database and keeping a record of every transaction are
two of the simplest approaches to recovery. When an error occurs, you can replace the
database with an error-free version that was saved at the last backup. Usually, changes to the
database called transactions have occurred since the last backup; if so, you must then reapply
those transactions. Many organizations keep a copy of their data off-site (sometimes
hundreds or thousands of miles away) so that if a disaster such as a fire or flood destroys data,
the remotely stored copy can serve as a backup.

Avoiding Concurrent Update Problems
Large databases are accessible by many users at a time. The database is stored on a central
computer, but users work at diverse locations, perhaps on devices in the same office or
thousands of miles away from each other. For example, several order clerks might be able to
update customer and inventory tables concurrently. A concurrent update problem occurs
when two database users need to modify the same record at the same time. Suppose that
two order clerks take a phone order for item number 101 in an inventory file. Each sees the
quantity in stock—for example, 25—on her device. Each accepts the customer’s order and
subtracts 1 from inventory. Now, in each local device, the quantity is 24. One order gets
written to the central database, then the other, and the final inventory is 24, not 23 as it
should be.

Several approaches can be used to avoid this problem. With one approach, a lock can be
placed on one record the moment it is accessed. A lock is a mechanism that prevents changes
to a database for a period of time. (A long-term lock is called a persistent lock.) While one
order clerk makes a change, the other cannot access the record. Potentially, a customer on the
phone with the second order clerk could be inconvenienced while the first clerk maintains the
lock, but the data in the inventory table would remain accurate.

Another approach to the concurrent update problem is not to allow users to update the
original database at all, but to have them store transactions, which later can be applied to the
database all at once, or in a batch—perhaps once or twice a day or after business hours. The
problem with this approach is that the database will be out of date as soon as the first
transaction occurs and until the batch processing takes place. For example, if several clerks
place orders for the same item, the item might actually be out of stock. However, none of the
clerks will realize this because the database will not reflect the orders until it is updated with
the current batch of transactions.

610

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Providing Authentication and Permissions
Most database software can authenticate that people who try to access an organization’s data
are legitimate users. Authentication techniques include storing and verifying passwords or
even using physical characteristics, such as fingerprints or voice recognition, before users can
view data. After being authenticated, the user typically receives authorization to all or part of
the database. The permissions assigned to a user indicate which parts of the database the user
can view, modify, or delete. For example, an order clerk might not be allowed to view or
update personnel data, whereas a clerk in the personnel office might not be allowed to alter
inventory data.

Providing Encryption
Database software can be used to encrypt data. Encryption is the process of coding data into a
format that human beings cannot read. If unauthorized users gain access to database files, the
data will be in a coded format that is useless to them. Only authorized users see the data in a
readable format.

TWO TRUTHS & A LIE

Database Performance and Security Issues

1. A database has data integrity when it follows a set of rules that makes the
data accurate and consistent.

2. Encryption is the process of returning the database to a correct form that
existed before an error occurred.

3. A concurrent update problem occurs when two database users need to
modify the same record at the same time.

Chapter Summary
A database holds a group of files that an organization needs to support its applications. In
a database, the files often are called tables because you can arrange their contents in rows
and columns. A value that uniquely identifies a record is called a primary key, a key field,
or a key for short. Database management software is a set of programs that allows users to
create and manage data.

Thefalsestatementis#2.Encryptionistheprocessofcodingdataintoaformatthat
humanbeingscannotread.Recoveryistheprocessofreturningthedatabasetoa
correctformthatexistedbeforeanerroroccurred.

611

Chapter Summary

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Creating a useful database requires planning and analysis. You must decide what data will
be stored, how that data will be divided between tables, and how the tables will interrelate.

In most tables you create for a database, you want to identify a column or combination of
columns as the table’s key column or field (or primary key). The primary key is important
because you can configure your software to prevent multiple records from containing the
same value in this column. You can sort your records in primary key order before
displaying or printing them, and you need to use this column when setting up
relationships between the table and others that will become part of the same database.

A shorthand way to describe a table is to use the table name followed by parentheses that
contain a list of all the field names, with the primary key underlined.

Entering data into an existing table requires a good deal of time and accurate typing.
Depending on the application, the contents of the tables might be entered over the course
of months or years by many data-entry personnel. Deleting and modifying records within
a database table are relatively easy tasks. In most organizations, much of the important
data is in a constant state of change.

Database management software generally allows you to sort a table based on any column,
letting you view the data in the way that is most useful to you. After rows are sorted, they
usually can be grouped.

Frequently, you want to view subsets of data from a table you have created. The
questions you use to extract the appropriate records from a table and specify the
fields to be viewed are called queries. Depending on the software, you might create a
query by filling in blanks (a process called query by example) or by writing
statements similar to those in many programming languages. The most common
language that database administrators use to access data in their tables is Structured
Query Language, or SQL.

Most database applications require many tables, and require that the tables be related.
The three types of relationships are one-to-many, many-to-many, and one-to-one.

As you create database tables to hold the data an organization needs, you will often find
the table design, or structure, inadequate to support the needs of the application.

Normalization is the process of designing and creating a set of database tables that satisfies
the users’ needs and avoids potential problems. Normalization helps you reduce data
redundancies, update anomalies, delete anomalies, and insert anomalies. Normalization
involves altering a table so that it satisfies one or more of three normal forms, or rules, for
constructing a well-designed database. The three normal forms are first normal form, also
known as 1NF, in which you eliminate repeating groups; second normal form (2NF), in
which you eliminate partial key dependencies; and third normal form (3NF), in which you
eliminate transitive dependencies.

Frequently, a company’s database is its most valuable resource. Major security issues
include providing data integrity, recovering lost data, avoiding concurrent update
problems, providing authentication and permissions, and providing encryption.

612

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
Characters are the smallest usable units of data—for example, a letter, digit, or punctuation
mark.

Fields are formed from groups of characters and represent pieces of information, such as
firstName, lastName, or socialSecurityNumber.

Records are formed from groups of related fields. The fields go together because they
represent attributes of an entity, such as an employee, a customer, an inventory item, or a
bank account.

Files are composed of associated records; for example, a file might contain a record for each
employee in a company or each account at a bank.

A database holds a group of files, or tables, that an organization needs to support its
applications.

A database table contains data in rows and columns.

An entity is one record or row in a database table.

An attribute is one field or column in a database table.

A primary key, or key for short, is a field or column that uniquely identifies a record.

A compound key, also known as a composite key or concatenated key, is a key constructed
from multiple columns.

A blob is a binary large object, or BLOb, which is a collection of binary data such as an image,
video, or audio clip stored in a database system.

Database management software is a set of programs that allows users to create and
manage data.

A relational database contains a group of tables from which you can make connections to
produce virtual views.

Candidate keys are columns or attributes that could serve as a primary key in a table.

Alternate keys are the remaining candidate keys after you choose a primary key.

Immutable means not changing during normal operation.

A query is a question using syntax that the database software can understand. Its purpose is
often to display a subset of data.

Query by example is the process of creating a query by filling in blanks.

Structured Query Language, or SQL, is a commonly used language for accessing data in
database tables.

The SELECT-FROM-WHERE SQL statement is the command that selects the fields you want to
view from a specific table where one or more conditions are met.

613

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A view is a particular way of looking at a database.

A wildcard is a symbol that means “any” or “all.”

A relationship is a connection between two tables.

A join operation, or a join, connects two tables based on the values in one or more common
columns.

A join column is the column on which two tables are connected.

A one-to-many relationship is one in which one row in a table can be related to many rows in
another table. It is the most common type of relationship among tables.

The base table in a one-to-many relationship is the “one” table.

The related table in a one-to-many relationship is the “many” table.

A nonkey attribute is any column in a table that is not a key.

A foreign key is a column that is not a key in a table, but it contains an attribute that is a key
in a related table.

A many-to-many relationship is one in which multiple rows in one table can correspond to
multiple rows in another table.

In a one-to-one relationship, a row in one table corresponds to exactly one row in another
table.

Nulls are empty columns in a database.

Normalization is the process of designing and creating a set of database tables that satisfies the
users’ needs and avoids redundancies and anomalies.

Data redundancy is the unnecessary repetition of data.

An anomaly is an irregularity in the design of a database that causes problems and
inconveniences.

An update anomaly is a problem that occurs when the data in a table needs to be altered; the
result is repeated data.

A delete anomaly is a problem that occurs when a row in a table is deleted; the result is loss of
related data.

An insert anomaly is a problem that occurs when new rows are added to a table; the result is
incomplete rows.

Normal forms are rules for constructing a well-designed database.

First normal form, also known as 1NF, is the normalization form in which you eliminate
repeating groups.

Second normal form, or 2NF, is the normalization form in which you eliminate partial key
dependencies.

614

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Third normal form, or 3NF, is the normalization form in which you eliminate transitive
dependencies.

An unnormalized table contains repeating groups.

A repeating group is a subset of rows in a database table that all depend on the same key.

To concatenate columns is to combine columns to produce a compound key.

Atomic attributes or columns are as small as possible so as to contain an undividable piece
of data.

Atomic transactions appear to execute completely or not at all.

A partial key dependency occurs when a column in a table depends on only part of the
table’s key.

A transitive dependency occurs when the value of a nonkey attribute determines, or predicts,
the value of another nonkey attribute.

Functionally dependent describes an attribute’s relationship to another if it can be
determined by the other attribute.

To denormalize a table is to place it in a lower normal form by putting some repeated
information back into it.

Data integrity is the database condition that results when a set of rules is followed to make
data accurate and consistent.

Integrity constraints are rules that help to ensure data is consistent and within range.

Recovery is the process of returning the database to a correct form that existed before an
error occurred.

A concurrent update problem occurs when two database users need to modify the same
record at the same time.

A lock is a mechanism that prevents changes to a database for a period of time.

A persistent lock is a long-term database lock required when users want to maintain a
consistent view of their data while making modifications over a long transaction.

A batch is a group of transactions applied all at once.

Authentication techniques include storing and verifying passwords or even using
physical characteristics, such as fingerprints or voice recognition, before users can
view data.

The permissions assigned to a user indicate which parts of the database the user can view,
modify, and delete.

Encryption is the process of coding data into a format that human beings cannot read.

615

Key Terms

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises

Review Questions

1. A field or column that uniquely identifies a row in a database table is
a(n) .

a. variable
b. identifier

c. principal
d. key

2. Which of the following is not a feature of most database management software?

a. sorting records in a table
b. creating reports

c. preventing poorly designed tables
d. relating tables

3. Before you can enter data into a database table, you must do all of the following
except .

a. determine the attributes the table will hold
b. provide names for each attribute
c. provide data types for each attribute
d. determine maximum and minimum values for each attribute

4. Which of the following is the best key for a table containing a landlord’s rental
properties?

a. streetAddress

b. amountOfMonthlyRent

c. numberOfBedrooms

d. tenantLastName

5. A table’s notation is: tblClients(socialSecNum, lastName, firstName,

clientNumber, balanceDue). You know that .

a. the primary key is socialSecNum

b. the primary key is clientNumber

c. there are four candidate keys
d. there is at least one numeric attribute

6. You can extract subsets of data from database tables using a(n) .

a. query
b. sort

c. investigation
d. subroutine

616

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7. A database table has the structure tblPhoneOrders(orderNum, custName,

custPhoneNum, itemOrdered, quantity). Which SQL statement could be used
to extract all attributes for orders for item AB3333?

a. SELECT * FROM tblPhoneOrders WHERE itemOrdered = "AB3333"

b. SELECT tblPhoneOrders WHERE itemOrdered = "AB3333"

c. SELECT itemOrdered FROM tblPhoneOrders WHERE = "AB3333"

d. Two of the above are correct.

8. Connecting two database tables based on the value of a column (producing a
virtual view of a new table) is a operation.

a. merge
b. concatenate

c. join
d. met

9. Heartland Medical Clinic maintains a database to keep track of patients. One table
can be described as: tblPatients(patientId, name, address,
primaryPhysicianCode). Another table contains physician codes along with other
physician data; it is described as tblPhysicians(physicianCode, name,

officeNumber, phoneNumber, daysOfWeekInOffice). In this example, the
relationship is .

a. one-to-one
b. one-to-many

c. many-to-many
d. impossible to determine

10. Edgerton Insurance Agency sells life, home, health, and auto insurance policies.
The agency maintains a database containing a table that holds policy data—each
record contains the policy number, the customer’s name and address, and the type
of policy purchased. For example, customer Michael Robertson is referenced in
two records because he holds life and auto policies. Another table contains
information on each type of policy the agency sells—coverage limits, term, and so
on. In this example, the relationship is .

a. one-to-one
b. one-to-many

c. many-to-many
d. impossible to determine

11. Kratz Computer Repair maintains a database that contains a table of information
about each repair job the company agrees to perform. The jobs table is described
as: tblJobs(jobId, dateStarted, customerId, technicianId, feeCharged).
Each job has a unique ID number that serves as a key to this table. The customerId

and technicianId columns in the table each link to other tables of customer
information (such as name, address, and phone number) and technician
information (such as name, office extension, and hourly rate). When the tblJobs

and tblCustomers tables are joined, which is the base table?

a. tblJobs

b. tblCustomers

c. tblTechnicians

d. a combination of two tables

617

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12. When a column that is not a key in a table contains an attribute that is a key in a
related table, the column is called a .

a. foreign key
b. merge column

c. internal key
d. primary column

13. The most common reason to construct a one-to-one relationship between two
tables is .

a. to save money
b. to save time
c. for security purposes
d. so that neither table is considered “inferior”

14. The process of designing and creating a set of database tables that satisfies the
users’ needs and avoids potential problems is .

a. purification
b. normalization

c. standardization
d. structuring

15. The unnecessary repetition of data is called data .

a. amplification
b. echoing

c. redundancy
d. mining

16. Problems with database design are caused by irregularities known as .

a. glitches
b. anomalies

c. bugs
d. abnormalities

17. When you place a table into first normal form, you have eliminated .

a. transitive dependencies
b. partial key dependencies

c. repeating groups
d. all of the above

18. When you place a table into third normal form, you have eliminated .

a. transitive dependencies
b. partial key dependencies

c. repeating groups
d. all of the above

19. If a table contains no repeating groups, but a column depends on part of the table’s
key, the table is in normal form.

a. first
b. second

c. third
d. fourth

20. Which of the following is not a database security issue?

a. providing data integrity
b. recovering lost data

c. providing normalization
d. providing encryption

618

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Exercises

1. The Lucky Dog Grooming Parlor maintains data about each of its clients in a table
named tblClients. Attributes include each dog’s name, breed, and owner’s name,
all of which are text attributes. The only numeric attributes are an ID number
assigned to each dog and the balance due on services. The table structure is
tblClients(dogId, name, breed, owner, balanceDue). Write the SQL
statement that would select each of the following:

a. names and owners of all Great Danes

b. owners of all dogs with balances due of more than $100

c. all attributes of dogs named Fluffy

d. all attributes of poodles whose balance is no greater than $50

2. Consider the following table with the structure tblRecipes(recipeName,

timeToPrepare, ingredients). If necessary, redesign the table so it satisfies 1NF,
2NF, and 3NF.

3. Consider the following table with the structure tblFriends(lastName,
firstName, address, birthday, phoneNumbers, emailAddresses). If necessary,
redesign the table so it satisfies 1NF, 2NF, and 3NF.

recipeName timeToPrepare ingredients

Baked lasagna 1 hour 1 pound lasagna noodles

½ pound ground beef

16 ounces tomato sauce
½ pound ricotta cheese
½ pound parmesan cheese
1 onion

Fruit salad 10 minutes 1 apple
1 banana
1 bunch grapes
1 pint blueberries

Marinara sauce 30 minutes 16 ounces tomato sauce
¼ pound parmesan cheese
1 onion

619

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4. You have created the following table to keep track of your DVD collection. The
structure is tblDVDs(movie, year, actors). If necessary, redesign the table so it
satisfies 1NF, 2NF, and 3NF.

5. The Midtown Ladies Auxiliary is sponsoring a scholarship for local high school
students. They have constructed a table with the structure
tblScholarshipApplicants(appId, lastName, hsAttended, hsAddress, gpa,

honors, clubsActivities). The hsAttended and hsAddress attributes represent the
high school attended and its street address, respectively. The gpa attribute is a grade
point average. The honors attribute holds awards received, and the clubsActivities

attribute holds the names of clubs and activities in which the student participated. If
necessary, redesign the table so it satisfies 1NF, 2NF, and 3NF.

lastName firstName address birthday phoneNumbers emailAddresses

Gordon Alicia 34 Second St. 3/16 222-4343
349-0012

agordon@mail.com

Washington Edward 12 Main St. 12/12 222-7121 ewash@mail.com
coolguy@earth.com

Davis Olivia 55 Birch Ave. 10/3 222-9012
333-8788
834-0112

olivia@abc.com

movie year actors

The Departed 2006 Leonardo DiCaprio
Matt Damon

Hairspray 2007 John Travolta
Michelle Pfeiffer
Christopher Walken

Catch Me If You Can 2002 Leonardo DiCaprio
Tom Hanks
Christopher Walken

True Grit 2010 Jeff Bridges
Matt Damon

Stand Up Guys 2012 Al Pacino
Christopher Walken

620

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6. Capitol College maintains data about various campus organizations. The college
administration has constructed a table with the structure tblOrganization(orgId,
organization, membership, president, presidentMajor, vicePresident,

vicePresidentMajor). A student might hold offices in more than one organization.
If necessary, redesign the table so it satisfies 1NF, 2NF, and 3NF.

appId lastName hsAttended hsAddress gpa honors clubsActivities

1 Wong Central 1500 Main 3.8 Citizenship award Future teachers

Class officer

Model airplane

Soccer MVP

Newspaper

2 Jefferson Central 1500 Main 4.0 Valedictorian Pep

Citizenship award Yearbook

Homecoming court

Football MVP

3 Mitchell Highland 200 Airport 3.6 Class officer Pep

Homecoming court

Future teachers

4 O’Malley St. Joseph 300 Fourth 4.0 Valedictorian Pep

Chess

5 Abel Central 1500 Main 3.7 Citizenship award Yearbook

Class officer

orgId organization membership president presidentMajor vicePresident vicePresidentMajor

1 Phi Kappa Mu

Fraternity

30 Thomas

Dunn

Business Sylvia Friend Sociology

2 Big Brothers

and Sisters

120 Sylvia Friend Sociology Elizabeth Harris Business

3 Ecology Club 45 Elizabeth

Harris

Business David Smith English

621

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7. Assume that you want to create a database to store information about your music
collection. You want to be able to query the database for each of the following
attributes:

A particular title (for example, Tapestry or Beethoven’s Fifth Symphony)

Artist (for example, Carole King or the Chicago Symphony Orchestra)

Format of the recording (for example, CD or MP3 file)

Style of music (for example, rock or classical)

Year recorded

Year acquired as part of your collection

Recording company

Address of the recording company

Design the tables you would need so they are all in third normal form. Create at
least five sample data records for each table you create.

8. Design a collection of database tables for the Springfield Town Council. The
council is made up of representatives from each of the town’s 15 precincts. The
data you need to store includes the following attributes:

Precinct number

Precinct population

Council representative’s last name

Council representative’s first name

Council representative’s phone number

Council representative’s political party

Political party chairperson’s name

Political party headquarters address

Design the tables you would need so they are all in third normal form. Create at
least five sample data records for each table you create.

9. Design a collection of database tables for an online store from which you intend to
sell products you handcraft. The data you need to store includes the following
attributes:

Product number

Product description

Product price

Product category

622

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Tax, which varies by price

Shipping mode (for example, UPS or USPS, which varies by product type)

Design the tables you would need so they are all in third normal form. Create at
least five sample data records for each table you create.

Performing Maintenance

1. A file named MAINTENANCE14-01.docx is included with your downloadable
student files. Assume that this database table is functional as is, but that it needs
modifications as described in the comments (lines that begin with two slashes) at
the beginning of the file.

Find the Bugs

1. Your downloadable student files for Chapter 14 include DEBUG14-01.docx,
DEBUG14-02.docx, DEBUG14-03.docx, and DEBUG14-04.docx. Each file starts
with some comments that describe the problem. Following the comments, each file
contains a table that is not in 3NF. Create tables as needed to put the data in 3NF.

Game Zone

1. Massively Multiplayer Online Role-Playing Games (MMORPG) are online com-
puter role-playing games in which a large number of players interact with one
another in a virtual world. Players assume the role of a fictional character and
control that character’s actions. MMORPGs are distinguished from smaller RPGs
by the number of players and by the game’s persistent world, usually hosted by the
game’s publisher, which continues to exist and evolve while the player is away from
the game. Design the database you would use to host an MMORPG, including at
least three tables.

Up for Discussion

1. In this chapter, a phone book was mentioned as an example of a database you use
frequently. Name some other examples.

2. Suppose that you have authority to browse your company’s database. The company
keeps information on each employee’s past jobs, health insurance claims, and any
criminal record. Also suppose that you want to ask a coworker out on a date.
Should you use the database to obtain information about the person? If so, are

623

Exercises

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



there any limits on the data you should use? If not, should you be allowed to pay a
private detective to discover similar data?

3. The FBI’s National Crime Information Center (NCIC) is a computerized database
of criminal justice information, including data on criminal histories, fugitives,
stolen property, and missing persons. Such large systems almost inevitably contain
inaccuracies. Various studies have indicated that perhaps less than half the records
in this database are complete, accurate, and unambiguous. Do you approve of this
system or object to it? Would you change your mind if there were no inaccuracies?
Is there a level of inaccuracy you would find acceptable to realize the benefits of
such a system?

4. What type of data might be useful to a community in the wake of a natural
disaster? Who should pay for the expense of gathering, storing, and maintaining
this data?

624

C H A P T E R 1 4 Using Relational Databases

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A P P E N D I X A
Understanding
Numbering Systems
and Computer Codes
The numbering system you know best is the decimal numbering system—the system based
on 10 digits, 0 through 9. Mathematicians call decimal-system numbers base 10 numbers.
When you use the decimal system, only the value symbols 0 through 9 are available; if you
want to express a value larger than 9, you must use multiple
digits from the same pool of 10, placing them in columns.

When you use the decimal system, you analyze a
multicolumn number by mentally assigning place values to
each column. The value of the far right column is 1, the value
of the next column to the left is 10, the next column is 100,
and so on; the column values are multiplied by 10 as you
move to the left. There is no limit to the number of columns
you can use; you simply keep adding columns to the left as
you need to express higher values. For example, Figure A-1
shows how the value 305 is represented in the decimal
system. You simply sum the value of the digit in each column
after it has been multiplied by the value of its column.

The binary numbering system works in the same way as the
decimal numbering system, except that it uses only two digits, 0 and 1. Mathematicians call
these numbers base 2 numbers. When you use the binary system, you must use multiple
columns if you want to express a value greater than 1 because no single symbol is available that
represents any value other than 0 or 1. However, instead of each new column to the left being 10
times greater than the previous column, each new column in the binary system is only two times
the value of the previous column. For example, Figure A-2 shows how the numbers 9 and 305
are represented in the binary system. Notice that in both the binary system and the decimal
system, it is perfectly acceptable—and often necessary—to create numbers with 0 in one or

3

3 * 100 = 300
0 * 10  =
5 * 1   = 

0 5

100
Column value

10 1

0
5

305

Figure A-1 Representing
305 in the decimal system
© 2015 Cengage Learning

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



more columns. As with the decimal system, there is no limit to the number of columns used in a
binary number—you can use as many as it takes to express a value.

A computer stores every piece of data it uses as a set of 0s and 1s. Each 0 or 1 is known as a
bit, which is short for binary digit. Every computer uses 0s and 1s because all values in a
computer are stored as electronic signals that are either on or off. This two-state system is
most easily represented using just two digits.

Computers use a set of binary digits to represent stored characters. If computers used only one
binary digit to represent characters, then only two different characters could be represented,
because the single bit could be only 0 or 1. If computers used only two digits to represent
characters, then only four characters could be represented—the four codes 00, 01, 10, and 11,
which in decimal values are 0, 1, 2, and 3, respectively. Many computers use sets of eight binary
digits to represent each character they store, because using eight binary digits provides 256
different combinations. A set of eight bits is a byte. One byte combination can represent an A,
another a B, still others a and b, and so on. Two hundred fifty-six combinations are enough so
that each capital letter, lowercase letter, digit, and punctuation mark used in English has its own
code; even a space has a code. For example, in the system named the American Standard Code
for Information Interchange (ASCII), 01000001 represents the character A. The binary number
01000001 has a decimal value of 65, but this numeric value is not important to ordinary
computer users; it is simply a code that stands for A.

The ASCII code is not the only computer code, but it is typical, and is the one used in most personal
computers. The Extended Binary Coded Decimal Interchange Code, or EBCDIC, is an eight-bit
code that is used in IBM mainframe computers. In these computers, the principle is the same—
every character is stored in a byte as a series of binary digits. However, the actual values used are
different. For example, in EBCDIC, an A is 11000001, or 193. Another code used by languages such
as Java and C# is Unicode; with this code, 16 bits are used to represent each character. The character
A in Unicode has the same decimal value as the ASCII A, 65, but it is stored as 0000000001000001.

1 0 10

8
Column value

4 2 1

1 * 8 = 8
0 * 4 = 0
0 * 2 = 0
1 * 1 = 1

9

1 0 10

256
Column value

128 64 32

1 0 00

16 8 4 2

1

1

1 * 256 = 256
0 * 128 =
0 * 64  =
1 * 32  =
1 * 16  =
0 * 8   =
0 * 4   =
0 * 2   =
1 * 1   =

0
0
32
16

0
0

0
1

305

Figure A-2 Representing decimal values 9 and 305 in the binary system
© 2015 Cengage Learning

626

A P P E N D I X A Understanding Numbering Systems and Computer Codes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using two bytes provides many more possible combinations than using only eight bits—65,536 to be
exact. With Unicode, enough codes are available to represent all English letters and digits, as well as
characters from many international alphabets.

Ordinary computer users seldom think about the numeric codes behind the letters, numbers,
and punctuation marks they enter from their keyboards or see displayed on a monitor. However,
they see the consequence of the values behind letters when they see data sorted in alphabetical
order. When you sort a list of names, Andrea comes before Brian, and Caroline comes after
Brian because the numeric code for A is lower than the code for B, and the numeric code for C is
higher than the code for B, no matter whether you use ASCII, EBCDIC, or Unicode.

Table A-1 shows the decimal and binary values behind the most commonly used characters
in the ASCII character set—the letters, numbers, and punctuation marks you can enter from
your keyboard using a single key press. (Other values not shown in Table A-1 also have
specific purposes. For example, when you display the character that holds the decimal value 7,
nothing appears on the screen, but a bell sounds. Programmers often use this character when
they want to alert a user to an error or some other unusual condition.)

Each binary number in Table A-1 is shown containing two sets of four digits; this convention makes the eight-
digit numbers easier to read. Four digits, or a half byte, is a nibble.

Decimal
Number

Binary
Number ASCII Character

32 0010 0000 Space
33 0010 0001 ! Exclamation point

34 0010 0010 “ Quotation mark,
or double quote

35 0010 0011 # Number sign, also
called an octothorpe
or a pound sign

36 0010 0100 $ Dollar sign

37 0010 0101 % Percent

38 0010 0110 & Ampersand

39 0010 0111 ’ Apostrophe,
single quote

40 0010 1000 ( Left parenthesis

41 0010 1001 ) Right parenthesis

42 0010 1010 * Asterisk

Table A-1 Decimal and binary values for common ASCII characters (continues )

Decimal
Number

Binary
Number ASCII Character

43 0010 1011 + Plus sign
44 0010 1100 , Comma

45 0010 1101 - Hyphen or minus
sign

46 0010 1110 . Period or decimal
point

47 0010 1111 / Slash or front
slash

48 0011 0000 0

49 0011 0001 1

50 0011 0010 2

51 0011 0011 3

52 0011 0100 4

53 0011 0101 5

54 0011 0110 6

627

Understanding Numbering Systems and Computer Codes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Decimal
Number

Binary
Number ASCII Character

55 0011 0111 7

56 0011 1000 8

57 0011 1001 9

58 0011 1010 : Colon

59 0011 1011 ; Semicolon

60 0011 1100 < Less-than sign

61 0011 1101 = Equal sign

62 0011 1110 > Greater-than sign

63 0011 1111 ? Question mark

64 0100 0000 @ At sign

65 0100 0001 A

66 0100 0010 B

67 0100 0011 C

68 0100 0100 D

69 0100 0101 E

70 0100 0110 F

71 0100 0111 G

72 0100 1000 H

73 0100 1001 I

74 0100 1010 J

75 0100 1011 K

76 0100 1100 L

77 0100 1101 M

78 0100 1110 N

79 0100 1111 O

80 0101 0000 P

81 0101 0001 Q

82 0101 0010 R

Decimal
Number

Binary
Number ASCII Character

83 0101 0011 S

84 0101 0100 T

85 0101 0101 U

86 0101 0110 V

87 0101 0111 W

88 0101 1000 X

89 0101 1001 Y

90 0101 1010 Z

91 0101 1011 [ Opening or left
bracket

92 0101 1100 \ Backslash

93 0101 1101 ] Closing or right
bracket

94 0101 1110 ^ Caret

95 0101 1111 _ Underline or
underscore

96 0110 0000 ` Grave accent

97 0110 0001 a

98 0110 0010 b

99 0110 0011 c

100 0110 0100 d

101 0110 0101 e

102 0110 0110 f

103 0110 0111 g

104 0110 1000 h

105 0110 1001 i

106 0110 1010 j

107 0110 1011 k

108 0110 1100 l

(continued)

Table A-1 Decimal and binary values for common ASCII characters (continues )

628

A P P E N D I X A Understanding Numbering Systems and Computer Codes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Hexadecimal System
The hexadecimal numbering system is the base 16 system; it uses 16 digits. As shown in
Table A-2, the digits are 0 through 9 and A through F. Computer professionals often use the
hexadecimal system to express addresses and instructions as they are stored in computer
memory because hexadecimal provides convenient shorthand expressions for groups of
binary values. In Table A-2, each hexadecimal value represents one of the 16 possible
combinations of four-digit binary values. Therefore, instead of referencing memory contents
as a 16-digit binary value, for example, programmers can use a 4-digit hexadecimal value.

Decimal
Number

Binary
Number ASCII Character

109 0110 1101 m

110 0110 1110 n

111 0110 1111 o

112 0111 0000 p

113 0111 0001 q

114 0111 0010 r

115 0111 0011 s

116 0111 0100 t

117 0111 0101 u

Decimal
Number

Binary
Number ASCII Character

118 0111 0110 v

119 0111 0111 w

120 0111 1000 x

121 0111 1001 y

122 0111 1010 z

123 0111 1011 { Opening or left brace

124 0111 1100 | Vertical line or pipe

125 0111 1101 } Closing or right brace

126 0111 1110 ~ Tilde

(continued)

Table A-1 Decimal and binary values for common ASCII characters

Decimal
Value

Hexadecimal
Value

Binary Value (shown
using four digits)

Decimal
Value

Hexadecimal
Value

Binary Value (shown
using four digits)

0 0 0000 8 8 1000

1 1 0001 9 9 1001

2 2 0010 10 A 1010

3 3 0011 11 B 1011

4 4 0100 12 C 1100

5 5 0101 13 D 1101

6 6 0110 14 E 1110

7 7 0111 15 F 1111

Table A-2 Values in the decimal and hexadecimal systems

629

The Hexadecimal System

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the hexadecimal system, each column is 16 times the value of the column to its right.
Therefore, column values from right to left are 1, 16, 256, 4096, and so on. Figure A-3 shows
how 78, 171, and 305 are expressed in hexadecimal.

Measuring Storage
In computer systems, both internal memory and external storage are measured in bits and
bytes. Eight bits make a byte, and a byte frequently holds a single character (in ASCII or
EBCDIC) or half a character (in Unicode). Because a byte is such a small unit of storage, the
size of memory and files is often expressed in thousands or millions of bytes. Table A-3
describes some commonly used terms for storage measurement.

Column value
256 16 1

1 3 1

1 * 256 = 256
3 *  16 =  48
1 *   1 =   1 

-----
          305

Column value
16 1

4 E

4 * 16 =  64
14 *  1 =  14

-----
78

Column value
16 1

A B

10 * 16 =  160
11 *  1 =   11

-----
171

Figure A-3 Representing decimal values 78, 171, and 305 in the hexadecimal system
© 2015 Cengage Learning

Term Abbreviation

Number of Bytes
Using Binary
System

Number of
Bytes Using
Decimal System Example

Kilobyte KB or kB 1024 one thousand In Microsoft Word, this
appendix occupies about
70 kB on a hard disk.

Megabyte MB 1,048,576 (1024 ×
1024 kilobytes)

one million One megabyte can hold an
average book in text
format.

Gigabyte GB 1,073,741,824
(1,024 megabytes)

one billion A gigabyte can hold a
symphony recording in high
fidelity or a movie at TV
quality.

Table A-3 Commonly used terms for computer storage (continues )

630

A P P E N D I X A Understanding Numbering Systems and Computer Codes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In the metric system, kilo means 1000. However, in Table A-3, notice that a kilobyte is 1024
bytes. The discrepancy occurs because everything stored in a computer is based on the binary
system, so multiples of two are used in most measurements. If you multiply 2 by itself 10
times, the result is 1024, which is a little over 1000. Similarly, a gigabyte is 1,073,741,824 bytes,
which is more than a billion.

Confusion arises because many hard-drive manufacturers use the decimal system instead of
the binary system to describe storage. For example, if you buy a hard drive that holds 10
gigabytes, it holds exactly 10 billion bytes. However, in the binary system, 10 GB is
10,737,418,240 bytes, so when you check your hard drive’s capacity, your computer will
report that you don’t quite have 10 GB, but only 9.31 GB.

Term Abbreviation

Number of Bytes
Using Binary
System

Number of
Bytes Using
Decimal System Example

Terabyte TB 1024 gigabytes one trillion Some hard drives are
1 terabyte. The Web
archive data of the Library
of Congress occupied
about 500 terabytes when
this book was published.

Petabyte PB 1024 terabytes one quadrillion The Google Web site pro-
cesses about 24 petabytes
per day.

Exabyte EB 1024 petabytes one quintillion A popular expression
claims that all words ever
spoken by humans could
be stored in text form in
5 exabytes.

Zettabyte ZB 1024 exabytes one sextillion A popular expression
claims that all words ever
spoken by humans could
be stored in audio form in
42 zettabytes.

Yottabyte YB 1024 zettabytes one septillion
(a 1 followed by
24 zeros)

The combined space on all
hard drives in the world is
less than 1 yottabyte.

Table A-3 Commonly used terms for computer storage

(continued)

631

Measuring Storage

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
The decimal numbering system is the numbering system based on 10 digits and in which
column values are multiples of 10.

Base 10 describes numbers created using the decimal numbering system.

The binary numbering system is the numbering system based on 2 digits and in which
column values are multiples of 2.

Base 2 describes numbers created using the binary numbering system.

A bit is a binary digit; it is a unit of storage equal to one-eighth of a byte.

A byte is a storage measurement equal to eight bits.

American Standard Code for Information Interchange (ASCII) is an eight-bit character coding
scheme used on many personal computers.

Extended Binary Coded Decimal Interchange Code (EBCDIC) is an eight-bit character coding
scheme used on many larger computers.

Unicode is a 16-bit character coding scheme.

A nibble is a storage measurement equal to four bits, or a half byte.

The hexadecimal numbering system is the numbering system based on 16 digits and in
which column values are multiples of 16.

Base 16 describes numbers created using the hexadecimal numbering system.

632

A P P E N D I X A Understanding Numbering Systems and Computer Codes

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A P P E N D I X B
Solving Difficult
Structuring Problems
In Chapter 3, you learned that you can
solve any logical problem using only the
three standard structures—sequence,
selection, and loop. Modifying an
unstructured program to make it adhere
to structured rules often is a simple
matter. Sometimes, however,
structuring a more complicated
program can be challenging. Still, no
matter how complicated, large, or
poorly structured a problem is, the same
tasks can always be accomplished in a
structured manner.

Consider the flowchart segment in
Figure B-1. Is it structured?

No, it is not structured. To straighten
out the flowchart segment, making it
structured, you can use the “spaghetti”
method. Untangle each path of the
flowchart as if you were attempting to
untangle strands of spaghetti in a bowl. The objective is
to create a new flowchart segment that performs exactly
the same tasks as the first, but using only the three
structures—sequence, selection, and loop.

To begin to untangle the unstructured flowchart
segment, you start at the beginning with the decision
labeled A, shown in Figure B-2. This step must represent

E

G

C

D

A?

B?

F?

Yes

Yes

Yes

No

No

No

Figure B-1 Unstructured flowchart segment
© 2015 Cengage Learning

A?
YesNo

Figure B-2 Structuring, Step 1
© 2015 Cengage Learning

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



the beginning of either a selection or a loop, because a
sequence would not contain a decision.

If you follow the logic on the No, or left, side of the
question in the original flowchart, you can pull up on
the left branch of the decision. You encounter process
E, followed by G, followed by the end, as shown in
Figure B-3. Compare the No actions after Decision A in
the first flowchart (Figure B-1) with the actions after
Decision A in Figure B-3; they are identical.

Now continue on the right, or Yes,
side of Decision A in Figure B-1.
When you follow the flowline, you
encounter a decision symbol labeled
B. Pull on B’s left side, and a
process, D, comes up next. See
Figure B-4.

After Step D in the original diagram, a decision
labeled F comes up. Pull on its left, or No, side
and you get a process, G, and then the end.
When you pull on F’s right, or Yes, side in the
original flowchart, you simply reach the end, as
shown in Figure B-5. Notice in Figure B-5 that
the G process now appears in two locations.
When you improve unstructured flowcharts so
that they become structured, you often must
repeat steps to eliminate crossed lines and
spaghetti logic that is difficult to follow.

E

G

A?
YesNo

Figure B-3 Structuring, Step 2
© 2015 Cengage Learning

E

G

G

D

A?

B?

Yes

No

No

F?
YesNo

Figure B-5 Structuring, Step 4
© 2015 Cengage Learning

E

G
D

A?

B?

Yes

No

No

Figure B-4 Structuring, Step 3
© 2015 Cengage Learning

634

A P P E N D I X B Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The biggest problem in structuring
the original flowchart segment from
Figure B-1 follows the right, or Yes,
side of the B decision. When the
answer to B is Yes, you encounter
process C, as shown in Figures B-1
and B-6. The structure that begins
with Decision C looks like a loop
because it doubles back, up to
Decision A. However, a structured
loop must have the appearance
shown in Figure B-7: a question
followed by a structure, returning
right back to the question. In Figure
B-1, if the path coming from C

returned directly to B, there would
be no problem; it would be a simple,
structured loop. However, as it is,
Question A must be repeated. The
spaghetti technique requires that if
lines of logic are tangled up, start repeating the steps
in question. So, you repeat an A decision after C, as
Figure B-6 shows.

In the original flowchart segment in Figure B-1, when A
is Yes, Question B always follows. So, in Figure B-8, after
A is Yes and B is Yes, Step C executes, and A is asked again;
when A is Yes, B repeats. In the original, when B is Yes, C
executes, so in Figure B-8, on the right side of B, C
repeats. After C, A occurs. On the right side of A, B
occurs. On the right side of B, C occurs. After C, A should
occur again, and so on. Soon you should realize that, to follow the steps in the same order as
in the original flowchart segment, you will repeat these same steps forever.

E

D C
G

A?

A?

G

YesNo

B?
YesNo

F?
YesNo

Figure B-6 Structuring, Step 5
© 2015 Cengage Learning

Figure B-7 A structured loop
© 2015 Cengage Learning

635

Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



If you continue with Figure B-8, you will never be able to finish the flowchart; every C is
always followed by another A, B, and C. Sometimes, to make a program segment structured,
you have to add an extra flag variable to get out of an infinite mess. A flag is a variable that you
set to indicate a true or false state. Typically, a variable is called a flag when its only purpose is
to tell you whether some event has occurred. You can create a flag variable named
shouldRepeat and set its value to Yes or No, depending on whether it is appropriate to repeat
Decision A. When A is No, the shouldRepeat flag should be set to No because, in this
situation, you never want to repeat Question A again. See Figure B-9.

E

D C

C

G

A?

G

YesNo

B?
YesNo

F?
YesNo

A?
Yes

B?
Yes

C

A?
Yes

B?
Yes

and so on. . .

Figure B-8 Structuring, Step 6
© 2015 Cengage Learning

636

A P P E N D I X B Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Similarly, after A is Yes, but when B is No, you never want to repeat Question A again.
Figure B-10 shows that you set shouldRepeat to No when the answer to B is No. Then
you continue with D and the F decision that executes G when F is No.

G

E

A?

G

shouldRepeat = "No"

shouldRepeat = "No"

D

YesNo

B?
YesNo

F?
YesNo

Figure B-10 Adding a flag to a second path in the flowchart
© 2015 Cengage Learning

G

E

A?

shouldRepeat = "No"

YesNo

Figure B-9 Adding a flag to the flowchart
© 2015 Cengage Learning

637

Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



However, in the original flowchart segment in Figure B-1, when the B decision result is Yes,
you do want to repeat A. So, when B is Yes, perform the process for C and set the
shouldRepeat flag equal to Yes, as shown in Figure B-11.

Now all paths of the flowchart can join together at the bottom with one final question: Is
shouldRepeat equal to Yes? If it isn’t, exit; but if it is, extend the flowline to go back to repeat
Question A. See Figure B-12. Take a moment to verify that the steps that would execute
following Figure B-12 are the same steps that would execute following Figure B-1.

When A is No, E and G always execute.

When A is Yes and B is No, D and decision F always execute.

When A is Yes and B is Yes, C always executes and A repeats.

G

E

A?

C

G

shouldRepeat = "No"

shouldRepeat = "No"

D shouldRepeat = "Yes"

YesNo

B?
YesNo

F?
YesNo

Figure B-11 Adding a flag to a third path in the flowchart
© 2015 Cengage Learning

638

A P P E N D I X B Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure B-12 contains three nested selection structures. Notice how the F decision begins a complete
selection structure whose Yes and No paths join together when the structure ends. This F selection
structure is within one path of the B decision structure; the B decision begins a complete selection structure
whose Yes and No paths join at the bottom. Likewise, the B selection structure resides entirely within one
path of the A selection structure.

G

E

A?

C

G

shouldRepeat = "No"

shouldRepeat = "No"

D shouldRepeat = "Yes"

YesNo

B?
YesNo

F?
Yes

Yes

No

No

shouldRepeat
 = "Yes"? 

Figure B-12 Tying up the loose ends
© 2015 Cengage Learning

639

Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The flowchart segment in Figure B-12 performs identically to the original spaghetti version in
Figure B-1. However, is this new flowchart segment structured? There are so many steps in
the diagram, it is hard to tell. You may be able to see the structure more clearly if you create a
module named aThroughG(). If you create the module shown in Figure B-13, then the
original flowchart segment can be drawn as in Figure B-14.

G

E

A?

C

G

shouldRepeat = "No"

shouldRepeat = "No"

D shouldRepeat = "Yes"

YesNo

B?
YesNo

F?
YesNo

aThroughG()

return

Figure B-13 The aThroughG() module
© 2015 Cengage Learning

640

A P P E N D I X B Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Now you can see that the completed flowchart segment in Figure B-14 is a do-until loop. If
you prefer to use a while loop, you can redraw Figure B-14 to perform a sequence followed by
a while loop, as shown in Figure B-15.

It has taken some extra effort, including repeating specific steps and using some flag variables,
but every logical problem can be solved and made to conform to structured rules by using the
three structures: sequence, selection, and loop.

aThroughG()

No

YesshouldRepeat
 = "Yes"?

Figure B-14 Logic in Figure B-12, substituting a module for steps A through G
© 2015 Cengage Learning

aThroughG()

aThroughG()

No

shouldRepeat
= "Yes"?

Yes

Figure B-15 Logic in Figure B-14, substituting a sequence and while loop for the do-until loop
© 2015 Cengage Learning

641

Solving Difficult Structuring Problems

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A P P E N D I X C
Creating Print Charts
A printed report is a very common type of output. You can design a printed report on a
printer spacing chart, which also is called a print chart or a print layout. Many modern-day
programmers use various software tools to design their output, but you also can create a print
chart by hand. This appendix provides some of the details for creating a traditional
handwritten print chart. Even if you never design output on your own, you might see print
charts in the documentation of existing programs.

Figure C-1 shows a printer spacing chart, which basically looks like graph paper. The chart
has many boxes, and in each box the designer places one character that will be printed. The
rows and columns in the chart usually are numbered for reference.

For example, suppose that you want to create a printed report with the following features:

A printed title, INVENTORY REPORT, that begins 11 spaces from the left edge of the
page and one line down

1
1
2
3
4
5
6
7
8
9
10
11
12
13
14

2 3 4 5 6 7 8 9
1
0

1
1

1
2

I  N  V  E N T  O R  Y

I  T  E M     N A M  E

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X

9
9

9
9

9
9

.

.
9
9

9
9

9
9

9
9

9
9

9
9

R E  P O  R  T

P R   I  C  E Q U  A N  T  I  T  Y     I  N     S T  O C  K

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

Figure C-1 A printer spacing chart
© 2015 Cengage Learning

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Column headings for ITEM NAME, PRICE, and QUANTITY IN STOCK, two lines
below the title and placed over the actual data items that are displayed

Variable data appearing below each of the column headings

The exact spacing and the use of uppercase or lowercase characters in the print chart make a
difference. Notice that the constant data in the output—the items that remain the same in
every execution of the report—do not need to follow the same rules as variable names in the
program. Within a report, constants like INVENTORY REPORT and ITEM NAME can
contain spaces. These headings exist to help readers understand the information presented in
the report, not for a computer to interpret; there is no need to run the names together, as you
do when choosing identifiers for variables.

A print layout typically shows how the variable data will appear on the report. Of course, the
data will probably be different every time the program is executed. Thus, instead of writing in
actual item names and prices, the users and programmers usually use Xs to represent generic
variable characters, and 9s to represent generic variable numeric data. (Some programmers
use Xs for both character and numeric data.) Each line containing Xs and 9s is a detail line, or
a line that displays the data details. Detail lines typically appear many times per page, as
opposed to heading lines, which contain the title and any column headings, and usually
appear only once per page.

Even though an actual inventory report might eventually go on for hundreds or thousands of
detail lines, writing two or three rows of Xs and 9s is sufficient to show how the data will
appear. For example, if a report contains employee names and salaries, those data items will
occupy the same print positions on output for line after line, whether the output eventually
contains 10 employees or 10,000. A few rows of identically positioned Xs and 9s are sufficient
to establish the pattern.

643

Creating Print Charts

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A P P E N D I X D
Two Variations on the
Basic Structures—case
and do-while
You can solve any logic problem you might encounter using only the three structures:
sequence, selection, and loop. However, many programming languages allow two more
structures: the case structure and the do-while loop. These structures are never needed to
solve a problem—you can always use a series of selections instead of the case structure, and
you can always use a sequence plus a while loop in place of the do-while loop. However,
sometimes these additional structures are convenient. Programmers consider them all to be
acceptable, legal structures.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The case Structure
You can use the case structure when there are several distinct possible values for a single
variable, and each value requires a different subsequent action. Suppose that you work at a
school at which tuition varies per credit hour, depending on whether a student is a freshman,
sophomore, junior, or senior. The structured flowchart and pseudocode in Figure D-1 show a
series of decisions that assigns different tuition values depending on the value of year.

if year = 1 then
   tuition = 175
else
   if year = 2 then
      tuition = 150
   else
      if year = 3 then
         tuition = 100
      else
         tuition = 60
      endif
   endif
endif

tuition = 175

year = 1?

tuition = 150

year = 2?

tuition = 100

year = 3?

tuition = 60

No

No

No

Yes

Yes

Yes

Figure D-1 Flowchart and pseudocode of tuition decisions

The logic shown in Figure D-1 is correct and completely structured. The year = 3? selection
structure is contained within the year = 2? structure, which is contained within the year = 1?

structure. (This example assumes that if year is not 1, 2, or 3, the student receives the senior
tuition rate.)

Even though the program segments in Figure D-1 are correct and structured, many
programming languages permit using a case structure, as shown in Figure D-2. When using
the case structure, you test a variable against a series of values, taking appropriate action
based on the variable’s value. Many people feel programs that contain the case structure are
easier to read than a program with a long series of decisions, and the case structure is allowed
because the same results could be achieved with a series of structured selections (thus making
the program structured). That is, if the first program is structured and the second one reflects
the first one point by point, then the second one must be structured as well.

© 2015 Cengage Learning

645

The case Structure

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



case year
   1: tuition = 175
   2: tuition = 150
   3: tuition = 100
   default: tuition = 60
endcase

tuition = 60

year = ?

tuition = 175

1 2 3

tuition = 150 tuition = 100

default

Figure D-2 Flowchart and pseudocode of case structure that determines tuition

The term default in Figure D-2 means if none of the other cases is true. Various programming languages use
different syntaxes for the default case.

You use the case structure only when a series of decisions is based on a single expression. If
multiple expressions are tested, then you must use a series of decisions.

Besides being easier to read and possibly less prone to error, the case structure often executes
more quickly in many languages than the series of decisions it represents. The speed of
execution depends on a number of technical factors, including how the language compiler
was written and how many clauses appear in the case statement. The case structure appears
in this appendix instead of the main text for two major reasons:

The syntax used in the case structure varies widely among languages.

Logically, the case structure is “extra.” All logical problems can be solved using the
structures sequence, selection, and loop. When you write your own programs, it is always
acceptable to express a complicated decision-making process as a series of individual
selections.

The do-while Loop
Recall that a structured loop (often called a while loop) looks like Figure D-3. A special-case
loop called a do-while loop looks like Figure D-4.

© 2015 Cengage Learning

646

A P P E N D I X D Two Variations on the Basic Structures—case and do-while

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An important difference exists between these two structures. In a while loop, you ask a
question and, depending on the answer, you might or might not enter the loop to execute the
loop’s procedure. Conversely, in a do-while loop, you ensure that the procedure executes at
least once; then, depending on the answer to the controlling question, the loop may or may
not execute additional times.

Notice that the word do begins the name of the do-while loop. This should remind you that
the action you “do” precedes testing the condition.

In a while loop, the tested condition that controls a loop comes at the beginning, or “top,” of
the loop body. A while loop is a pretest loop because a condition is tested before entering the
loop even once. In a do-while loop, the tested condition that controls the loop comes at the
end, or “bottom,” of the loop body. Do-while loops are posttest loops because a condition is
tested after the loop body has executed.

You encounter examples of do-while looping every day. For example:

do
pay a bill

while more bills remain to be paid

As another example:

do
wash a dish

while more dishes remain to be washed

In these examples, the activity (paying bills or washing dishes) must occur at least one time.
With a do-while loop, you ask the question that determines whether you continue only after
the activity has been executed at least once.

You never are required to use a posttest loop; you can duplicate the same series of actions by
creating a sequence followed by a standard, pretest while loop. Consider the flowcharts and
pseudocode in Figure D-5.

Figure D-3 The while loop, which
is a pretest loop
© 2015 Cengage Learning

No

Yes

Figure D-4 Structure of a
do-while loop, which is a posttest
loop
© 2015 Cengage Learning

647

The do-while Loop

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



On the left side of Figure D-5, A executes, and then B is asked. If B is yes, then A executes and B
is asked again. On the right side of the figure, A executes, and then B is asked. If B is yes, then A

executes and B is asked again. In other words, both sets of flowchart and pseudocode
segments do exactly the same thing.

Because programmers understand that any posttest loop (do-while) can be expressed with a
sequence followed by a while loop, most languages allow at least one version of the posttest
loop for convenience.

Recognizing the Characteristics Shared By All
Structured Loops
As you examine Figures D-3 and D-4, notice that in the while loop, the loop-controlling
question is placed at the beginning of the steps that repeat. In the do-while loop, the loop-
controlling question is placed at the end of the sequence of steps that repeat.

All structured loops, both pretest and posttest, share these two characteristics:

The loop-controlling question must provide either the entry to or exit from the repeating
structure.

The loop-controlling question provides the only entry to or exit from the repeating structure.

In other words, there is exactly one loop-controlling value, and it provides either the only
entrance to or the only exit from the loop.

A

Yes

do-while loop

No

B?

Sequence and while loop

do
   A
while B is true

A

A
Yes

No

B?

A
while B is true
   A
endwhile

Figure D-5 Flowchart and pseudocode for do-while loop and while loop that do the same thing
© 2015 Cengage Learning

648

A P P E N D I X D Two Variations on the Basic Structures—case and do-while

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Some languages support a do-until loop, which is a posttest loop that iterates until the loop-controlling
question is false. The do-until loop follows structured loop rules.

Recognizing Unstructured Loops
Figure D-6 shows an unstructured loop. It is not a
while loop, which begins with a decision and, after
an action, returns to the decision. It is also not a
do-while loop, which begins with an action and
ends with a decision that might repeat the action.
Instead, it begins like a posttest loop (a do-while loop),
with a process followed by a decision, but one branch
of the decision does not repeat the initial process.
Instead, it performs an additional new action
before repeating the initial process.

If you need to use the logic shown in Figure D-6—
performing a task, asking a question, and perhaps
performing an additional task before looping back
to the first process—then the way to make the logic
structured is to repeat the initial process within the
loop at the end of the loop. Figure D-7 shows the
same logic as Figure D-6, but now it is structured
logic, with a sequence of two actions occurring within the loop.

Especially when you are first mastering structured logic, you might prefer to use only the three basic
structures—sequence, selection, and while loop. Every logical problem can be solved using only these
three structures, and you can understand all of the examples in this book using only these three
structures.

C

E CYes

No

D?

Figure D-7 Sequence and structured loop that accomplish the same tasks as Figure D-6
© 2015 Cengage Learning

C

EYes

No

D?

Don’t Do It
This loop is not a
structured loop.

Figure D-6 Unstructured loop
© 2015 Cengage Learning

649

Recognizing Unstructured Loops

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Key Terms
A case structure tests a single variable against multiple values, providing separate actions for
each logical path.
A do-while loop is a posttest loop in which the body executes before the loop-controlling
condition is tested.
A do-until loop is a posttest loop that iterates until the loop-controlling condition is false.

650

A P P E N D I X D Two Variations on the Basic Structures—case and do-while

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Glossary

A
abstract class—A class from which concrete
objects cannot be instantiated, but which can
serve as a basis for inheritance.

abstract data type (ADT)—A programmer-defined
type, such as a class.

abstraction—The process of paying attention to
important properties while ignoring nonessential
details.

access specifier—The adjective that defines the
type of access outside classes will have to an
attribute or method.

accessibility—Describes screen design issues that
make programs easier to use for people with
physical limitations.

accessor method—An instance method that
returns a value from a field defined in a class. See
also get method.

accumulator—A variable used to gather or
accumulate values.

activity diagram—A UML diagram that shows
the flow of actions of a system, including
branches that occur when decisions affect the
outcome.

actual parameters—The arguments in a method
call.

addresses—Numbers that identify computer
memory and storage locations.

aggregation—A whole-part relationship,
specifically when the part can exist without the
whole.

algorithm—The sequence of steps necessary to
solve any problem.

alphanumeric values—The set of values that
include alphabetic characters, numbers, and
punctuation.

alternate keys—In a database, the remaining
candidate keys after a primary key is chosen.

ambiguous methods—Methods that the
compiler cannot distinguish because they have the
same name and parameter types.

American Standard Code for Information
Interchange (ASCII)—An eight-bit character
coding scheme used on many personal
computers.

ancestors—The entire list of parent classes from
which a class is derived.

AND decision—A decision in which two
conditions must both be true for an action to take
place.

animation—The rapid display of still images, each
slightly different from the previous one, that
produces the illusion of movement.

annotation symbol—A flowchart symbol used to
hold comments; it is most often represented by a
three-sided box connected with a dashed line to
the step it explains.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



anomaly—An irregularity in a database’s design
that causes problems and inconveniences.

app—A piece of application software; the term is
frequently used for applications on mobile devices.

application software—All the programs that help
users with tasks (for example, accounting or word
processing), in contrast to system software.

argument to a method—A value passed to a
method in the method call.

array—A series or list of variables in computer
memory, all of which have the same name but are
differentiated with subscripts.

ascending order—Describes the arrangement of
data items from lowest to highest.

assignment operator—The equal sign; it always
requires the name of a memory location on its
left side.

assignment statement—A statement that stores
a value on its right side to the named location on
its left side.

association relationship—Describes the
connection or link between objects in a UML
diagram.

atomic attributes—In a database, describes
columns that are as small as possible so that they
contain undividable pieces of data.

atomic transactions—A series of transactions
that execute completely or not at all, avoiding
partial completion of a task.

attribute—One field in a database table or an
object. In a database, an attribute is a column; in
an object, an attribute is an instance variable.

authentication techniques—Security techniques
that include storing and verifying passwords and
using physical characteristics, such as fingerprints
or voice recognition, before users can be
authorized to view data.

B
backup file—A copy that is kept in case values
need to be restored to their original state.

base 2—Describes numbers created using the
binary numbering system.

base 10—Describes numbers created using the
decimal numbering system.

base 16—Describes numbers created using the
hexadecimal numbering system.

base case—Describes the input that halts a
recursive method; also called a terminating case.

base class—A class that is used as a basis for
inheritance.

base table—The “one” table in a one-to-many
relationship in a database.

batch—A group of transactions applied all at once.

batch processing—Processing that performs the
same tasks with many records in sequence.

behavior diagrams—UML diagrams that
emphasize what happens in a system.

binary decision—A yes-or-no decision; so called
because there are two possible outcomes.

binary files—Files that contain data that has not
been encoded as text.

binary language—A computer language
represented using a series of 0s and 1s.

binary numbering system—The numbering
system based on two digits; column values are
multiples of 2.

binary operator—An operator that requires two
operands—one on each side.

binary search—A search that starts in the middle of
a sorted list, and then determines whether it should
continue higher or lower to find a target value.

bit—A binary digit; a unit of storage equal to one-
eighth of a byte.

black box—The analogy that programmers use to
refer to the details of hidden methods.

blob—A binary large object, or BLOb, which is a
collection of binary data such as an image, video,
or audio clip stored in a database system.

block—A group of statements that execute as a
single unit.

Boolean expression—An expression that
represents only one of two states, usually
expressed as true or false.

652

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



bubble sort—A sorting algorithm in which list
elements are arranged in ascending or descending
order by comparing items in pairs and swapping
them when they are out of order.

byte—A unit of computer storage equal to
eight bits.

C
call a module—To use a module’s name to invoke
it, causing it to execute.

camel casing—A naming convention in which
the initial letter is lowercase, multiple-word names
are run together, and each new word within the
name begins with an uppercase letter.

candidate keys—Columns or attributes that
could serve as a primary key in a table.

cardinality—Describes an arithmetic relationship
between objects.

cascading if statement—A series of nested if
statements.

case structure—A structure that tests a single
variable against multiple values, providing separate
actions for each logical path.

catch an exception—To receive an exception
from a throw so it can be handled.

catch block—A segment of code written to
handle an exception that might be thrown by the
try block that precedes it.

central processing unit (CPU)—The computer
hardware component that processes data.

character—A letter, number, or special symbol
such as A, 7, or $.

child class—A derived class.

child file—A copy of a file after revision.

class—A group or collection of objects with
common attributes.

class client or class user—A program or class
that instantiates objects of another prewritten class.

class definition—A set of program statements
that define the fields and methods of a class.

class diagram—A tool for describing a class
that consists of a rectangle divided into three

sections that show the name, data, and methods
of a class.

class method—A static method; class methods
are not instance methods and they do not receive a
this reference.

client—A program or other method that uses a
method.

closing a file—An action that makes a file no
longer available to an application.

coding the program—The act of writing the
statements of a program in a programming
language.

cohesion—A measure of how a method’s internal
statements are focused to accomplish the
method’s purpose.

command line—The location on a computer
screen where entries are typed to communicate
with the computer’s operating system.

communication diagram—A UML diagram that
emphasizes the organization of objects that
participate in a system.

compiler—Software that translates a high-level
language into machine language and identifies
syntax errors. A compiler is similar to an
interpreter; however, a compiler translates all
the statements in a program prior to
executing them.

component diagram—A UML diagram that
emphasizes the files, database tables, documents,
and other components used by a system’s
software.

composition—The technique of placing an object
within an object of another class.

compound condition—A condition constructed
when multiple decisions are required before
determining an outcome.

compound key or composite key—In a database,
a key constructed from multiple columns. See also
concatenated key.

computer file—A collection of data stored on a
nonvolatile device in a computer system.

computer memory—The temporary, internal
storage within a computer.

653

GLOSSARY

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



computer system—A combination of all the
components required to process and store data
using a computer.

concatenate columns—To combine database
table columns to produce a compound key.

concatenated key—In a database, a key
constructed from multiple columns. See also
compound key.

concurrent update problem—A problem that
can occur when two database users revise the
same record at the same time.

conditional AND operator—A symbol used to
combine decisions so that two or more conditions
must be true for an action to occur. Also called an
AND operator.

conditional OR operator—A symbol used to
combine decisions when any one condition can be
true for an action to occur. Also called an OR
operator.

constructor—An automatically called method
that instantiates an object.

container—One of a class of objects whose main
purpose is to hold other elements—for example, a
window.

control break—A temporary detour in the logic
of a program for special group processing.

control break field—A variable that holds the
value that signals a special processing break in a
program.

control break program—A program in which
a change in the value of a variable initiates
special actions or processing.

control break report—A report that lists items in
groups. Frequently, each group is followed by a
subtotal.

conversion—The set of actions an organization
must take to switch over to using a new program
or system.

counter—Any numeric variable used to count the
number of times an event has occurred.

coupling—A measure of the strength of the
connection between two program methods.

D
data dictionary—A list of every variable name
used in a program, along with its type, size, and
description.

data hierarchy—Represents the relationship of
databases, files, records, fields, and characters.

data integrity—Describes a database that follows
a set of rules to make its data accurate and
consistent.

data redundancy—The unnecessary repetition of
data.

data type—The characteristic of a variable that
describes the kind of values the variable can hold
and the types of operations that can be performed
with it.

database—A logical container that holds a group
of files, often called tables, that together serve the
information needs of an organization.

database management software—A set of
programs that allows users to create and manage
data.

dead path—A logical path that can never be
traveled.

deadlock—A flaw in multithreaded programs in
which two or more threads wait for each other to
execute.

debugging—The process of finding and
correcting program errors.

decimal numbering system—The numbering
system based on 10 digits; column values are
multiples of 10.

decision structure—A program structure in
which a question is asked, and, depending on the
answer, one of two courses of action is taken.
Then, no matter which path is followed, the paths
join and the next task executes.

decision symbol—A symbol that represents a
decision in a flowchart; it is shaped like a
diamond.

declaration—A statement that names a variable
and its data type.

declaring variables—The process of naming
program variables and assigning a type to them.

654

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



decrement—To change a variable by decreasing it
by a constant value, frequently 1.

default constructor—A constructor that requires
no arguments.

default input and output devices—Hardware
devices that do not require opening; usually
they are the keyboard and monitor,
respectively.

defensive programming—A technique in which
programmers try to prepare for all possible errors
before they occur.

definite loop—A loop for which the number of
repetitions is a predetermined value.

delete anomaly—A problem that occurs when a
row is deleted from a database table; the result is
loss of related data.

denormalize—To place a database table in a
lower normal form by repeating information.

deployment diagram—A UML diagram that
focuses on a system’s hardware.

derived class—An extended class.

descending order—Describes the arrangement of
data items from highest to lowest.

desk-checking—The process of walking through
a program solution on paper.

destructor—An automatically called method that
contains the actions required when an instance of
a class is destroyed.

detail loop tasks—The steps that are repeated for
each set of input data.

direct access files—Random access files.

directories—Organization units on storage
devices; each can contain multiple files as well
as additional directories. In a graphical
interface system, directories are often called
folders.

documentation—All of the supporting material
that goes with a program.

DOS prompt—The command line in the DOS
operating system.

do-until loop—A posttest loop that iterates
until its controlling condition is false.

do-while loop—A posttest loop in which the
body executes before the loop control variable is
tested.

dual-alternative if or dual-alternative
selection—A selection structure that defines
one action to be taken when the tested
condition is true, and another action to be
taken when it is false.

dummy value—A preselected value that stops the
execution of a program.

E
echoing input—The act of repeating input back
to a user either in a subsequent prompt or in
output.

element—A separate array variable.

elided—Describes the omitted parts of UML
diagrams that are edited for clarity.

else clause—A part of a decision that holds the
action or actions that execute only when the
Boolean expression in the decision is false.

encapsulation—The act of containing a task’s
instructions and data in the same method.

encryption—The process of coding data into a
format that human beings cannot read.

end-of-job task—A step at the end of a program
to finish the application.

end-structure statement—A statement that
designates the end of a pseudocode structure.

entity—One record or row in a database table.

eof—An end-of-data file marker, short for end
of file.

event—An occurrence that generates a message
sent to an object.

event-driven or event-based—Describes
programs and actions that occur in response to
user-initiated events such as clicking a mouse
button.

exception—The generic term used for an error in
object-oriented languages.

exception-handling techniques—The object-
oriented techniques for managing errors.

655

GLOSSARY

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



executing—To have a computer use a
written and compiled program; also called
running.

extend variation—A UML use case variation
that shows functions beyond those found in a
base case.

Extended Binary Coded Decimal Interchange
Code (EBCDIC)—An eight-bit character coding
scheme used on many larger computers.

extended class—A derived class.

external documentation—All the external
material that programmers develop to support a
program; contrast with program comments, which
are internal program documentation.

F
facilitator—A work method.

field—A single data item, such as lastName,
streetAddress, or annualSalary.

file—A group of records that go together for some
logical reason.

first normal form, or 1NF—The normalization
form in which repeating groups are eliminated
from a database.

flag—A variable that indicates whether some
event has occurred.

floating-point value—A fractional, numeric
variable that contains a decimal point.

flowchart—A pictorial representation of the
logical steps it takes to solve a problem.

flowline—An arrow that connects the steps in a
flowchart.

folders—Organization units on storage devices;
each can contain multiple files as well as additional
folders. Folders are graphic directories.

for statement—A statement that can be used
to code definite loops; also called a for loop.
The statement contains a loop control variable
that it automatically initializes, evaluates, and
alters.

foreign key—A column that is not a key in a table
but contains an attribute that is a key in a related
table.

fork—A feature of a UML activity diagram that
defines a logical branch in which all paths are
followed simultaneously.

formal parameters—The variables in a method
declaration that accept values from the actual
parameters.

fragile—Describes classes that depend on field
names from parent classes and are prone to errors.

functional cohesion—The extent to which all
operations in a method contribute to the
performance of only one task.

functional dependence—A relationship in which
an attribute can be determined by another.

G
garbage—Describes the unknown value stored in
an unassigned variable.

generalization variation—A variation used in a
UML diagram when a use case is less specific than
others and the more specific case should be
substituted for a general one.

get method—An instance method that returns a
value from a field defined in a class. See also
accessor method.

gigabyte—A billion bytes.

GIGO—Acronym for garbage in, garbage out; it
means that if input is incorrect, output is
worthless.

global—Describes variables that are known to an
entire program.

goto-less programming—A name to describe
structured programming, because structured
programmers do not use a “go to” statement.

graphical user interface (GUI)—A program
interface that uses screens to display program
output and allows users to interact with a program
in a graphical environment.

H
hardware—The equipment of a computer system.

has-a relationship—A whole-part relationship;
the type of relationship that exists when using
composition.

656

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



help method—A work method.

hexadecimal numbering system—The
numbering system based on 16 digits; column
values are multiples of 16.

hierarchy chart—A diagram that illustrates
modules’ relationships to each other.

high-level programming language—A
programming language that is English-like, as
opposed to a low-level programming language.

housekeeping tasks—Tasks that must be
performed at the beginning of a program to
prepare for the rest of the program.

Hungarian notation—A naming convention in
which a data type or other information is stored as
part of a name.

I
I/O symbol—An input/output symbol.

icons—Small pictures on a screen that help a user
navigate a system.

identifier—A program component’s name.

IDE—The acronym for Integrated Development
Environment, which is the visual development
environment in some programming languages.

if-then—A structure similar to an if-then-
else, but no alternative or “else” action is
necessary.

if-then clause—The part of a decision that
holds the resulting action when the Boolean
expression in the decision is true.

if-then-else—Another name for a selection
structure.

immutable—Not changing during normal
operation.

implementation—The body of a method; the
statements that carry out the tasks of a method.

implementation hiding—A programming
principle that describes the encapsulation of
method details.

in bounds—Describes an array subscript that is
within the range of acceptable subscripts for its
array.

in scope—The characteristic of variables and
constants declared within a method that apply
only within that method.

inaccessible—Describes any field or method that
cannot be reached.

include variation—A UML use case variation
in which a case can be part of multiple use cases.

increment—To change a variable by adding a
constant value to it, frequently 1.

indefinite loop—A loop for which the number of
executions cannot be predicted when the program
is written.

index—A list of key fields paired with the storage
address for the corresponding data record.

indirect relationship—Describes the relationship
between parallel arrays in which an element in the
first array does not directly access its
corresponding value in the second array.

infinite loop—A repeating flow of logic without an
ending.

information—Processed data.

information hiding or data hiding—The concept
that other classes should not alter an object’s
attributes—only the methods of an object’s own
class should have that privilege.

inheritance—The process of acquiring the traits
of one’s predecessors.

initializing a variable—The act of assigning the
first value to a variable, often at the same time the
variable is created.

inner loop—When loops are nested, the loop that
is contained within the other loop.

input—Describes the entry of data items into
computer memory using hardware devices such as
keyboards and mice.

input symbol—A symbol that indicates an input
operation and is represented in flowcharts as a
parallelogram.

input/output symbol—A parallelogram in
flowcharts.

insert anomaly—A problem that can occur in a
database when new rows are added to a table; the
result is incomplete rows.

657

GLOSSARY

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



insertion sort—A sorting algorithm in which each
list element is examined one at a time; if an element
is out of order relative to any of the items earlier in
the list, each earlier item is moved down one
position and then the tested element is inserted.

instance—An existing object or tangible example
of a class.

instance method—A method that operates
correctly yet differently for each class object; an
instance method is nonstatic and receives a this
reference.

instance variables—The data components that
belong to every instantiated object.

instant access files—Random access files in
which records must be accessed immediately.

instantiate—To create an object.

instantiation—An instance of a class.

integer—A whole number.

integrated development environment (IDE)—A
software package that provides an editor,
compiler, and other programming tools.

integrity constraints—Rules that help to ensure
data in a database is consistent and within range.

interaction diagrams—UML diagrams that
emphasize the flow of control and data among the
system elements being modeled.

interactive program—A program in which a user
makes direct requests or provides input while a
program executes.

interactivity diagram—A diagram that shows the
relationship between screens in an interactive GUI
program.

interface to a method—A method’s return type,
name, and arguments; the part of a method that a
client sees and uses.

internal documentation—Documentation within
a program. See also program comments.

IPO chart—A program development tool that
delineates input, processing, and output tasks.

is-a relationship—The relationship between an
object and each of the classes in its ancestry.

iteration—The action of repeating.

J
join—A feature of a UML activity diagram that
reunites the flow of control after a fork.

join column—The column on which two tables
are connected in a database.

join operation, or join—The operation that
connects two tables based on the values in one or
more common columns.

K
kebob case—A term sometimes used to describe
the naming convention in which dashes separate
parts of a name.

key—A field or column that uniquely identifies a
record.

key field—The field whose contents make a
record unique among all records in a file.

keywords—The limited word set that is reserved
in a language.

kilobyte—Approximately 1000 bytes.

L
left-to-right associativity—Describes operators
that evaluate the expression to the left first.

libraries—Stored collections of classes that serve
related purposes.

linear search—A search through a list from one
end to the other.

linked list—A list that contains an extra field in
every record that holds the physical address of the
next logical record.

listener—In object-oriented programming, an object
that is interested in an event and responds to it.

local—Describes variables that are declared
within the method that uses them.

lock—A mechanism that prevents changes to a
database for a period of time.

logic—The complete sequence of instructions
that lead to a problem solution.

logical error—An error that occurs when
incorrect instructions are performed, or when
instructions are performed in the wrong order.

658

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



logical NOT operator—A symbol that reverses the
meaning of a Boolean expression.

logical order—The order in which a list is used,
even though it is not necessarily stored in that
physical order.

loop—A structure that repeats actions while a
condition continues.

loop body—The set of actions that occur within a
loop.

loop control variable—A variable that determines
whether a loop will continue.

loop structure—A structure that repeats actions
while a test condition remains true.

loose coupling—A relationship that occurs when
methods do not depend on others.

low-level language—A programming language
not far removed from machine language, as
opposed to a high-level programming language.

lower camel casing—Another name for the
camel casing naming convention.

lvalue—The memory address identifier to the left
of an assignment operator.

M
machine language—A computer’s on/off
circuitry language; the low-level language made up
of 1s and 0s that the computer understands.

magic number—An unnamed numeric constant.

main program—A program that runs from start
to stop and calls other modules; also called a main
program method.

mainline logic—The overall logic of the main
program from beginning to end.

maintenance—All the improvements and
corrections made to a program after it is in
production.

making a decision—Testing a value to determine
a logical path.

making declarations—The process of naming
program variables and assigning a type to them.

many-to-many relationship—A relationship in
which multiple rows in a database table can
correspond to multiple rows in another table.

master file—A file that holds complete and
relatively permanent data.

matrix—A term sometimes used by
mathematicians to describe a two-dimensional
array.

mean—The arithmetic average.

median—The value in the middle position of a list
when the values are sorted.

megabyte—A million bytes.

merging files—The act of combining two or more
files while maintaining the sequential order.

method—A series of statements that carry out a
task.

method body—The set of all the statements in a
method.

method header—A program component that
precedes a method’s body; the header includes the
method identifier and possibly other necessary
information, such as a return type and parameter
list.

method return statement—A statement that
marks the end of the method and identifies the
point at which control returns to the calling
method.

method type—The data type of a method’s return
value.

Microsoft Visual Studio IDE—A software package
that contains useful tools for creating programs in
Visual Basic, C++, and C#.

mixed case with underscores—A naming
convention similar to snake casing, in which
words are separated with underscores, but new
words start with an uppercase letter.

modeling—The process of designing an
application before writing code.

modularization—The process of breaking down a
program into modules.

module—A small program unit used with other
modules to make a program. Programmers also
refer to modules as subroutines, procedures,
functions, and methods.

module’s body—The part of a module that
contains all the statements in the module.

659

GLOSSARY

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



module’s header—The part of a module that
includes the module identifier and possibly other
necessary identifying information.

module’s return statement—The part of a
module that marks its end and identifies the point
at which control returns to the program or
module that called the module.

multidimensional arrays—Lists with more than
one dimension.

multiple inheritance—The ability to inherit from
more than one class.

multiplicity—An arithmetic relationship between
objects.

multithreading—Using multiple threads of
execution.

mutator method—An instance method that sets
or changes the values of a data field within a class
object. See also set method.

N
named constant—A named memory location,
similar to a variable, except its value never changes
during the execution of a program.
Conventionally, constants are named using all
capital letters.

nested decision—A decision within the if-then
or else clause of another decision; also called a
nested if.

nested loop—A loop structure within another
loop structure; nesting loops are loops within
loops.

nesting structures—Placing a structure within
another structure.

nibble—A storage measurement equal to four bits,
or a half byte.

nondefault constructor—A constructor that
requires at least one argument. See also
parameterized constructor.

nonkey attribute—Any column in a database
table that is not a key.

nonstatic methods—Methods that exist to be
used with an object; they are instance methods
and they receive a this reference.

nonvolatile—Describes storage whose contents
are retained when power is lost.

normal forms—Rules for constructing a well-
designed database.

normalization—The process of designing and
creating a set of database tables that satisfies the
users’ needs and avoids redundancies and anomalies.

null case—The branch of a decision in which no
action is taken.

nulls—Empty columns in a database.

numeric—Describes data that consists of numbers.

numeric constant—A specific numeric value.

numeric variable—A variable that holds numeric
values.

O
object—One tangible example of a class; an
instance of a class.

object code—Code that has been translated to
machine language.

object diagrams—UML diagrams that are similar
to class diagrams, but that model specific instances
of classes.

object dictionary—A list of the objects used in a
program, including which screens they are used
on and whether any code, or script, is associated
with them.

object-oriented programming (OOP)—A
programming model that focuses on components
and data items (objects) and describes their
attributes and behaviors.

one-dimensional array—A list accessed using a
single subscript.

one-to-many relationship—The relationship in
which one row in a table can be related to many
rows in another table. It is the most common type
of relationship among tables.

one-to-one relationship—The relationship in
which a row in one table corresponds to exactly
one row in another table.

opening a file—The process of locating a file on a
storage device, physically preparing it for reading, and
associating it with an identifier inside a program.

660

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



operating system—The software that runs a
computer and manages its resources.

OR decision—A decision that contains two or
more conditions; if at least one condition is met,
the resulting action takes place.

order of operations—Describes the rules of
precedence.

out of bounds—Describes an array subscript
that is not within the range of acceptable
subscripts.

outer loop—The loop that contains a nested loop.

output—Describes the operation of retrieving
information from memory and sending it to a
device, such as a monitor or printer, so people can
view, interpret, and work with the results.

output symbol—A symbol that indicates an
output operation and is represented as a
parallelogram in flowcharts.

overhead—All the resources and time required by
an operation.

overload a method—To create multiple
methods with the same name but different
parameter lists.

overloading—Supplying diverse meanings for a
single identifier.

overriding—The mechanism by which a child
class method is used by default when a parent
class contains a method with the same
signature.

P
packages—Another name for libraries in some
languages.

page schematic—A wireframe.

parallel arrays—Two or more arrays in which
each element in one array is associated with the
element in the same relative position in the other
array or arrays.

parameter list—All the data types and parameter
names that appear in a method header.

parameter to a method—A data item defined in a
method header that accepts data passed into the
method from the outside.

parameterized constructor—A constructor that
requires at least one argument. See also nondefault
constructor.

parent class—A base class.

parent file—A copy of a file before revision.

partial key dependency—The condition that
occurs when a column in a database table depends
on only part of the table’s key.

Pascal casing—A naming convention in which
the initial letter is uppercase, multiple-word
names are run together, and each new word
within the name begins with an uppercase letter.

passed by reference—Describes a method
parameter that represents the item’s memory
address.

passed by value—Describes a variable that has a
copy of its value sent to a method and stored in a
new memory location accessible to the method.

path—The combination of a file’s disk drive and
the complete hierarchy of directories in which the
file resides.

permanent storage device—A hardware device
that holds nonvolatile data; examples include hard
disks, DVDs, Zip disks, USB drives, and reels of
magnetic tape.

permissions—Attributes assigned to a user to
indicate which parts of a database the user can
view, change, or delete.

persistent lock—A long-term database lock
required when users want to maintain a consistent
view of their data while making modifications over
a long transaction.

physical order—The order in which a list is
actually stored even though it might be accessed in
a different logical order.

pixel—A picture element; one of the tiny dots of
light that form a grid on a monitor.

polymorphism—The ability of a method to act
appropriately depending on the context.

populating an array—To assign values to array
elements.

portable—Describes a module that can more
easily be reused in multiple programs.

661

GLOSSARY

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



posttest loop—A loop that tests its controlling
condition after each iteration, meaning that the
loop body executes at least one time.

precedence—The quality of an operation that
determines the order in which it is evaluated.

pretest loop—A loop that tests its controlling
condition before each iteration, meaning that the
loop body might never execute.

primary key—A field or column that uniquely
identifies a record or database object.

priming input or priming read—The statement
that reads the first input data record prior to
starting a structured loop.

primitive data types—In a programming
language, simple number and character types that
are not class types.

private access—A privilege of class members in
which data or methods cannot be used by any
method that is not part of the same class.

procedural programming—A programming
technique that focuses on the procedures that
programmers create.

processing—To organize data items, check them
for accuracy, or perform mathematical operations
on them.

processing symbol—A symbol represented as a
rectangle in flowcharts.

program—Sets of instructions for a computer.

program code—The set of instructions a
programmer writes in a programming
language.

program comment—A nonexecuting statement
that programmers place within code to explain
program statements in English. See also internal
documentation.

program development cycle—The steps that
occur during a program’s lifetime, including
planning, coding, translating, testing, producing,
and maintaining the program.

program level—The level at which global
variables are declared.

programming—The act of developing and writing
programs.

programming language—A language such as
Visual Basic, C#, C++, Java, or COBOL, used to
write programs.

prompt—A message that is displayed on a
monitor, asking the user for a response.

property—A method that gets and sets a field
value using simple syntax.

protected access specifier—A specifier used
when outside classes should not be able to use a
data field unless they are children of the original
class.

protected node—The UML diagram name for an
exception-throwing try block.

pseudocode—An English-like representation of
the logical steps it takes to solve a problem.

public access—A privilege of class members in
which other programs and methods may use the
specified data or methods within a class.

pure polymorphism—The situation in which one
method implementation can be used with a variety
of arguments in object-oriented programming.

Q
query—A question used to access values in a
database; its purpose is often to display a subset of
data.

query by example—The process of creating a
database query by filling in blanks.

R
random access files—Files that contain records
that can be located in any physical order and
accessed directly.

random access memory (RAM)—Temporary,
internal computer storage.

random-access storage device—A storage
device, such as a disk, from which records can be
accessed in any order.

range check—The comparison of a variable to a
series of values that mark the limiting ends of
ranges.

reading from a file—The act of copying data
from a file on a storage device into RAM.

662

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



real numbers—Floating-point numbers.

real-time—Describes applications that require a
record to be accessed immediately while a client is
waiting.

record—A group of fields stored together as a
unit because they hold data about a single entity.

recovery—The process of returning a database to
a correct form that existed before an error
occurred.

recursion—A programming event that occurs
when a method is defined in terms of itself.

recursive cases—Describe the input values that
cause a recursive method to execute again.

recursive method—A method that calls itself.

registering components—The act of signing up
components so they can react to events initiated
by other components.

related table—The “many” table in a one-to-
many relationship in a database.

relational comparison operator—A symbol that
expresses Boolean comparisons. Examples include
=, >, <, >=, <=, and <>.

relational database—A group of tables from
which connections can be made to produce virtual
tables.

relationship—A connection between two tables in
a database.

reliability—The feature of modular programs that
ensures a module has been tested and proven to
function correctly.

remainder operator—An arithmetic operator
used in some programming languages that results
in the remainder left when its operands are
divided.

repeating group—A subset of rows in a database
table that all depend on the same key.

repetition—Another name for a loop structure.

return type—The data type for any value a
method returns.

reusability—The feature of modular programs
that allows individual modules to be used in a
variety of applications.

reverse engineering—The process of creating an
improved model of an existing system.

right-associativity and right-to-left associativity—
Descriptions of operators that evaluate the
expression to the right first.

running—To have a computer use a written and
compiled program. Also called executing.

S
scenario—A variation in the sequence of actions
required in a UML use case diagram.

screen blueprint—A wireframe.

script—A procedural module that depends on
user-initiated events in object-oriented programs.

scripting language—A language such as Python,
Lua, Perl, or PHP used to write programs that are
typed directly from a keyboard and are stored as
text rather than as binary executable files. Also
called scripting programming languages or script
languages.

second normal form, or 2NF—The
normalization form in which partial key
dependencies are eliminated from a database.

SELECT-FROM-WHERE—An SQL statement that
selects fields to view from a table where one or
more conditions are met.

selection structure—A program structure that
contains a question and takes one of two courses
of action depending on the answer. Then, no
matter which path is followed, program logic
continues with the next task.

self-documenting—Describes programs that
contain meaningful and descriptive data, method,
and class names.

semantic error—An error that occurs when a
correct word is used in an incorrect context.

sentinel value—A value that represents an entry
or exit point.

sequence diagram—A UML diagram that shows
the timing of events in a single use case.

sequence structure—A program structure that
contains steps that execute in order. A sequence
can contain any number of tasks, but there is no
chance to branch off and skip any of the tasks.

663

GLOSSARY

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



sequential file—A file in which records are stored
one after another in some order.

sequential order—The arrangement of records
when they are stored one after another on the
basis of the value in a particular field.

set method—An instance method that sets or
changes the values of a data field within an object.
See also mutator method.

short-circuit evaluation—A logical feature in
which each part of a larger expression is evaluated
only as far as necessary to determine the final
outcome.

signature—A method’s name and parameter list.

single-alternative if or single-alternative
selection—A selection structure in which action
is required for only one branch of the decision.
This form of the selection structure is also called
an if-then, because no “else” action is necessary.

single-dimensional array—A list accessed using
a single subscript.

single-level control break—A break in the logic
of a program based on the value of a single
variable.

sinking sort—A bubble sort.

size of the array—The number of elements an
array can hold.

snake casing—A naming convention in which
parts of a name are separated by underscores.

software—Programs that tell the computer what
to do.

sorting—The process of placing records in order
by the value in a specific field or fields.

source code—The readable statements of a
program, written in a programming language.

source of an event—The component from which
an event is generated.

spaghetti code—Snarled, unstructured program
logic.

stack—A memory location that holds the memory
addresses to which method calls should return.

stacking structures—To attach program
structures end to end.

starvation—A flaw in multithreaded programs in
which a thread is abandoned because other
threads occupy all the computer’s resources.

state—The set of all the values or contents of a
class’s instance variables.

state machine diagram—A UML diagram that
shows the different statuses of a class or object at
different points in time.

static methods—Methods for which no object
needs to exist; static methods are not instance
methods and they do not receive a this
reference.

step value—A number used to increase a loop
control variable on each pass through a loop.

stereotype—A feature that adds to the UML
vocabulary of shapes to make them more
meaningful for the reader.

storage device—A hardware apparatus that
holds information for later retrieval.

storyboard—A picture or sketch of screens the
user will see when running a program.

string—Describes data that is nonnumeric.

string constant or literal string constant—A
specific group of characters enclosed within
quotation marks.

string variable—A variable that can hold text that
includes letters, digits, and special characters such
as punctuation marks.

structure—A basic unit of programming logic;
each structure is a sequence, selection, or loop.

structure diagrams—UML diagrams that
emphasize the “things” in a system.

structured programs—Programs that follow the
rules of structured logic.

Structured Query Language (SQL)—A
commonly used language for accessing data in
database tables.

subclass—A derived class.

subscript—A number that indicates the position
of an element within an array.

summary report—A report that lists only totals,
without individual detail records.

664

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



sunny day case—A program execution in which
nothing goes wrong.

superclass—A base class.

swap values—To exchange the values of two
variables.

syntax—The rules of a language.

syntax error—An error in language or grammar.

system design—The detailed specification of how
all the parts of a system will be implemented and
coordinated.

system software—The programs that manage a
computer, in contrast to application software.

T
table—A database file that contains data in rows and
columns; also, a term sometimes used by
mathematicians to describe a two-dimensional array.

temporary variable—A working variable that
holds intermediate results during a program’s
execution.

terminal symbol—A symbol used at each end of a
flowchart; its shape is a lozenge. Also called a
start/stop symbol.

terminating case—Describes the input that halts
a recursive method; also called the base case.

text editor—A program used to create simple text
files; it is similar to a word processor, but without
as many features.

text files—Files that contain data that can be read
in a text editor.

third normal form, or 3NF—The normalization
form in which transitive dependencies are
eliminated from a database.

this reference—An automatically created
variable that holds the address of an object and
passes it to an instance method whenever the
method is called.

thread—The flow of execution of one set of
program statements.

thread synchronization—A set of techniques that
coordinates threads of execution to help avoid
potential multithreading problems.

three-dimensional arrays—Arrays in which each
element is accessed using three subscripts.

throw an exception—To pass an exception out of
a block where it occurs, usually to a block that can
handle it.

throw statement—An object-oriented
programming statement that sends an
Exception object out of a method or code block
to be handled elsewhere.

tight coupling—A problem that occurs when
methods excessively depend on each other; it
makes programs more prone to errors.

time signal—A UML diagram symbol that
indicates a specific amount of time has passed
before an action is started.

TOE chart—A program development tool that
lists tasks, objects, and events.

transaction file—A file that holds temporary data
used to update a master file.

transitive dependency—A database condition in
which the value of a nonkey attribute determines
or predicts the value of another nonkey attribute.

trivial expression—An expression that always
evaluates to the same value.

truth table—A diagram used in mathematics and
logic to help describe the truth of an entire
expression based on the truth of its parts.

try—To execute code that might throw an
exception.

try block—A block of code that attempts to
execute while acknowledging that an exception
might occur.

two-dimensional arrays—Arrays that have rows
and columns of values accessed using two
subscripts.

type-safety—The feature of programming
languages that prevents assigning values of an
incorrect data type.

U
unary operator—An operator that uses only one
operand.

Unicode—A 16-bit character coding scheme.

665

GLOSSARY

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Unified Modeling Language (UML)—A standard
way to specify, construct, and document systems
that use object-oriented methods.

unnamed constant—A literal numeric or string
value.

unnormalized—Describes a database table that
contains repeating groups.

unstructured programs—Programs that do not
follow the rules of structured logic.

update a master file—To modify the values in a
master file based on transaction records.

update anomaly—A problem that occurs when
the data in a database table needs to be altered; the
result is repeated data.

upper camel casing—Another name for the
Pascal casing naming convention.

use case diagrams—UML diagrams that show
how a business works from the perspective of
those who actually interact with the business.

user-defined type or programmer-defined type—
A type that is not built into a language but is created
by an application’s programmer.

users or end users—People who work with and
benefit from computer programs.

V
validating data—Ensuring that data falls within
an acceptable range.

variable—A named memory location of a specific
data type, whose contents can vary or differ over
time.

view—A way of looking at a database.

visible—A characteristic of data items that means
they “can be seen” only within the method in
which they are declared.

visual development environment—A
programming environment in which programs are
created by dragging components such as buttons
and labels onto a screen and arranging them
visually.

void method—A method that returns no value.

volatile—A characteristic of internal memory in
which its contents are lost every time the
computer loses power.

W
while loop or while…do loop—A loop in
which a process continues while some condition
continues to be true.

whole-part relationship—An association in which
an object of one class is part of an object of a larger
whole class.

wildcard—A symbol that means any or all.

wireframe—A picture or sketch of a screen the
user will see when running a program.

work method—A method that performs tasks
within a class.

writing to a file—The act of copying data from
RAM to persistent storage.

X
x-axis—An imaginary line that represents
horizontal positions in a screen window.

x-coordinate—A position value that increases
from left to right across a screen window.

Y
y-axis—An imaginary line that represents vertical
positions in a screen window.

y-coordinate—A position value that increases
from top to bottom across a screen window.

666

G L O S S A R Y

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index

Special Characters
> (greater than operator), 132
< (less than operator), 132
~ (tilde), 479
() (parentheses), 55
<> (not-equal-to operator), 132
{} (curly braces), 202
! (exclamation point), 157
% (percent sign), 50
* (asterisk), 47, 49
+ (plus sign), 47, 49, 452
- (minus sign), 47, 49, 452
/ (slash), 47, 49
= (equal sign), 49, 132
>= (greater-than-or-equal-to operator),

132–133, 134
<= (less-than-or-equal-to operator),

132
[] (square brackets), 357, 400
; (semicolon), 202

A
abbreviations, caution about use, 69
abstract classes, 492
abstract data types (ADTs), 442
abstraction, 52, 52–53
access, private and public, 450,

450–453
access specifiers, 450, 452–453

protected, 489, 489–491
accessibility, 523

accessor methods, 447, 447–448
accumulators, 203–207, 204
actions, user-initiated, 518
activity diagrams, 564, 564–566
actual parameters, 388
addition operator (+), 47, 49
addresses, 363
ADTs (abstract data types), 442
aggregations, 560
algorithms, 9, 330

bubble sort. See bubble sort
alphabetic sorts, 329
alphanumeric values, 39
alternate keys, 585
ambiguous methods, 408

avoiding, 408–411
American Standard Code for Information

Interchange (ASCII), 626, 627–629
ancestors, 486
AND decisions, 135, 135–145

avoiding common errors, 143–144
nested, 135, 138–140, 143–144

AND operator, 140, 140–142
combining with OR operator,

precedence, 163–166
animation, 535, 535–538

free images, 538
annotation symbol, 67
anomalies, 601

relational databases, 601
app(s), 2

Note: Page numbers in boldface type indicate where key terms are defined.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



application(s)
event-driven. See event-driven

(event-based) program(s)
real-time, 310

application software, 2
arguments (arguments to the method),

382
overloading methods, 405–406

arithmetic operations, 47–51
array(s), 226–263, 227

characteristics, 229
constants, 239–241
elements, 227–228
multidimensional. See multidimensional

arrays
objects, 465–468
one-dimensional (single-dimensional),

355, 355–357
parallel. See parallel arrays
passing to methods, 397–404
populating, 228–229
processing using for loops, 261–262
remaining within array bounds,

257–260
replacing nested decisions, 230–239
searching for exact matches, 241–245
searching for range matches, 253–257
tables compared, 580

array sorting method, 334
lists of variable size, 339–344
logic, 336–339
reducing unnecessary comparisons,

344–345
refining bubble sort to eliminate

unnecessary passes, 346–348
sorting data stored in parallel arrays,

349
ascending order, 292
ASCII (American Standard Code for

Information Interchange), 626,
627–629

assignment operators, 44, 49
assignment statements, 44

association relationships, 558, 558–560
asterisk (*), multiplication operator, 47, 49
atomic attributes, 602, 602–603
atomic transactions, 603
attributes, 581

atomic, 602, 602–603
nonkey, 593
objects, 435

authentication, relational databases, 611
authentication techniques, 611

B
backup files, 285

generations, 302
base case, 417
base classes, 485, 485–486
base 16, 629, 629–630
base table, 593
base 10, 625, 626
base 2, 625, 625–626
batch(es), 610
batch processing, 310
behavior diagrams, 550
binary files, 275
binary language, 3–4
binary numbering system, 625, 626–629,

631
binary operators, 44
binary searches, 252
bits, 626
black box, 414
blobs, 581
blocks, 94
body, modules, 54
Booch, Grady, 549
Boolean expressions, 126. See also AND

decisions; OR decisions
completeness, 144, 150–151
inadvertently trivial, avoiding, 144,

152–155
structured selections, 151

bounds, subscripts, 257–260
bubble sort, 329, 329–349

668

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



eliminating unnecessary passes, 346–348
reducing unnecessary comparisons,

344–345
sorting lists of variable size, 340–344
swap values, 330, 330–331

built-in exceptions, 500
button(s), GUIs, 518, 519
Button class, 519–520
bytes, 276, 626

C
calling a module, 51
camel casing, 42, 70
candidate keys, 585
cardinality, 558
cascading if statements, 135
case structure, 115, 645, 645–646
catch blocks, 499
catching the exception, 498
central processing unit (CPU), 2, 2–3

multithreading, 532–534
characters, 277, 580
check boxes, GUIs, 518, 519
child classes, 485, 486

overriding parent class methods in child
classes, 493, 558

child files, 285, 304
clarity

statements, 71–72
structure use, 106

class(es), 350, 434, 434–437
abstract, 492
base, 485, 485–486
Button, 519–520
child. See child classes
derived (extended), 485, 485–486
fragile, 492
instances, 434, 435
organization, 454
parent. See parent classes
predefined, 494–495
subclasses, 485, 486
superclasses, 485

Thread, 534–535
class clients (class users), 437
class definitions, 441, 441–443

defining, 441–443
class diagrams, 443, 443–446

UML, 557–561
class methods, 460–461, 461
clients, 378

class, 437
closing files, 283
cloud, 3
cocktail sorts, 354
Codd, E. F., 601
code

alphabetic sorts, 329
object, 3
program, 3
pseudocode, 14, 15–16
reliable, 493
source, 3
spaghetti, 88–90
trying, 498

coding the program, 3, 10
cohesion, 414

functional, 58
columns, concatenating, 602
command line, 25, 515
comments, 67–69
communication diagrams, 562, 562–563
comparisons, unnecessary, refining bubble

sort to reduce, 344–345
compilers, 3, 549
complexity, UML, 570
component diagrams, 566, 567
composite keys, 581
composition, 481, 481–482, 560
compound conditions, 135
compound keys, 581
computer files, 275, 275–277, 279–286

backup, 285, 302
binary, 275
child, 285, 302
closing, 283

669

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



data hierarchy, 277–278
declaring file identifiers, 279
direct access, 310
grandparent, 302
instant access, 310
interactive, 310
master, 301–309
merging, 292–301
opening, 280
organizing, 276–277
parent, 285, 302
program performing file operations,

283–286
random access, 310–311
reading and processing data from,

280–283
sequential, 282, 292–301
size, 276
text, 275
transaction, 301
writing data, 283

computer memory, 3, 7. See also storage
RAM, 3
temporary, 280

computer systems, 2, 2–4
concatenated keys, 581
concatenating columns, 602
concurrent update problems, 610

relational databases, 610
conditional operators

AND operator. See AND operator
logical operators vs., 142
OR operator, 149

consistency of data, validating, 212–213
constants

as array element values, 240
as array subscripts, 240
declaring within modules, 58–60
global, 60
local, 60
naming, 69–70
numeric (literal numeric), 39
as size of array, 239–240

string (literal string), 39
unnamed, 39, 239

constructors, 472, 472–478
default, 472, 473–475, 473–476
nondefault (parameterized), 472,

475–476
overloading, 476–478

containers, 529
control break(s), 286

single-level, 288
control break fields, 288
control break programs, 286
control break reports, 286, 286–291
conversion, 13
counted loops, 180
counter(s), 182
counter-controlled loops, 180
coupling, 415
CPU. See central processing unit (CPU)
curly braces ({}), statements, 202

D
data dictionaries, 70
data hiding, 439, 450
data hierarchy, 277, 277–279
data integrity, 609, 609–610

relational databases, 609–610
data items, 2

visible (in scope), 60
data redundancy, 601
data types, 39, 40

abstract, 442
integers, 50
primitive, 443
tables, 583
validating, 211–212
variables, 45–46

database(s), 278, 580. See also relational
databases

database management software, 581
dead paths, 160
deadlock, 534
debugging, 13

670

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



decimal numbering system, 625, 626,
627–629, 631

decision structure, 91, 91–92, 101, 151
decision symbol, 21
declarations, 40
decrementing, 182
default constructors, 472, 473–475
default input and output devices, 283
defensive programming, 207
definite loops, 180
delete anomalies, 601
deleted records, 588
denormalization, 608
dependencies, transitive, 606
deployment diagrams, 566, 568
derived classes, 485, 485–486
descending order, 292
desk-checking, 10, 66
destructors, 479, 479–480
detail loop tasks, 61
diagrams, UML. See Unified Modeling

Language (UML)
dimmed screen options, 522
direct access files, 310
directories, 276, 277
displaying, definition, 285
division operator (/), 47, 49
do loop, 115
documentation, 9

external, 67
internal, 67

DOS prompt, 515
do-until loop, 649
do-while loop, 646–648, 647
dual-alternative ifs (dual-alternative

selections), 91, 91–92
dummy values, 22

E
EBs (exabytes), 631
echoing input, 73, 73–74
efficiency

OR decisions, 147–159

searching arrays, 250–252
structure use, 106

elements, 227
arrays, 227–228
constants as values, 240

elided parts, 557
else clauses, 130
empty, use of term, 583
encapsulation, 58, 439, 439–440
encryption, 611
end users, 8
end-of-job tasks, 61
end-structure statement, 91, 91–92
entities, 581
eof, 22
equal sign (=)

assignment operator, 49
equivalency operator, 133

event(s), 516
source, 517

event-driven (event-based) program(s),
516, 524–532

defining connections between user
screens, 527

planning logic, 527–532
storyboards, 525–526
wireframes (page schematics; screen

blueprints), 525
event-driven programming, 515–517
exabytes (EBs), 631
exception(s), 498

built-in, 500
catching, 498
throwing, 498
user-created, 500

exception handling, 495–501, 498
built-in and user-created exceptions, 500
diagramming, 568–569
drawbacks to traditional techniques,

496–497
object-oriented model, 498–500

exclamation point (!), NOT operator, 157
executing a program, 4

671

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



extend variations, use case diagrams, 552,
552–553

Extended Binary Coded Decimal
Interchange Code (EBCDIC), 626

extended classes, 485, 485–486
external documentation, 67

F
facilitators, 448, 448–449
fields, 277, 436, 436–437, 580

inaccessible, 489
private, parent classes, accessing, 488–492

files, 580. See also computer files
first normal form (1NF), 601, 602–603, 608
flags, 245
floating-point numeric variables, 39
flowcharts, 14

difficult structuring problems, 633–641
drawing, 16–18
symbols, 17–18, 55, 67, 203

flowlines, 17
folders, 276, 277
for loops, 201, 201–203

processing arrays, 261–262
forcing, 211
foreign keys, 593
forks, UML activity diagrams, 565
formal parameters, 388
fragile classes, 492
function(s). See method(s); module(s)
functional cohesion, 58, 414
functional decomposition. See

modularization
functional dependence, 606, 606–607

G
garbage, 41
garbage in, garbage out (GIGO), 209, 496
GBs (gigabytes), 276, 630, 631
generalization variations, use case

diagrams, 553, 553–554
generations, backup files, 302
get methods, 447, 447–448
gigabytes (GBs), 276, 630, 631

GIGO (garbage in, garbage out), 209, 496
global data items, 378
global variables and constants, 60
gnome sorts, 354
goto-less programming, 106
grandparent files, 302
graphical user interfaces (GUIs), 25,

25–26
accessibility, 523
attractiveness, readability, and

nondistracting nature, 522
design, 521–524
forgiving nature, 523
naturalness and predictability,

521–522
user customization, 523

grayed screen options, 522
greater than operator (>), 132
greater-than-or-equal-to operator (>=),

132–133, 134
GUI(s). See graphical user interfaces (GUIs)
GUI components, 518–521
GUI objects, creating, 494–495

H
handler body nodes, 568
hardware, 2
has-a relationships, 481, 481–482,

559–560
headers, modules, 54
help methods, 448, 448–449
hexadecimal numbering system, 629,

629–630
hierarchy charts, 64, 64–66
high-level programming languages, 11
housekeeping tasks, 60
Hungarian notation, 43

I
icons, 515
identifiers, 40, 69–70
IDEs (integrated development

environments), 24, 24–25, 495

672

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if-then clauses, 130
if-then selections, 127
if-then-else, 91
immutability, primary keys, 586
implementation, methods, 378
implementation hiding, 413, 413–414
imprecision, UML, 570
in bounds, 257
in scope data items, 60
inaccessible fields, 489
include variations, use case diagrams,

553
incrementing, 182
indefinite loops, 182, 182–184
index(es), 227, 227–228
indexed files, 362–364
indexing, 363
indirect relationships, 250
infinite loops, 19
information, 3
information hiding, 439, 450
inheritance, 439, 482–494

accessing private fields and methods of
parent classes, 488–492

multiple, 492
overriding parent class methods in child

classes, 493
terminology, 485–488
using to achieve good software design,

493–494
initializing the variable, 41

loop control variables, 192–193
inner loop, 186
input(s), 2

echoing, 73–74
priming, 99–106

input devices, default, 283
input symbol, 17
input/output (I/O) symbol, 17
insert anomalies, 601
insertion sorts, 351, 351–355
instance(s), classes, 434, 435
instance methods, 455–460, 456

instance variables, 436, 436–437
instant access files, 310
instantiation, 434
instructions, repeating, 19–20
integer(s), data types, 50
integer numeric variables, 39
integrated development environments

(IDEs), 24, 24–25, 495
integrity constraints, 609, 609–610
interaction diagrams, 550
interactive programs, 310
interactivity diagrams, 527
interface to the method, 414
internal documentation, 67
interpreters, 3
I/O (input/output) symbol, 17
IPO charts, 10, 395, 395–396
is-a relationships, 436
iteration, 92

J
Jacobson, Ivar, 549
join columns, 592
join operations (joins), 592

UML activity diagrams, 565

K
KBs (kBs or kilobytes), 276, 630, 631
kebob case, 43
key(s), 581

foreign, 593
key field, 362, 362–363
key press event, 518
keywords, 42
kilobytes (KBs or kBs), 276, 630, 631

L
labels, GUIs, 518, 519
left mouse click event, 518
left-to-right associativity, 49
less than operator (<), 132
less-than-or-equal-to operator (<=), 132
libraries, 494

673

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



line breaks, confusing, avoiding, 71
linear searches, 241
linked lists, 364, 364–367
list(s)

linked, 364, 364–367
parameter, 382

list boxes, GUIs, 518, 519
listeners, 517
literal numeric constants, 39
literal string constants, 39
local data items, 378
local variables and constants, 60
locks, 610
logic, 5, 5–7

difficult structuring problems, 633–641
event-driven programs, planning,

527–532
mainline, 54, 184–185
planning, 9–10
understanding loops in, 184–185
unstructured, structuring and

modularizing, 110–115
logical errors, 5
logical operators

conditional operators vs., 142
NOT operator, 156, 156–157

logical order, 362
loop(s), 19, 101, 177–218

accumulating totals, 203–207
advantages, 178–180
avoiding common mistakes, 192–200
counted, 180
counter-controlled, 180
definite, 180–182
do, 115
do-until, 649
do-while, 646–648, 647
for, 201–203, 261–262
including statements in loop body that

belong outside loop, 196–200
indefinite, 182–184
infinite, 19
inner, 186

loop control variables, 180–186
mainline logic, 184–185
nested, 186–191
outer, 186
posttest, 203
pretest, 203
reprompting, limiting, 209–211
selections compared, 213–216
structured, shared characteristics, 648
unstructured, recognizing, 649
validating data types, 211–212
validating data using, 207–209
validating reasonableness and

consistency of data, 212–213
while, 92–93, 115, 201, 202, 203
while...do loops, 92

loop body, 92
loop control variables, 180, 180–186

decrementing, 182
definite loops with counters, 180–182
failing to initialize, 192–193
incrementing, 182
indefinite loops with sentinel values,

182–184
neglecting to alter, 193–194
program’s mainline logic, 184–185
using wrong type of comparison when

testing, 194–196
loop structure, 92, 92–93

difficult structuring problems,
633–641

loose coupling, 415
lost data, recovering, 610
Lovelace, Ada Byron, 27
lower camel casing, 42
low-level machine language, 11
lvalues, 45

M
machine language, 3

translating programs into, 10–12
magic numbers, 46, 239
main program, 54

674

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



mainline logic, 54
maintenance, 13, 13–14

structure use, 106
making a decision, 21
many-to-many relationships, 593–597,

595
master files, 301, 301–309

updating, 301–309
matrix(ices), 358. See also table(s)
MBs (megabytes), 276, 630
mean, 328
median value, 328
megabytes (MBs), 276, 630
memo(s), database tables, 584
memory. See computer memory; storage
merging files, 292, 292–301
method(s), 378. See also module(s)

ambiguous, 408, 408–411
cohesion, 414
coupling, 415
get (accessor), 447, 447–448
implementation, 378
implementation hiding, 413, 413–414
instance, 455–460, 456
interface to, 414
with no parameters, 379–382
nonstatic, 461
overloading. See overloading methods
parent classes, accessing, 488–492
parts, 378–379
passing arrays to methods, 397–404
passing by value, 386
passing objects to, 462–463
predefined, 411–413
recursion, 416, 416–420
recursive, 416
requiring multiple parameters, creating,

388–390
returning objects from, 463–465
returning values, creating,

390–396
set (mutator), 446, 446–447
sleep(), 534–535, 536

static (class), 460–461, 461
void, 390
work (help), 448, 448–449

method body, 378
method declarations, 378
method headers, 378
method return statements, 378
method types, 390, 390–391
Microsoft Visual Basic Studio IDE, 24
minus sign (-)

private access specifier, 452
subtraction operator, 47, 49

mixed case with underscores, 43
modeling, 548. See also system modeling;

Unified Modeling Language (UML)
modularization, 51–64, 52

abstraction, 52–53
declaring variables and constants within

modules, 58–60
mainline logic, 60–63
multiple programmers, 53
reusing work, 53–54
unstructured logic, 110–115

module(s), 51
abstraction, 53
calling, 51
declaring variables and constants

within, 58–60
functional cohesion of, 58
hierarchy charts, 64–66
naming, 54–55
reuse, 58
structure use, 106

module body, 54
module header, 54
module return statement, 54
modulo (modulus) operator (%), 50
mouse click event, 518
mouse double-click event, 518
mouse drag event, 518
mouse over event, 518
mouse point event, 518
multidimensional arrays, 355–362, 361

675

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



three-dimensional, 361
two-dimensional, 356, 356–360

multifield records, sorting, 348–350
multiple inheritance, 492
multiplication operator (*), 47
multiplicity, 558
multithreading, 533, 533–534
mutator methods, 446, 446–447

N
name(s), self-documenting, 69
named constants, 46

declaring, 46–47
naming

constants, 69–70
modules, 54–55
subscripts, 250
variables, 42–44, 69–70

nested decisions, 135, 138–140, 143–144
replacing with arrays, 230–239

nested ifs, 135, 138–140, 143–144
nested loops, 186, 186–191
nesting structures, 94, 94–95
nibbles, 627
nondefault constructors, 472, 475–476
nonkey attributes, 593
nonstatic methods, 461
nonvolatile storage, 3
normal forms, 601, 601–609
normalization, 600
not eof? question, 105
NOT operator, 156, 156–157
not-equal-to operator (<>), 132
null(s), 598
null, use of term, 583
null case (null branch), 92
numbering systems

binary, 625, 626–629, 631
decimal, 625, 626, 627–629, 631
hexadecimal, 629, 629–630

numeric constants, 39
numeric data, 39
numeric variables, 45

O
object(s), 462–468

arrays, 465–468
attributes, 435
passing to methods, 462–463
relationships between, 558–560
returning from methods, 463–465

object code, 3
object diagrams, UML, 560
object dictionary, 526
Object Management Group (OMG), 549
object-oriented programming (OOP), 27,

433–469, 434, 471–502
advantages, 01
animation, 533
classes, 434, 434–437
composition, 481, 481–482
constructors. See constructors
destructors, 479, 479–480
encapsulation, 439, 439–440
exception handling. See exception

handling
inheritance. See inheritance
objects, 434, 434–437
polymorphism, 437–438
predefined classes, 494–495
principles, 434–441

OMG (Object Management Group), 549
one-dimensional arrays, 355, 355–357
1NF (first normal form), 601, 602–603, 608
one-to-many relationships, 593
one-to-one relationships, 597, 597–598
OOP. See object-oriented programming

(OOP)
opening files, 280
operands, 44
operating systems, 515
option buttons, GUIs, 518, 519
OR decisions, 145, 145–155

avoiding common errors, 150–155
efficient, 147–159
using when required, 151–152

OR operator, 149

676

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



combining with AND operator,
precedence, 163–166

order
logical, 362
operations, 48, 48–49
physical, 362
sequential, 328, 328–329

out of bounds, 257
outer loop, 186
output, 3
output devices, default, 283
output statement, 407
output symbol, 17
overhead, 47, 58, 393
overloading, 404

methods, 404–411, 405
overloading constructors, 476–478
overloading methods, 476–478

avoiding ambiguous methods, 408–444
overriding, 493, 558

P
packages, 494
page schematics, 525
parallel arrays, 246, 246–253

sorting data stored in, 348–349
parameter(s) (parameters to the method),

382
actual, 388
formal, 388
multiple, creating methods requiring,

388–390
overloading methods, 405–406

parameter lists, 382
parameterized constructors, 472, 475–476
parent classes, 485, 486

accessing private fields and methods,
488–492

overriding parent class methods in child
classes, 493, 558

parent files, 285, 302
parentheses (()), module names, 55
partial key dependencies, 603

Pascal casing, 43
passes, unnecessary, refining bubble sort

to eliminate, 346–348
passing arrays

to methods, 397–404
by reference, 400

passing methods by value, 386
passing objects to methods, 462–463
paths, 276

dead (unreachable), 160
PBs (petabytes), 631
percent sign (%), remainder (modulo,

modulus) operator, 50
performance, databases, 609–611
permanent storage, 275, 280
permanent storage devices, 275
permissions, 611

relational databases, 611
persistent locks, 610
petabytes (PBs), 631
physical order, 362
pixels, 520
planning, logic, 9–10
plus sign (+)

addition operator, 47, 49
public access specifier, 452

polymorphism, 405, 437–438
pure, 438

populating the array, 228, 228–229
portable modules, 60, 378
posttest loops, 203
precedence, combining AND and OR

operators, 163–166
predefined classes, 494–495
predefined methods, 411–413
pretest loops, 203
primary keys, 581

immutability, 586
relational databases, 584–587

priming inputs (priming reads), 99–106,
103

primitive data types, 443
print charts (print layouts), 642–643

677

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



printing, definition, 285
private access, 450, 450–453
procedural programming, 27
procedures. See module(s)
processing, 2, 2–3
processing symbol, 17
production, putting programs into, 13
professionalism, structure use, 106
profile diagrams, 568
program(s), 2

coding, 3, 10
ending with sentinel values, 20–23
event-driven (event-based). See

event-driven (event-based)
program(s)

executing (running), 4
good design features, 66–75
interactive, 310
main, 54
modularization. See modularization
structured, 88–90
translating into machine language, 10–12
unstructured, 88–90

program code, 3
program comments, 67, 67–69
program development cycle, 7, 7–14

coding step, 10
maintenance step, 13–14
planning logic step, 9–10
production step, 13
testing step, 12–13
translating program into machine

language, 10–12
understanding problem step, 8–9

program logic, 5–7
program-ending test, 105
programmer-defined types, 442
programming, 2

defensive, 207
event-driven, 515–517
good habits, 74
multiple programmers, 53
object-oriented, 27

procedural, 27
reusing work, 53–54

programming environments, 23–25
programming languages, 3

binary, 3–4
high-level, 11
scripting (scripting programming

languages; script languages), 4
programming models, evolution, 26–27
prompts, 72

clear, 72–73
properties, 446
protected access specifier, 489, 489–491
protected nodes, 568
pseudocode, 14

writing, 15–16
public access, 450, 450–453
pure polymorphism, 438

Q
queries, 589, 589–592
query by example, 589
quick sorts, 354

R
random access files, 310, 310–311
random access memory (RAM), 3
random-access storage devices, 363
range checks, 157–163, 158

avoiding common errors, 160–163
read(s), priming, 99–106
reading from files, 280, 280–283
real estate, 522
real numbers, 39
real-time applications, 310
reasonableness of data, validating, 212–213
records, 277

deleted, 588
relational databases, 580, 588–589
sorting, 328–329
sorting as a whole, 350

recovering lost data, relational databases,
610

678

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



recovery, 610
recursion, 416, 416–420
recursive cases, 417
recursive methods, 416
reference, passing arrays by, 400
register components, 529
related tables, 593
relational comparison operators, 131,

131–135
avoiding common errors with, 134

relational databases, 579–612, 582
anomalies, 601
authentication, 611
avoiding concurrent update problems,

610
creating, 582–584
data integrity, 609–610
encryption, 611
fundamentals, 580–582
normal forms. See normal forms
normalization, 600
permissions, 611
primary keys, 581, 584–587
queries, 589–592
recognizing poor table design, 598–600
records, 588–589
recovering lost data, 610
relationships between tables. See

relationships
structure notation, 587
table descriptions, 582–584

relationships, 592, 592–598
association, 558, 558–560
has-a, 481, 481–482, 559–560
indirect, 250
is-a, 436
many-to-many, 593–597, 595
one-to-many, 593
one-to-one, 597, 597–598
whole-part, 481, 481–482, 559–560

reliability, 53, 53–54
reliable code, 493
remainder operator, 50

repeating groups, 602
repetition, 92
reports

control break, 286–291
summary, 207

return statements, 54, 378
return types, 390, 390–391
reusability, 53, 53–54
reverse engineering, 548
right mouse click event, 518
right-associativity, 44
right-to-left associativity, 44
rules of precedence, 48, 48–49
Rumbaugh, Jim, 549
running a program, 4

S
scenarios, 552
screen blueprints, 525
script(s), 517
scripting languages (scripting

programming languages; script
languages), 4

searches
binary, 252
linear, 241

searching arrays
exact matches, 241–245
improving efficiency, 250–252
parallel arrays, 246–253
range matches, 253–257

second normal form (2NF), 601, 603–606,
608

security, databases, 609–611
SELECT-FROM-WHERE statement, 589,

589–590
selection(s)

loops compared, 213–216
within ranges, 157–163

selection sorts, 354
selection structure, 91, 91–92, 101, 151
self-documenting names, 69
semicolon (;), separating actions, 202

679

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



sentinel symbols, flowcharts, 55
sentinel values, 22

ending programs, 20–23
sequence diagrams, 561, 561–562
sequence structure, 90, 90–91
sequential files, 282
sequential order, 328, 328–329
set methods, 446, 446–447
short-circuit evaluation, 141
signatures, 383
single-alternative ifs (single-alternative

selections), 92
single-dimensional arrays, 355, 355–357
single-level control breaks, 288
sinking sort. See bubble sort
size, UML, 569
size of the array, 227

constants as, 239–240
slash (/), division operator, 47
sleep() method, 534–535, 536
snake casing, 43
software, 2. See also application(s);

event-driven (event-based) program(s);
program(s)

design, advantages of inheritance,
493–494

translating programs into machine
language, 10–12

sorting, 282
alphabetic, 329
bubble sort. See bubble sort
cocktail sorts, 354
gnome sorts, 354
indexed files, 362–364
insertion sort, 351, 351–355
linked lists, 364–367
multidimensional arrays, 355–362
multifield records, 348–350
quick sorts, 354
records as a whole, 350
selection sorts, 354
sequential order, 328, 328–329
sinking sort. See bubble sort

source code, 3
source of the event, 517
spaghetti code, 88, 88–90
spaghetti method for structuring

problems, 633
SQL (Structured Query Language), 589
square brackets ([])

declaring arrays, 357
indicating arrays, 400

stack(s), 58, 417
stacking structures, 93, 94–95
starvation, 534
state, 437
state machine diagrams, 563, 563–564
statements

assignment, 44
clarity, 71–72
curly braces ({}), 202
end-structure, 91, 91–92
if, cascading, 135
long, temporary variables to clarify, 71–72
method return, 54, 378
output, 407
SELECT-FROM-WHERE, 589, 589–590
throw, 498

static methods, 460–461, 461
step values, 201
storage

measuring, 630–631
temporary and permanent, 275, 280

storage devices, 3
storyboards, 525, 525–526

object dictionary, 526
string constants, 39
string data, 39, 583
string variables, 45
strongly typed languages, 46
structure(s), 87–117, 90

combining, 93–98
difficult structuring problems, 633–641
loop. See loop(s); loop structure
priming input to structure programs,

99–106

680

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



reasons for, 106–107
recognizing, 107–110
selection, 91–92, 151
sequence, 90–91
spaghetti code, 88–90
structuring and modularizing

unstructured logic, 110–115
structure charts, 64–66
structure diagrams, 550
structure notation

databases, 587
relational databases, 587

structured loops, shared characteristics,
648

structured programs, 88, 88–90
Structured Query Language (SQL), 589
subclasses, 485, 486

ancestors, 486
subprocedures, 51
subroutines, 51. See also method(s);

module(s)
subscripts, 227, 227–228

bounds, 257–260
constants, 240
naming, 250

subtraction operator (-), 47, 49
summary reports, 207
sunny day case, 500
superclasses, 485
swap method, 334–335

refining bubble sort to eliminate
unnecessary passes, 346–348

swap values, 330, 330–331
swipe event, 518
symbols

flowcharts, 17–18, 67, 203
UML diagrams, 564, 567

syntax, 3, 10
syntax errors, 3, 4, 11
system modeling, 547–571, 548

UML. See Unified Modeling Language
(UML)

system software, 2

T
table(s), 278, 358, 580

arrays compared, 580
base, 593
denormalization, 608
descriptions, 582–584
related, 593
relationships. See relationships
unnormalized, 602

table design, poor, recognizing,
598–600

tap event, 518
TBs (terabytes), 631
temporary storage, 275, 280
temporary variables, 71

clarifying long statements, 71–72
terabytes (TBs), 631
terminal symbols, 17
terminating case, 417
testing

loop control variables, 194–196
programs, 12–13

text boxes, GUIs, 518, 519
text data type, 583
text editors, 23
text files, 275
third normal form (3NF), 601, 606–609
this references, 458, 458–459
thread(s), 532, 532–535
Thread class, 534–535
thread synchronization, 534
three-dimensional arrays, 361
3NF (third normal form), 601,

606–609
throw statements, 498
throwing an exception, 498
tight coupling, 415
tilde (~), destructors, 479
time signals, 566
timing diagrams, 562
TOE charts, 10
totals, accumulating using loops,

203–207

681

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



transaction files, 301, 301–309
transitive dependencies, 606
translating programs into machine

language, 10–12
trivial expressions, 131, 131–132
truncation, 50
truth tables, 141
try blocks, 498
trying code, 498
Turing, Alan, 27
two-dimensional arrays, 356, 356–360
2NF (second normal form), 601, 603–606,

608
type-safety, 45, 45–46

U
UML. See Unified Modeling

Language (UML)
unary operators, 156
Unicode, 626, 626–627
Unified Modeling Language (UML), 548,

549–570
activity diagrams, 564, 564–566
behavior diagrams, 550
class diagrams, 557–561
communication diagrams, 562, 562–563
component diagrams, 566, 567
criticisms, 569–570
deciding which diagrams to use, 570
deployment diagrams, 566, 568
diagramming exception handling,

568–569
interaction diagrams, 550
object diagrams, 560
overview, 549–551
profile diagrams, 568
relationships between objects, 558–560
sequence diagrams, 561, 561–562
specification and usage guidelines, 549
state machine diagrams, 563, 563–564
structure diagrams, 550
symbols, 564, 567
timing diagrams, 562

use case diagrams, 551, 551–557
versions, 549
when to use, 569–570

uninitialized variables, 206
unnamed constants, 39
unnecessary comparisons, refining bubble

sort to reduce, 344–345
unnecessary passes, refining bubble sort to

eliminate, 346–348
unnormalized tables, 602
unreachable paths, 160
unstructured loops, recognizing, 649
unstructured programs, 88, 88–90
update anomalies, 601
updating a master file, 301, 301–309
upper camel casing, 43
use case diagrams, 551, 551–557

emphases, 555–557
extend variations, 552, 552–553
generalization variations, 553, 553–554
include variations, 553

user(s), 8
class, 437

user environments, 25–26
user screens, defining connections

between, 527
user-created exceptions, 500
user-defined types, 442
user-initiated actions, 518

V
validating data, 207, 207–209

data types, 211–212
reasonableness and consistency of data,

212–213
value(s)

assigning to variables, 44–45
creating methods returning, 390–396
passing methods by, 386
swap, 330, 330–331

variables, 6, 40–42
assigning values, 44–45
data dictionaries, 70

682

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



data types, 45–46
declaring within modules, 58–60
decrementing, 182
global, 60
incrementing, 182
initializing, 41
instance, 436, 436–437
local, 60
loop control. See loop control variables
naming, 42–44, 69–70
numeric, 45
parentheses around names, 55
string, 45
uninitialized, 206

views, 590
visible data items, 60
visual development environments, 495
void methods, 390
volatile storage, 3

W
while loops, 92, 92–93, 115, 201,

202, 203
while...do loops, 92

whole-part relationships, 481, 481–482,
559–560

wildcards, 590
wireframes, 525
work methods, 448, 448–449
work variables, 71–72
writing

definition, 285
to files, 283

X
x-axis, 535
x-coordinate, 535

Y
y-axis, 535
YBs (yottabytes), 631
y-coordinate, 535
yottabytes (YBs), 631

Z
ZBs (zettabytes), 631
zero, uninitialized variables, 206
zettabytes (ZBs), 631
zoom event, 518

683

I N D E X

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


	Brief Contents
	Contents
	Preface
	Ch 1: An Overview of Computers and Programming
	Understanding Computer Systems
	Understanding Simple Program Logic
	Understanding the Program Development Cycle
	Using Pseudocode Statements and Flowchart Symbols
	Using a Sentinel Value to End a Program
	Understanding Programming and User Environments
	Understanding the Evolution of Programming Models
	Chapter Summary
	Key Terms
	Exercises

	Ch 2: Elements of High-Quality Programs
	Declaring and Using Variables and Constants
	Performing Arithmetic Operations
	Understanding the Advantages of Modularization
	Modularizing a Program
	Creating Hierarchy Charts
	Features of Good Program Design
	Chapter Summary
	Key Terms
	Exercises

	Ch 3: Understanding Structure
	The Disadvantages of Unstructured Spaghetti Code
	Understanding the Three Basic Structures
	Using a Priming Input to Structure a Program
	Understanding the Reasons for Structure
	Recognizing Structure
	Structuring and Modularizing Unstructured Logic
	Chapter Summary
	Key Terms
	Exercises

	Ch 4: Making Decisions
	Boolean Expressions and the Selection Structure
	Using Relational Comparison Operators
	Understanding AND Logic
	Understanding OR Logic
	Understanding NOT Logic
	Making Selections within Ranges
	Understanding Precedence When Combining AND and OR Operators
	Chapter Summary
	Key Terms
	Exercises

	Ch 5: Looping
	Understanding the Advantages of Looping
	Using a Loop Control Variable
	Nested Loops
	Avoiding Common Loop Mistakes
	Using a for Loop
	Common Loop Applications
	Comparing Selections and Loops
	Chapter Summary
	Key Terms
	Exercises

	Ch 6: Arrays
	Storing Data in Arrays
	How an Array Can Replace Nested Decisions
	Using Constants with Arrays
	Searching an Array for an Exact Match
	Using Parallel Arrays
	Searching an Array for a Range Match
	Remaining within Array Bounds
	Using a for Loop to Process an Array
	Chapter Summary
	Key Terms
	Exercises

	Ch 7: File Handling and Applications
	Understanding Computer Files
	Understanding the Data Hierarchy
	Performing File Operations
	Understanding Control Break Logic
	Merging Sequential Files
	Master and Transaction File Processing
	Random Access Files
	Chapter Summary
	Key Terms
	Exercises

	Ch 8: Advanced Data Handling Concepts
	Understanding the Need for Sorting Data
	Using the Bubble Sort Algorithm
	Sorting Multifield Records
	Using the Insertion Sort Algorithm
	Using Multidimensional Arrays
	Using Indexed Files and Linked Lists
	Chapter Summary
	Key Terms
	Exercises

	Ch 9: Advanced Modularization Techniques
	The Parts of a Method
	Using Methods with no Parameters
	Creating Methods That Require Parameters
	Creating Methods That Return a Value
	Passing an Array to a Method
	Overloading Methods
	Using Predefined Methods
	Method Design Issues: Implementation Hiding, Cohesion, and Coupling
	Understanding Recursion
	Chapter Summary
	Key Terms
	Exercises

	Ch 10: Object-Oriented Programming
	Principles of Object-Oriented Programming
	Defining Classes and Creating Class Diagrams
	Understanding Public and Private Access
	Organizing Classes
	Understanding Instance Methods
	Understanding Static Methods
	Using Objects
	Chapter Summary
	Key Terms
	Exercises

	Ch 11: More Object-Oriented Programming Concepts
	Understanding Constructors
	Understanding Destructors
	Understanding Composition
	Understanding Inheritance
	An Example of Using Predefined Classes: Creating GUI Objects
	Understanding Exception Handling
	Reviewing the Advantages of Object-Oriented Programming
	Chapter Summary
	Key Terms
	Exercises

	Ch 12: Event-Driven GUI Programming, Multithreading, and Animation
	Understanding Event-Driven Programming
	User-Initiated Actions and GUI Components
	Designing Graphical User Interfaces
	Developing an Event-Driven Application
	Understanding Threads and Multithreading
	Creating Animation
	Chapter Summary
	Key Terms
	Exercises

	Ch 13: System Modeling with the UML
	Understanding System Modeling
	What is the UML?
	Using UML Use Case Diagrams
	Using UML Class and Object Diagrams
	Using Other UML Diagrams
	Deciding When to Use the UML and Which UML Diagrams to Use
	Chapter Summary
	Key Terms
	Exercises

	Ch 14: Using Relational Databases
	Understanding Relational Database Fundamentals
	Creating Databases and Table Descriptions
	Identifying Primary Keys
	Understanding Database Structure Notation
	Working with Records within Tables
	Creating Queries
	Understanding Relationships between Tables
	Recognizing Poor Table Design
	Understanding Anomalies, Normal Forms, and Normalization
	Database Performance and Security Issues
	Chapter Summary
	Key Terms
	Exercises

	Appendix A: Understanding Numbering Systems and Computer Codes
	Appendix B: Solving Difficult Structuring Problems
	Appendix C: Creating Print Charts
	Appendix D: Two Variations on the Basic Structures-Case and Do-While
	Glossary
	Index



