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m TABLE 1.4

Approximate Physical Properties of Some Common Liquids (BG Units)

Specific Dynamic Kinematic Surface Vapor Bulk
Density, Weight, Viscosity, Viscosity, Tension,” Pressure, Modulus,”
Temperature P Y 73 v o D E,
Liquid (°F) (slugs/ft’) (Ib/ft}) (Ib - s/ft?) (ft*/s) (Ib/ft) [Ib/in.% (abs)] (Ib/in.2)
Carbon tetrachloride 68 3.09 99.5 200E — 5 647E — 6 1.84E — 3 19 E+0 191E + 5
Ethyl alcohol 68 1.53 49.3 249E — 5 1.63E — 5 1.56E — 3 85 E—1 1.54E + 5
Gasoline® 60 1.32 42.5 65 E—6 49 E—-6 1.5 E—-3 80 E+0 1.9 E+5
Glycerin 68 2.44 78.6 3.13E -2 1.28E — 2 434E — 3 20 E—6 6.56E + 5
Mercury 68 26.3 847 328E — 5 1.25E — 6 3.19E — 2 23 E—5 414E + 6
SAE 30 oil® 60 1.77 57.0 80 E—3 45 E—3 25 E—3 — 22 E+5
Seawater 60 1.99 64.0 251E —5 1.26E — 5 5.03E — 3 226E — 1 339E + 5
Water 60 1.94 62.4 234E — 5 1.21E -5 5.03E — 3 226E — 1 3.12E+ 5
“In contact with air.
®Isentropic bulk modulus calculated from speed of sound.
“Typical values. Properties of petroleum products vary.
H TABLE 1.5
Approximate Physical Properties of Some Common Liquids (SI Units)
Specific Dynamic Kinematic Surface Vapor Bulk
Density, Weight, Viscosity, Viscosity, Tension,” Pressure, Modulus,”
Temperature p y 73 v o Do E,
Liquid (°C) (kg/m") (kN/m’) (N - s/m? (m*/s) (N/m) [N/m’ (abs)] (N/m?)

Carbon tetrachloride 20 1,590 15.6 9.58E — 4 6.03E — 7 2.69E — 2 1.3 E+4 1.31E+ 9
Ethyl alcohol 20 789 7.74 1.19E — 3 1.51E — 6 228E —2 59 E+3 1.06E + 9
Gasoline® 15.6 680 6.67 3.1 E—4 46 E—7 22 E—-2 55 E+4 1.3 E+9
Glycerin 20 1,260 124 1.50E + 0 1.19E — 3 633E — 2 14 E—2 452E + 9
Mercury 20 13,600 133 1.57E — 3 1.15E — 7 466E — 1 1.6 E—1 2.85E + 10
SAE 30 oil® 15.6 912 8.95 38 E—1 42 E—4 36 E—2 — 1.5 E+9
Seawater 15.6 1,030 10.1 1.20E — 3 1.17E — 6 734E — 2 1.77E + 3 234E + 9
Water 15.6 999 9.80 1.12E — 3 1.12E — 6 734E — 2 1.77E + 3 215E+9

“In contact with air.
®Isentropic bulk modulus calculated from speed of sound.
“Typical values. Properties of petroleum products vary.



B TABLE 1.6

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (BG Units)

Specific Dynamic Kinematic Gas
Density, Weight, Viscosity, Viscosity, Constant,” Specific
Temperature P y 73 v R Heat Ratio,”
Gas (°F) (slugs/ft>) (Ib/ft3) (b - s/ft?) (ft3/s) (ft - Ib/slug - °R) k
Air (standard) 59 238E —3 7.65E — 2 374E — 17 1.57E — 4 1.716 E + 3 1.40
Carbon dioxide 68 355E -3 1.14E — 1 307E =7 8.65E — 5 1.130E + 3 1.30
Helium 68 323E — 4 1.04E — 2 409E -7 1.27E — 3 1.242E + 4 1.66
Hydrogen 68 1.63E — 4 525E -3 1.85E -7 1.13E -3 2466 E + 4 1.41
Methane (natural gas) 68 1.29E — 3 415E — 2 229E -7 1.78E — 4 3.099E + 3 1.31
Nitrogen 68 226E —3 728E — 2 3.68E — 7 1.63E — 4 1.775E + 3 1.40
Oxygen 68 258E —3 831E —2 425E -7 1.65E — 4 1.554E + 3 1.40
“Values of the gas constant are independent of temperature.
"Values of the specific heat ratio depend only slightly on temperature.
H TABLE 1.7
Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (SI Units)
Specific Dynamic Kinematic Gas
Density, Weight, Viscosity, Viscosity, Constant,” Specific
Temperature p Y 7 v R Heat Ratio,”
Gas (°0) (kg/m”) (N/m?) (N - s/m% (m’/s) (J/kg - K) k
Air (standard) 15 1.23E+0 1.20E + 1 1.79E - 5 146E — 5 2.8609E + 2 1.40
Carbon dioxide 20 1.83E + 0 1.80E + 1 147E -5 8.03E — 6 1.889E + 2 1.30
Helium 20 1.66 E — 1 1.63E + 0 1.94E - 5 1.IS5E — 4 2077E + 3 1.66
Hydrogen 20 838E — 2 822E — 1 8.84E — 6 1.05E — 4 4.124E + 3 1.41
Methane (natural gas) 20 6.67E — 1 6.54E + 0 1.10E — 5 1.65E — 5 5.183E + 2 1.31
Nitrogen 20 1.L16E + 0 1.14E + 1 1.76E — 5 1.52E -5 2968 E + 2 1.40
Oxygen 20 1.33E+0 1.30E + 1 204E -5 1.53E -5 2.598E + 2 1.40

“Values of the gas constant are independent of temperature.

"Values of the specific heat ratio depend only slightly on temperature.
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Preface

A Brief Introduction to Fluid Mechanics, fifth edition, is an abridged version of a more com-
prehensive treatment found in Fundamentals of Fluid Mechanics by Munson, Young, Okiishi,
and Huebsch. Although this latter work continues to be successfully received by students and
colleagues, it is a large volume containing much more material than can be covered in a typi-
cal one-semester undergraduate fluid mechanics course. A consideration of the numerous
fluid mechanics texts that have been written during the past several decades reveals that there
is a definite trend toward larger and larger books. This trend is understandable because the
knowledge base in fluid mechanics has increased, along with the desire to include a broader
scope of topics in an undergraduate course. Unfortunately, one of the dangers in this trend is
that these large books can become intimidating to students who may have difficulty, in a be-
ginning course, focusing on basic principles without getting lost in peripheral material. It is
with this background in mind that the authors felt that a shorter but comprehensive text, cov-
ering the basic concepts and principles of fluid mechanics in a modern style, was needed. In
this abridged version there is still more than ample material for a one-semester undergraduate
fluid mechanics course. We have made every effort to retain the principal features of the orig-
inal book while presenting the essential material in a more concise and focused manner that
will be helpful to the beginning student.

This fifth edition has been prepared by the authors after several years of using the pre-
vious editions for an introductory course in fluid mechanics. Based on this experience, along
with suggestions from reviewers, colleagues, and students, we have made a number of
changes and additions in this new edition.

New to This Edition

In addition to the continual effort of updating the scope of the material presented and improv-
ing the presentation of all of the material, the following items are new to this edition.

With the widespread use of new technologies involving the web, DVDs, digital cameras,
and the like, there are increasing use and appreciation of the variety of visual tools available
for learning. After all, fluid mechanics can be a very visual topic. This fact has been addressed
in the new edition by the inclusion of numerous new illustrations, graphs, photographs, and
videos.

Illustrations: The book contains 148 new illustrations and graphs, bringing the total number
to 890. These illustrations range from simple ones that help illustrate a basic concept or
equation to more complex ones that illustrate practical applications of fluid mechanics in our
everyday lives.

Photographs: The book contains 224 new photographs, bringing the total number to 240.
Some photos involve situations that are so common to us that we probably never stop to realize
how fluids are involved in them. Others involve new and novel situations that are still baffling
to us. The photos are also used to help the reader better understand the basic concepts and
examples discussed.
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Videos: The video library for the book has been significantly enhanced by the addition of
76 new videos directly related to the text material, bringing the total number to 152. They
illustrate many of the interesting and practical applications of real-world fluid phenomena.
In addition to being located at the appropriate places within the text, they are all listed, each
with an appropriate thumbnail photo, in a new video index. In the electronic version of the
book, the videos can be selected directly from this index.

Examples: The book contains several new example problems that involve various fluid
flow fundamentals. These examples also incorporate PtD (Prevention through Design) dis-
cussion material. The PtD project, under the direction of the National Institute for Occupa-
tional Safety and Health, involves, in part, the use of textbooks to encourage the proper design
and use of workday equipment and material so as to reduce accidents and injuries in the
workplace.

List of equations: Each chapter ends with a new summary of the most important equations in
the chapter.

Problems: The book contains approximately 273 new homework problems, bringing the total
number to 919. The print version of the book contains all the even-numbered problems; all the
problems (even and odd numbered) are contained on the book’s web site, www.wiley.com/
college/young, or WileyPLUS. There are several new problems in which the student is asked
to find a photograph or image of a particular flow situation and write a paragraph describing
it. In addition, each chapter contains new Lifelong Learning Problems (i.e., one aspect of the
lifelong learning as interpreted by the authors) that ask the student to obtain information about
a given new flow concept and to write about it.

Key Features

Illustrations, Photographs, and Videos

Fluid mechanics has always been a “visual” subject—much can be learned by viewing various
aspects of fluid flow. In this new edition we have made several changes to reflect the fact that
with new advances in technology, this visual component is becoming easier to incorporate into
the learning environment, for both access and delivery, and is an important component to the
learning of fluid mechanics. Thus, approximately 372 new photographs and illustrations have
been added to the book. Some of these are within the text material; some are used to enhance
the example problems; and some are included as marginal figures of the type shown in the left
margin to more clearly illustrate various points discussed in the text. In addition, 76 new video
segments have been added, bringing the total number of video segments to 152. These video
segments illustrate many interesting and practical applications of real-world fluid phenomena.
Many involve new CFD (computational fluid dynamics) material. Each video segment is iden-
tified at the appropriate location in the text material by a video icon and thumbnail photograph
of the type shown in the left margin. Each video segment has a separate associated text
description of what is shown in the video. There are many homework problems that are directly
related to the topics in the videos.

Examples

One of our aims is to represent fluid mechanics as it really is—an exciting and useful discipline.
To this end, we include analyses of numerous everyday examples of fluid-flow phenomena to
which students and faculty can easily relate. In the fifth edition 163 examples are presented
that provide detailed solutions to a variety of problems. Several of the examples are new to this
edition. Many of the examples have been extended to illustrate what happens if one or more
of the parameters is changed. This gives the user a better feel for some of the basic principles
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involved. In addition, many of the examples contain new photographs of the actual device
or item involved in the example. Also, all the examples are outlined and carried out with
the problem-solving methodology of “Given, Find, Solution, and Comment” as discussed
in the “Note to User” before Example 1.1. This edition contains several new example problems
that incorporate PtD (Prevention through Design) discussion material as indicated on the
previous page.

Fluids in the News

A set of 63 short “Fluids in the News” stories that reflect some of the latest important and
novel ways that fluid mechanics affects our lives is provided. Many of these problems have
homework problems associated with them.

Homework Problems

A set of 919 homework problems is provided. This represents an increase of approximately
42% more problems than in the previous edition. The even-numbered problems are in the
print version of the book; all of the problems (even and odd) are at the book’s web site,
www.wiley.com/college/young, or WileyPLUS. These problems stress the practical applica-
tion of principles. The problems are grouped and identified according to topic. An effort has
been made to include several easier problems at the start of each group. The following types
of problems are included:

1) “standard” problems 9) new “Lifelong Learning” problems

2) computer problems 10) problems that require the user to obtain a
3) discussion problems photograph or image of a given flow situation
4) supply-your-own-data problems and write a brief paragraph to describe it

5) review problems with solutions 11) simple CFD problems to be solved using
6) problems based on the “Fluids in the FlowLab

News” topics 12) Fundamental of Engineering (FE) exam
7) problems based on the fluid videos questions available on book web site

8) Excel-based lab problems
Lab Problems—There are 30 extended, laboratory-type problems that involve actual experi-
mental data for simple experiments of the type that are often found in the laboratory portion
of many introductory fluid mechanics courses. The data for these problems are provided in
Excel format.
Lifelong Learning Problems—There are 33 new lifelong learning problems that involve
obtaining additional information about various new state-of-the-art fluid mechanics topics
and writing a brief report about this material.
Review Problems—There is a set of 186 review problems covering most of the main topics in
the book. Complete, detailed solutions to these problems can be found in the Student Solution
Manual and Study Guide for A Brief Introduction to Fluid Mechanics, by Young et al. (© 2011
John Wiley and Sons, Inc.).

Well-Paced Concept and Problem-Solving Development

Since this is an introductory text, we have designed the presentation of material to allow for
the gradual development of student confidence in fluid problem solving. Each important con-
cept or notion is considered in terms of simple and easy-to-understand circumstances before
more complicated features are introduced.
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Several brief components have been added to each chapter to help the user obtain the
“big picture” idea of what key knowledge is to be gained from the chapter. A brief Learning
Objectives section is provided at the beginning of each chapter. It is helpful to read through
this list prior to reading the chapter to gain a preview of the main concepts presented. Upon
completion of the chapter, it is beneficial to look back at the original learning objectives to en-
sure that a satisfactory level of understanding has been acquired for each item. Additional re-
inforcement of these learning objectives is provided in the form of a Chapter Summary and
Study Guide at the end of each chapter. In this section a brief summary of the key concepts and
principles introduced in the chapter is included along with a listing of important terms with
which the student should be familiar. These terms are highlighted in the text. A new list of the
main equations in the chapter is included in the chapter summary.

System of Units

Two systems of units continue to be used throughout most of the text: the International Sys-
tem of Units (newtons, kilograms, meters, and seconds) and the British Gravitational System
(pounds, slugs, feet, and seconds). About one-half of the examples and homework problems
are in each set of units.

Topical Organization

In the first four chapters the student is made aware of some fundamental aspects of fluid mo-
tion, including important fluid properties, regimes of flow, pressure variations in fluids at rest
and in motion, fluid kinematics, and methods of flow description and analysis. The Bernoulli
equation is introduced in Chapter 3 to draw attention, early on, to some of the interesting ef-
fects of fluid motion on the distribution of pressure in a flow field. We believe that this timely
consideration of elementary fluid dynamics increases student enthusiasm for the more com-
plicated material that follows. In Chapter 4 we convey the essential elements of kinematics, in-
cluding Eulerian and Lagrangian mathematical descriptions of flow phenomena, and indicate
the vital relationship between the two views. For teachers who wish to consider kinematics in
detail before the material on elementary fluid dynamics, Chapters 3 and 4 can be interchanged
without loss of continuity.

Chapters 5, 6, and 7 expand on the basic analysis methods generally used to solve or to
begin solving fluid mechanics problems. Emphasis is placed on understanding how flow phe-
nomena are described mathematically and on when and how to use infinitesimal and finite
control volumes. The effects of fluid friction on pressure and velocity distributions are also
considered in some detail. A formal course in thermodynamics is not required to understand
the various portions of the text that consider some elementary aspects of the thermodynamics
of fluid flow. Chapter 7 features the advantages of using dimensional analysis and similitude
for organizing test data and for planning experiments and the basic techniques involved.

Owing to the growing importance of computational fluid dynamics (CFD) in engineer-
ing design and analysis, material on this subject is included in Appendix A. This material may
be omitted without any loss of continuity to the rest of the text. This introductory CFD
overview includes examples and problems of various interesting flow situations that are to be
solved using FlowLab software.

Chapters 8 through 11 offer students opportunities for the further application of the prin-
ciples learned early in the text. Also, where appropriate, additional important notions such as
boundary layers, transition from laminar to turbulent flow, turbulence modeling, and flow sep-
aration are introduced. Practical concerns such as pipe flow, open-channel flow, flow mea-
surement, drag and lift, and the fluid mechanics fundamentals associated with turbomachines
are included.
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Students who study this text and who solve a representative set of the exercises
provided should acquire a useful knowledge of the fundamentals of fluid mechanics.
Faculty who use this text are provided with numerous topics to select from in order to
meet the objectives of their own courses. More material is included than can be reason-
ably covered in one term. All are reminded of the fine collection of supplementary mate-
rial. We have cited throughout the text various articles and books that are available for
enrichment.

Student and Instructor Resources

Student Solution Manual and Study Guide, by Young et al. (© 2011 John Wiley and Sons,
Inc.)—This short paperback book is available as a supplement for the text. It provides detailed
solutions to the Review Problems and a concise overview of the essential points of most of the
main sections of the text, along with appropriate equations, illustrations, and worked exam-
ples. This supplement is available through your local bookstore, or you may purchase it on the
Wiley web site at www.wiley.com/college/young.

Student Companion Site—The student section of the book web site at www.wiley.com/college/
young contains the assets that follow. Access is free of charge with the registration code in-
cluded in the front of every new book.

Video Library CFD-Driven Cavity Example
Review Problems with Answers FlowLab Tutorial and User’s Guide
Lab Problems FlowLab Problems

Comprehensive Table of Conversion Factors

Instructor Companion Site—The instructor section of the book web site at www.wiley
.com/college/young contains the assets in the Student Companion Site, as well as the following,
which are available only to professors who adopt this book for classroom use:

m Instructor Solutions Manual, containing complete, detailed solutions to all of the prob-
lems in the text.

m Figures from the text, appropriate for use in lecture slides.

These instructor materials are password-protected. Visit the Instructor Companion Site to reg-
ister for a password.

FlowLab®—In cooperation with Wiley, Ansys Inc. is offering to instructors who adopt this
text the option to have FlowLab software installed in their department lab free of charge.
(This offer is available in the Americas only; fees vary by geographic region outside the
Americas.) FlowLab is a CFD package that allows students to solve fluid dynamics problems
without requiring a long training period. This software introduces CFD technology to under-
graduates and uses CFD to excite students about fluid dynamics and learning more about
transport phenomena of all kinds. To learn more about FlowLab and request installation in
your department, visit the Instructor Companion Site at www.wiley.com/college/young, or
WileyPLUS.

WileyPLUS—WileyPLUS combines the complete, dynamic online text with all of the teach-
ing and learning resources you need in one easy-to-use system. The instructor assigns
WileyPLUS, but students decide how to buy it: They can buy the new, printed text packaged
with a WileyPLUS registration code at no additional cost or choose digital delivery of Wiley-
PLUS, use the online text and integrated read, study, and practice tools, and save off the cost
of the new book.
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[Featured in This Book

FLUIDS IN THE NEWS

Throughout the book are many brief
news stories involving current, sometimes
novel, applications of fluid phenomena.
Many of these stories have homework
problems associated with them.

F I ui d s i n

t h e N e w s

Incorrect raindrop shape The incorrect representation that
raindrops are teardrop shaped is found nearly everywhere—
from children’s books to weather maps on the Weather Chan-
nel. About the only time raindrops possess the typical teardrop
shape is when they run down a windowpane. The actual shape
of a falling raindrop is a function of the size of the drop and re-
sults from a balance between surface tension forces and the air
pressure exerted on the falling drop. Small drops with a radius
less than about 0.5 mm have a spherical shape because the sur-
face tension effect (which is inversely proportional to drop

size) wins over the increased pressure, pV3/2, caused by the
motion of the drop and exerted on its bottom. With increasing
size, the drops fall faster and the increased pressure causes the
drops to flatten. A 2-mm drop, for example, is flattened into a
hamburger bun shape. Slightly larger drops are actually con-
cave on the bottom. When the radius is greater than about 4 mm,
the depression of the bottom increases and the drop takes on
the form of an inverted bag with an annular ring of water
around its base. This ring finally breaks up into smaller drops.
(See Problem 3.22.)

4.5 Chapter Summary and Study Guide

field representation
velocity field
Eulerian method

This chapter considered several fundamental concepts of fluid kinematics. That is, various
aspects of fluid motion are discussed without regard to the forces needed to produce this motion.
The concepts of a field representation of a flow and the Eulerian and Lagrangian approaches
to describing a flow are introduced, as are the concepts of velocity and acceleration fields.

The properties of one-, two-, or three-dimensional flows and steady or unsteady flows
are introduced along with the concepts of streamlines, streaklines, and pathlines. Streamlines,
which are lines tangent to the velocity field, are identical to streaklines and pathlines if the
flow is steady. For unsteady flows, they need not be identical.

As a fluid particle moves about, its properties (i.e., velocity, density, temperature) may
change. The rate of change of these properties can be obtained by using the material deriva-
tive, which involves both unsteady effects (time rate of change at a fixed location) and convec-
tive effects (time rate of change due to the motion of the particle from one location to another).

The concepts of a control volume and a system are introduced, and the Reynolds trans-
port theorem is developed. By using these ideas, the analysis of flows can be carried out
comvective acceleration  USINg a control volume (a fixed volume through which the fluid flows), whereas the gov-
system erning principles are stated in terms of a system (a flowing portion of fluid).

y The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed you should be able to

Lagrangian method
one-, two-, and
three-dimensional
flow
steady and
unsteady flow
streamline
streakline
pathline
acceleration field
material derivative
local acceleration

control volume
Reynolds transport

theorem ® write out the meanings of the terms listed here in the margin and understand each of

the related concepts. These terms are particularly important and are set in color and
bold type in the text.

®m understand the concept of the field representation of a flow and the difference between
Eulerian and Lagrangian methods of describing a flow.

< CHAPTER SUMMARY AND

STUDY GUIDE

At the end of each chapter is a brief
summary of key concepts and principles in-
troduced in the chapter along with key terms
involved and a list of important equations.

BOXED EQUATIONS

Important equations are boxed to help the
user identify them.

of Use of the Bernoulli Equation

MARGINAL FIGURES LA
A set of simple figures and

photographs in the margins is provided

to help the students visualize concepts

being described. g

Between any two points, (1) and (2), on a streamliny jn steady, inviscid, incompressible
flow the Bernoulli equation (Eq. 3.6) can be applied Mghe form

(3.14)

Pt iVt vz =pa +1pVE + v

The use of this equation is discussed in this section,

3.6.1 Free Jets

Consider flow of a liquid from a large reservoir as is shown in Fig. 3.7 or from a coffee urn as
indicated by the figure in the margin. A jet of liquid of diameter d flows from the nozzle with

4.1 The Velocity Field

FLUID VIDEOS

A set of videos illustrating interesting
and practical applications of fluid phe-
nomena is provided on the book web
site. An icon in the margin identifies
each video. Many homework problems
are tied to the videos.

N

V4.3 Cylinder-
velocity vectors

The infinitesimal particles of a fluid are tightly packed together (as is implied by the contin-
uum assumption). Thus, at a given instant in time, a description of any fluid property (such as
density, pressure, velocity, and acceleration) may be given as a function of the fluid’s location.
This representation of fluid parameters as functions of the spatial coordinates is termed a field
representation of the flow. Of course, the specific field representation may be different at dif-
ferent times, so that to describe a fluid flow we must determine the various parameters not only
as a function of the spatial coordinates (x, y, z, for example) but also as a function of time, 7.
One of the most important fluid variables is the velocity field,
V= u(x,y, 2 0F + vy, 2, 1)) + wix, v, z, 0k
where u, v, and w are the x, y, and z components of the velocity vector. By definition, the
velocity of a particle is the time rate of change of the position vector for that particle. As
is illustrated in Fig. 4.1, the position of particle A relative to the coordinate system is given
by its position vector; r,, which (if the particle is moving) is a function of time. The time
derivative of this position gives the velocity of the particle, dr/di = V.
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XAMPLE 3.6 il

GIVEN  Anairplane flies 200 mph at an elevation of 10,000 ft
in a standard atmosphere as shown in Fig. E3.6a.

FIND  Determine the pressure at point (1) far ahead of the
airplane, the pressure at the stagnation point on the nose of the
airplane, point (2), and the pressure difference indicated by a
Pitot-static probe attached to the fuselage.

SoLuTion

From Table C.1 we find that the static pressure at the altitude
given is
Pp1 = 1456 I/f> (abs) = 10.11psia  (Ans)

Also the density is p = 0.001756 slug/fc.
If the flow is steady, inviscid, and incompressible and ele-
vation changes are neglected, Eq. 3.6 becomes

Vi
p2=pi + >
With V; = 200 mph = 293 ft/s and V, = 0 (since the coordi-
nate system is fixed to the airplane) we obtain
Py = 1456 Ib/fE + (0.001756 slugs/ft*)(293 fu/s)¥/2
= (1456 + 75.4) Ib/ft? (abs)
Hence, in terms of gage pressure
Py = 754 b/f¢ = 0.524 psi (Ans)
Thus, the pressure difference indicated by the Pitot-static tube is

Vi :
P pi =5 = 0524 psi (Ans)

COMMENTS Note that it is very easy to obtain incorrect
results by using improper units. Do not add Ib/in. and Ib/fi%.
Note that (slug/f)(fts?) = (slug-f/s’)/(fi%) = Ib/f.

Featured in This Book

V; = 200 mph

B FIGURE E3.6a (Photo
courtesy of Hawker Beecheraft.)

It was assumed that the flow is incompressible—the den-
sity remains constant from (1) to (2). However, because
p = pIRT, a change in pressure (or temperature) will cause a
change in density. For this relatively low speed, the ratio of the
absolute pressures is nearly unity [ie., pi/p, = (10.11
psia)/(10.11 + 0.524 psia) = 0.951] so that the density change
is negligible. However, by repeating the calculations for vari-
ous values of the speed, V, the results shown in Fig. E3.6b are
obtained. Clearly at the 500- to 600-mph speeds normally flown
by commercial airliners, the pressure ratio is such that density
changes are important. In such situations it is necessary to use
compressible flow concepts to obtain accurate results.

1

0.8 | 200 mph, 0.951)

0.6

Pilpz

0.4
0.2

0 100 200 300 400 500 600
vy, mph
B FIGURE E3.6b

REVIEW PROBLEMS

On the book web site are nearly 200 Review Problems
covering most of the main topics in the book.
Complete, detailed solutions to these problems are

found in the supplement Student Solutions Manual for
A Brief Introduction to Fundamentals of Fluid
Mechanics, by Young et al. (© 2011 John Wiley and

Sons, Inc.)

174 Chapter 5 ® Finite Control Volume Analysis

~N\ /S

Fan

I I ¥ V=30W§r Air curtain
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101t

|| [r—0pen door

B FIGURE P5.92

Section 5.3 The Energy and Linear Momentum
Equations

5.94 Two water jets collide and form one homogeneous jet as g al Problems

shown in Fig. P5.94. (a) Determine the speed, V. and direc-
tion, 6, of the combined jet. (b) Determine the loss for a fluid
particle flowing from (1) to (3), from (2) to (3). Gravity is
negligible.

the anchoring force needed to keep the end cap stationary is
60 Ib. Determine the head loss for the flow through the end cap.

(LR

Area=0.10 112

Area=0.12 12
v=101ts

B FIGURE P5.96

8 This problem involves the force that a jet of air exerts on
a flat plate as the air is deflected by the plate. To proceed with
this problem, go to the book’s web site, www.wiley.com/college/

young, or WileyPLUS.

Vi=dmis
EFIGURE P5.94

5.100 This problem involves the force that a jet of water exerts
on a vane when the vane turns the jet through a given angle. To
proceed with this problem, go to the book’s web site, www.wiley
‘com/college/young, or WileyPLUS.

W Lifelong Learning Problems

5102 What are typical efficiencies associated with swimming
and how can they be improved?

04 Discuss the main causes of loss of available energy in a

turbo-pump and how they can be minimized. What are typical
turbo-pump efficiencies?

B FE Exam Problems

5.96 Water flows steadily in a pipe and exits as a free jet  Sample FE (Fundamentals of Engincering) exam questions for

through an end cap that contains a filter as shown in Fig. P5.96.

fluid mechanics are provided on the book’s web site, www

The flow is in a horizontal plane. The axial component, R,, of .wiley.com/college/young, or WileyPLUS.

<— EXAMPLE PROBLEMS

A set of example problems provides the
student detailed solutions and comments
for interesting, real-world situations.

CHAPTER EQUATIONS

At the end of each chapter is a
summary of the most important

equatlons.
. dy v
Equation for streamlines —=— @.n
dru
av v av | av
Acceleration A= du— v w— @.3)
a o ax oy iz
Material derivative p0) ) | vV-v)() (4.6)
Dt ar )
Streamwise and normal v s
components of acceleration % = V& @ = G «@n
DB, B,
Reynolds transport theorem  —= = =75 + 3 poy A Voo = Zpin AViobin (4:14)
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Review Problems

Go to Appendix F for a set of review problems with answers. a Brief Introduction to Fluid Mechanics, by Young et al. (©
Detailed solutions can be found in Student Solution Manual for 2010 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated use the values of fluid college/young. The lab-type problems, F]
properties found in the tables on the inside of the front nd the videos that accompay
cover. Problems designated with an (*) are intended to be essed on these web sites.
solved with the programmable calculator or a com-
puter. Problems designated with a () are “open-ended”  Section 4.1 The Velocity Field
problems and require critical thinking in that to work them
one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.
The even-numbered problems are included in the
hard copy version of the hook, and the answers to these 4.4 A flow can be visualized by plotting the velocity field as
even-numbered problems are listed at the e velocity vectors at representative locations in the flow as shown
Odd-numbered problems are provids ) in Video V4.2 and Fig. E4.1. Consider the velocity field given in
in Appendix L on the book’s web site, www.wiley.com/ polar coordinates by v, —10/r and vy = 10/r. This flow

S problems, Flow
problems can also

‘The components of a velocity field are given by u = x + y,
v = xy’ + 16, and w = 0. Determine the location of any stag-
nation points (V = 0) in the flow field

<—— LAB PROBLEMS

On the book web site is a set of lab problems
in Excel format involving actual data for
experiments of the type found in many
introductory fluid mechanics labs.
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STUDENT SOLUTIONS MANUAL

A BRIEF INTRODUCTION TO

FLUID MECHANICS

FIFTH EDITION

ad

PROBLEMS ~ *

A generous set of homework problems
at the end of each chapter stresses the
practical applications of fluid mechan-
ics principles. This set contains 919
homework problems.
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STUDENT SOLUTIONS MANUAL

A brief paperback book titled Student Solutions
Manual for A Brief Introduction to Fluid Mechanics,
by Young et al. (© 2011 John Wiley and Sons,
Inc.), is available. It contains detailed solutions to
the Review Problems.

hose, what pressure must be maintained just upstream of the
nozzle to deliver this flowrate?

v=20ts |
3.37 Airis drawn into a wind tunnel used for testing automo-
biles as shown in Fig. P3.37. (a) Determine the manometer
reading, h, when the velocity in the test section is 60 mph. Note
that there is a 1-in. column of oil on the water in the manometer.
(b) Determine the difference between the stagnation pressure on

D r |1.5-in. diameter
the front of the automobile and the pressure in the test section.

1

& Wind tunnel EFIGURE P3.43
s
\C: 60 mph = - . -
- 7 3.45 Wateris siphoned from the tank shown in Fig. P3 45. The
; @ < water barometer indicates a reading of 30.2 ft. Determine the
s maximum value of / allowed without cavitation occurring. Note
that the pressure of the vapor in the closed end of the barometer

y~Open Fan
T,, o equals the vapor pressure.
in
Water- 0il (SG = 0.9)

B FIGURE P3.37

Closed end

3.39 Water (assumed inviscid and incompressible) flows
steadily in the vertical variable-area pipe shown in Fig. P3.39.
Determine the flowrate if the pressure in each of the gages reads
50 kPa.

10m p=50KkPa

B FIGURE P3.39

3.41 Water flows through the pipe contraction shown in Fig.
P3.41. For the given 0.2-m difference in the manometer level,
determine the flowrate as a function of the diameter of the small
pipe. D.

B FIGURE P3.41

3.43 Water flows steadily with negligible viscous effects
through the pipe shown in Fig. P3.43. Determine the diame-
ter, D, of the pipe at the outlet (a free jet) if the velocity there is
20 f/s.

3in
diameter
302 ft ]

B FIGURE P3.45

347 An inviscid fluid flows steadily through the contraction
shown in Fig. P3.47. Derive an expression for the fluid velocity
at (2) in terms of Dy, Dy, p. p,e and i if the flow is assumed
incompressible.

II et P

B FIGURE P3.47

3.49 Carbon dioxide flows at a rate of 1.5 ft¥/s from a 3-in. pipe
in which the pressure and temperature are 20 psi (gage) and 120 °F,
respectively, into a 1.5-in. pipe. If viscous effects are neglected
and incompressible conditions are assumed, determine the pres-
sure in the smaller pipe.

-<—— CFD AND FlowLab

For those who wish to become familiar with the
basic concepts of computational fluid dynamics,
an overview to CFD is provided in Appendices
A and I. In addition, the use of FlowLab software
to solve interesting flow problems is described in
Appendices J and K.
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Introduciion

CHAPTER OPENING PHOTO: The nature of air bubbles rising in a liquid is a function of fluid proper-
ties such as density, viscosity, and surface tension. (Air in soap.) (Photograph copyright 2007 by
Andrew Davidhazy, Rochester Institute of Technology.)

Learning Objectives

After completing this chapter, you should be able to:

determine the dimensions and units of physical quantities.

identify the key fluid properties used in the analysis of fluid behavior.
calculate common fluid properties given appropriate information.
explain effects of fluid compressibility.

use the concepts of viscosity, vapor pressure, and surface tension.
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R

(Photograph courtesy
of CIRRUS Design
Corporation.)

V1.1 Mt. St. Helens
eruption

V1.2 E. coli
swimming

Fluid mechanics is the discipline within the broad field of applied mechanics that is con-
cerned with the behavior of liquids and gases at rest or in motion. It covers a vast array of
phenomena that occur in nature (with or without human intervention), in biology, and in
numerous engineered, invented, or manufactured situations. There are few aspects of our
lives that do not involve fluids, either directly or indirectly.

The immense range of different flow conditions is mind-boggling and strongly depen-
dent on the value of the numerous parameters that describe fluid flow. Among the long list
of parameters involved are (1) the physical size of the flow, €; (2) the speed of the flow,
V; and (3) the pressure, p, as indicated in the figure in the margin for a light aircraft para-
chute recovery system. These are just three of the important parameters that, along with
many others, are discussed in detail in various sections of this book. To get an inkling of
the range of some of the parameter values involved and the flow situations generated, con-
sider the following.

m Size, ¢
Every flow has a characteristic (or typical) length associated with it. For example,
for flow of fluid within pipes, the pipe diameter is a characteristic length. Pipe flows
include the flow of water in the pipes in our homes, the blood flow in our arteries
and veins, and the airflow in our bronchial tree. They also involve pipe sizes that are
not within our everyday experiences. Such examples include the flow of oil across
Alaska through a 4-foot-diameter, 799-mile-long pipe and, at the other end of the size
scale, the new area of interest involving flow in nanoscale pipes whose diameters are

10% —
I=— Jupiter red spot diameter
106 —|=— Ocean current diameter 106 —
<— Diameter of hurricane
i<— Meteor entering atmosphere
104 = Mt. St. Helens plume 10% - 106 —
I=— Space Shuttle reentry
l<— Average width of middle [<— Rocket nozzle exhaust | Water jet cutting
Mississippi River =— Speed of sound in air __ Mariana Trench in Pacific
2 _| 2 _|=— Tornado 4 _|" Ocean
10 10 10 ~— Hydraulic ram
I<~— Boeing 787 | P
. NACAgAmes wind tunnel Water from T|re |l105e nozzle <« Scuba tgnk ,
=~ Flow past bike rider <— Car engine combustion
| Diameter of Space Shuttle )
g 10° -  main engine exhaust jet 10° —=— Mississippi River 10° -1/ Fire hydrant
Ny ~— Outboard motor prop » [/~ Auto tire
€ |«— Standard atmosphere
e o T = s " o, “Excess pressure” on hand
<— Water pipe diameter I=<— Syrup on pancake ES i
102 pip 102 S 100 helrri] out of car traveling 60
I=— Raindrop q mp
~— Atmospheric pressure on
. ’ Mars
<— Water jet cutter width }
10 —{=— Amoeba 10 —{=— Microscopic swimming 102 — Pressurie‘ cha”n_ge causing
<— Thickness of lubricating oil animal ears to “pop” in elevator
layer in journal bearing Pressure at 40-mile altitude
<— Diameter of smallest blood
vessel i
106 106 Glacier flow 104
<— Artificial kidney filter <— Vacuum pump
pore size Sound pressure at normal
10® I~ Nanoscale devices 108 I~ Continental drift 106 talking

(a) (b) (c)

B FIGURE 1.1 Characteristic values of some fluid flow parameters for a variety of flows:
(a) object size, (b) fluid speed, (c) fluid pressure.
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on the order of 1078 m. Each of these pipe flows has important characteristics that are
not found in the others.
Characteristic lengths of some other flows are shown in Fig. 1.1a.
m Speed, V
As we note from The Weather Channel, on a given day the wind speed may cover what
we think of as a wide range, from a gentle 5-mph breeze to a 100-mph hurricane or
a 250-mph tornado. However, this speed range is small compared to that of the almost
imperceptible flow of the fluid-like magma below the Earth’s surface that drives the
continental drift motion of the tectonic plates at a speed of about 2 X 10™® m/s or the hyper-
sonic airflow past a meteor as it streaks through the atmosphere at 3 X 10* m/s.
Characteristic speeds of some other flows are shown in Fig. 1.1b.

m Pressure, P
Characteristic pressures of some flows are shown in Fig. 1.1c.

1.1 Some Characteristics of Fluids

Surface

One of the first questions we need to explore is—what is a fluid? Or we might ask—
what is the difference between a solid and a fluid? We have a general, vague idea of the
difference. A solid is “hard” and not easily deformed, whereas a fluid is “soft” and is
easily deformed (we can readily move through air). Although quite descriptive, these
casual observations of the differences between solids and fluids are not very satisfactory
from a scientific or engineering point of view. A more specific distinction is based on
how materials deform under the action of an external load. A fluid is defined as a sub-
stance that deforms continuously when acted on by a shearing stress of any magnitude.
A shearing stress (force per unit area) is created whenever a tangential force acts on a
surface as shown by the figure in the margin. When common solids such as steel or other
metals are acted on by a shearing stress, they will initially deform (usually a very small
deformation), but they will not continuously deform (flow). However, common fluids such
as water, oil, and air satisfy the definition of a fluid—that is, they will flow when acted
on by a shearing stress. Some materials, such as slurries, tar, putty, toothpaste, and so on,
are not easily classified since they will behave as a solid if the applied shearing stress is
small, but if the stress exceeds some critical value, the substance will flow. The study of
such materials is called rheology and does not fall within the province of classical fluid
mechanics.

Although the molecular structure of fluids is important in distinguishing one fluid
from another, because of the large number of molecules involved, it is not possible to study
the behavior of individual molecules when trying to describe the behavior of fluids at rest
or in motion. Rather, we characterize the behavior by considering the average, or macro-
scopic, value of the quantity of interest, where the average is evaluated over a small vol-
ume containing a large number of molecules.

We thus assume that all the fluid characteristics we are interested in (pressure, veloc-
ity, etc.) vary continuously throughout the fluid—that is, we treat the fluid as a continuum.
This concept will certainly be valid for all the circumstances considered in this text.

1.2 Dimensions, Dimensional Homogeneity, and Units

Since we will be dealing with a variety of fluid characteristics in our study of fluid mechan-
ics, it is necessary to develop a system for describing these characteristics both qualitatively
and quantitatively. The qualitative aspect serves to identify the nature, or type, of the
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characteristics (such as length, time, stress, and velocity), whereas the quantitative aspect
provides a numerical measure of the characteristics. The quantitative description requires
both a number and a standard by which various quantities can be compared. A standard for
length might be a meter or foot, for time an hour or second, and for mass a slug or kilo-
gram. Such standards are called units, and several systems of units are in common use as
described in the following section. The qualitative description is conveniently given in terms
of certain primary quantities, such as length, L, time, 7, mass, M, and temperature, ©. These
primary quantities can then be used to provide a qualitative description of any other sec-
ondary quantity, for example, area = L?, velocity = LT ', density = ML, and so on, where
the symbol = is used to indicate the dimensions of the secondary quantity in terms of the
primary quantities. Thus, to describe qualitatively a velocity, V, we would write

V=1LT""'

and say that “the dimensions of a velocity equal length divided by time.” The primary quan-
tities are also referred to as basic dimensions.

For a wide variety of problems involving fluid mechanics, only the three basic dimen-
sions, L, T, and M, are required. Alternatively, L, T, and F could be used, where F is the
basic dimension of force. Since Newton’s law states that force is equal to mass times accel-
eration, it follows that F = MLT % or M = FL™'T? Thus, secondary quantities expressed in
terms of M can be expressed in terms of F through the relationship just given. For example,
stress, o, is a force per unit area, so that o = FL™2, but an equivalent dimensional equation
is 0 = ML 'T 2 Table 1.1 provides a list of dimensions for a number of common physical
quantities.

All theoretically derived equations are dimensionally homogeneous—that is, the
dimensions of the left side of the equation must be the same as those on the right side, and
all additive separate terms must have the same dimensions. We accept as a fundamental

Dimensions Associated with Common Physical Quantities

FLT MLT FLT MLT

System System System System
Acceleration LT™? LT™? Momentum FT MLT™!
Angle FOLOT® M°LOT® Power FLT™! ML*T3
Angular acceleration T2 T2 Pressure FL™? ML™'T?
Angular velocity 7! 7! Specific heat L’T207! L’T207!
Area L’ L? Specific weight FL™? ML™T?
Density FL™*T? ML Strain FOLOT® M°LOT®
Energy FL ML*T™? Stress FL™? ML™'T?
Force F MLT ™ Surface tension FL™! MT™?
Frequency 7! 7! Temperature (6] (6]
Heat FL ML*T? Time T T
Length L L Torque FL ML*T?
Mass FL™'T? M Velocity LT™! LT™!
Modulus of elasticity FL™? ML™'T™? Viscosity (dynamic) FL™*T ML™'T™!
Moment of a force FL ML*T? Viscosity (kinematic) L1 1!
Moment of inertia (area) L L Volume L’ L’
Moment of inertia (mass) FLT? MIL? Work FL ML*T?
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premise that all equations describing physical phenomena must be dimensionally homoge-
neous. For example, the equation for the velocity, V, of a uniformly accelerated body is

V=V, +at (1.1)

where Vs the initial velocity, a the acceleration, and ¢ the time interval. In terms of dimen-
sions the equation is

LT '=LT '+ LT

and thus Eq. 1.1 is dimensionally homogeneous.
Some equations that are known to be valid contain constants having dimensions. The
equation for the distance, d, traveled by a freely falling body can be written as

d=16.1¢> (1.2)

and a check of the dimensions reveals that the constant must have the dimensions of LT 2
if the equation is to be dimensionally homogeneous. Actually, Eq. 1.2 is a special form of
the well-known equation from physics for freely falling bodies,
_ s

2

d 1.3)
in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and
valid in any system of units. For g = 32.2 ft/s* the equation reduces to Eq. 1.2, and thus
Eq. 1.2 is valid only for the system of units using feet and seconds. Equations that are
restricted to a particular system of units can be denoted as restricted homogeneous equa-
tions, as opposed to equations valid in any system of units, which are general homogeneous
equations. The concept of dimensions also forms the basis for the powerful tool of dimen-
sional analysis, which is considered in detail in Chapter 7.

Note to the users of this text. All of the examples in the text use a consistent problem-
solving methodology, which is similar to that in other engineering courses such as statics.
Each example highlights the key elements of analysis: Given, Find, Solution, and Comment.

The Given and Find are steps that ensure the user understands what is being asked
in the problem and explicitly list the items provided to help solve the problem.

The Solution step is where the equations needed to solve the problem are formulated
and the problem is actually solved. In this step, there are typically several other tasks that
help to set up the solution and are required to solve the problem. The first is a drawing of
the problem; where appropriate, it is always helpful to draw a sketch of the problem. Here
the relevant geometry and coordinate system to be used as well as features such as control
volumes, forces and pressures, velocities, and mass flow rates are included. This helps in
gaining a visual understanding of the problem. Making appropriate assumptions to solve
the problem is the second task. In a realistic engineering problem-solving environment, the
necessary assumptions are developed as an integral part of the solution process. Assump-
tions can provide appropriate simplifications or offer useful constraints, both of which can
help in solving the problem. Throughout the examples in this text, the necessary assump-
tions are embedded within the Solution step, as they are in solving a real-world problem.
This provides a realistic problem-solving experience.

The final element in the methodology is the Comment. For the examples in the text,
this section is used to provide further insight into the problem or the solution. It can also
be a point in the analysis at which certain questions are posed. For example: Is the answer
reasonable, and does it make physical sense? Are the final units correct? If a certain pa-
rameter were changed, how would the answer change? Adopting this type of methodology
will aid in the development of problem-solving skills for fluid mechanics, as well as other
engineering disciplines.
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GIVEN A commonly used equation for determining the
volume rate of flow, O, of a liquid through an orifice located in
the side of a tank as shown in Fig. E1.1 is

0 = 0.61A\2gh

where A is the area of the orifice, g is the acceleration of grav-
ity, and 4 is the height of the liquid above the orifice.

FIND Investigate the dimensional homogeneity of this
formula.

SoLuTION

_EXAMPLE | Restricted and General Homogeneous Equations

=

B FIGURE Ei11

The dimensions of the various terms in the equation are
0 = volume/time = LT !
A = area = [?
g = acceleration of gravity = LT 2
h = height = L

These terms, when substituted into the equation, yield the
dimensional form

(LT = DE)(VLT ) (L)"
or
(LT = [(0.61)V2 (LT~

It is clear from this result that the equation is dimensionally ho-
mogeneous (both sides of the formula have the same dimensions
of I*T™"), and the number (0.61 \/2) is dimensionless.

COMMENT If we were going to use this relationship re-
peatedly, we might be tempted to simplify it by replacing g
with its standard value of 32.2 ft/s> and rewriting the formula as

0 =490AVh 1)

A quick check of the dimensions reveals that
L3T ™" = (4.90)(L*?)

and, therefore, the equation expressed as Eq. 1 can only be
dimensionally correct if the number, 4.90, has the dimensions
of LY2T~!. Whenever a number appearing in an equation or
formula has dimensions, it means that the specific value of
the number will depend on the system of units used. Thus,
for the case being considered with feet and seconds used as
units, the number 4.90 has units of ft'/%/s. Equation 1 will only
give the correct value for Q (in ft*/s) when A is expressed in
square feet and / in feet. Thus, Eq. 1 is a restricted homoge-
neous equation, whereas the original equation is a general ho-
mogeneous equation that would be valid for any consistent
system of units. A quick check of the dimensions of the vari-
ous terms in an equation is a useful practice and will often be
helpful in eliminating errors—that is, as noted previously, all
physically meaningful equations must be dimensionally ho-
mogeneous. We have briefly alluded to units in this example,
and this important topic will be considered in more detail in
the next section.

1.2.1 Systems of Units

In addition to the qualitative description of the various quantities of interest, it is generally
necessary to have a quantitative measure of any given quantity. For example, if we measure
the width of this page in the book and say that it is 10 units wide, the statement has no
meaning until the unit of length is defined. If we indicate that the unit of length is a meter,
and define the meter as some standard length, a unit system for length has been established
(and a numerical value can be given to the page width). In addition to length, a unit must
be established for each of the remaining basic quantities (force, mass, time, and tempera-
ture). There are several systems of units in use and we shall consider two systems that are
commonly used in engineering.
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In the BG system the unit of length is the

foot (ft), the time unit is the second (s), the force unit is the pound (Ib), and the temperature
unit is the degree Fahrenheit (°F), or the absolute temperature unit is the degree Rankine (°R),

where

°R = °F + 459.67

The mass unit, called the slug, is defined from Newton’s second law (force = mass X

acceleration) as

11b = (1 slug)(1 ft/s?)

This relationship indicates that a 1-1b force acting on a mass of 1 slug will give the mass

an acceleration of 1 ft/s%.

The weight, W' (which is the force due to gravity, g), of a mass, m, is given by the

equation

and in BG units

W = mg

W (Ib) = m (slugs) g (ft/s?)

Since Earth’s standard gravity is taken as g = 32.174 ft/s* (commonly approximated as
32.2 ft/s?), it follows that a mass of 1 slug weighs 32.2 1b under standard gravity.

F | u i d s i n

t h e N e w s

How long is a foot? Today, in the United States, the common
length unit is the foot, but throughout antiquity the unit used to
measure length has quite a history. The first length units were
based on the lengths of various body parts. One of the earliest
units was the Egyptian cubit, first used around 3000 B.c. and
defined as the length of the arm from elbow to extended fin-
gertips. Other measures followed with the foot simply taken
as the length of a man’s foot. Since this length obviously
varies from person to person it was often “standardized” by
using the length of the current reigning royalty’s foot. In 1791

a special French commission proposed that a new universal
length unit called a meter (metre) be defined as the distance
of one-quarter of the earth’s meridian (north pole to the equa-
tor) divided by 10 million. Although controversial, the meter
was accepted in 1799 as the standard. With the development
of advanced technology, the length of a meter was redefined
in 1983 as the distance traveled by light in a vacuum during
the time interval of 1/299,792,458 s. The foot is now defined
as 0.3048 meter. Our simple rulers and yardsticks indeed
have an intriguing history.

International System (SI).

In 1960, the Eleventh General Conference on Weights

and Measures, the international organization responsible for maintaining precise uniform stan-
dards of measurements, formally adopted the International System of Units as the interna-
tional standard. This system, commonly termed SI, has been adopted worldwide and is widely
used (although certainly not exclusively) in the United States. It is expected that the long-term
trend will be for all countries to accept SI as the accepted standard, and it is imperative that
engineering students become familiar with this system. In SI the unit of length is the meter
(m), the time unit is the second (s), the mass unit is the kilogram (kg), and the temperature
unit is the kelvin (K). Note that there is no degree symbol used when expressing a tempera-
ture in kelvin units. The Kelvin temperature scale is an absolute scale and is related to the
Celsius (centigrade) scale (°C) through the relationship

K =°C + 273.15

Although the Celsius scale is not in itself part of SI, it is common practice to specify tem-
peratures in degrees Celsius when using SI units.
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B TABLE 1.2
Conversion Factors from BG Units to SI Units

(See inside of back cover.)

B TABLE 1.3
Conversion Factors from SI Units to BG Units

(See inside of back cover.)

The force unit, called the newton (N), is defined from Newton’s second law as
IN = (1kg)(1 m/s?)

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1 m/s’. Stan-
dard gravity in SI is 9.807 m/s*> (commonly approximated as 9.81 m/s?) so that a 1-kg mass
weighs 9.81 N under standard gravity. Note that weight and mass are different, both qual-
itatively and quantitatively! The unit of work in SI is the joule (J), which is the work done
when the point of application of a 1-N force is displaced through a 1-m distance in the
direction of the force. Thus,

1J=1Nm
The unit of power is the watt (W) defined as a joule per second. Thus,
IW=1Js=1Nm/s

Prefixes for forming multiples and fractions of SI units are commonly used. For exam-
ple, the notation kN would be read as “kilonewtons” and stands for 10° N. Similarly, mm
would be read as “millimeters” and stands for 107> m. The centimeter is not an accepted
unit of length in the SI system, and for most problems in fluid mechanics in which ST units
are used, lengths will be expressed in millimeters or meters.

In this text we will use the BG system and SI for units. Approximately one-half the
problems and examples are given in BG units and one-half in SI units. Tables 1.2 and 1.3
provide conversion factors for some quantities that are commonly encountered in fluid
mechanics, and these tables are located on the inside of the back cover. Note that in these
tables (and others) the numbers are expressed by using computer exponential notation. For
example, the number 5.154 E + 2 is equivalent to 5.154 X 10% in scientific notation, and
the number 2.832 E — 2 is equivalent to 2.832 X 1072, More extensive tables of conver-
sion factors for a large variety of unit systems can be found in Appendix E.

i d s i n t h e N e w s

Units and space travel A NASA spacecraft, the Mars Climate
Orbiter, was launched in December 1998 to study the Martian
geography and weather patterns. The spacecraft was slated to
begin orbiting Mars on September 23, 1999. However, NASA
officials lost communication with the spacecraft early that
day, and it is believed that the spacecraft broke apart or over-
heated because it came too close to the surface of Mars. Errors

in the maneuvering commands sent from Earth caused the
Orbiter to sweep within 37 miles of the surface rather than the
intended 93 miles. The subsequent investigation revealed that
the errors were due to a simple mix-up in units. One team con-
trolling the Orbiter used SI units whereas another team used
BG units. This costly experience illustrates the importance of
using a consistent system of units.
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Analysis of Fluid Behavior

14

The study of fluid mechanics involves the same fundamental laws you have encountered in
physics and other mechanics courses. These laws include Newton’s laws of motion, conser-
vation of mass, and the first and second laws of thermodynamics. Thus, there are strong
similarities between the general approach to fluid mechanics and to rigid-body and
deformable-body solid mechanics.

The broad subject of fluid mechanics can be generally subdivided into fluid statics,
in which the fluid is at rest, and fluid dynamics, in which the fluid is moving. In subse-
quent chapters we will consider both of these areas in detail. Before we can proceed, how-
ever, it will be necessary to define and discuss certain fluid properties that are intimately
related to fluid behavior. In the following several sections, the properties that play an impor-
tant role in the analysis of fluid behavior are considered.

Measures of Fluid Mass and Weight

1.4.1 Density

The density of a fluid, designated by the Greek symbol p (rho), is defined as its mass per
unit volume. Density is typically used to characterize the mass of a fluid system. In the BG
system, p has units of slugs/ft’ and in SI the units are kg/m’.

The value of density can vary widely between different fluids, but for liquids, varia-
tions in pressure and temperature generally have only a small effect on the value of p. The
small change in the density of water with large variations in temperature is illustrated in
Fig. 1.2. Tables 1.4 and 1.5 list values of density for several common liquids. The density
of water at 60 °F is 1.94 slugs/ft’ or 999 kg/m’. The large difference between those two val-
ues illustrates the importance of paying attention to units! Unlike liquids, the density of a
gas is strongly influenced by both pressure and temperature, and this difference is discussed
in the next section.

The specific volume, v, is the volume per unit mass and is therefore the reciprocal of
the density—that is,

v = (1.4)

This property is not commonly used in fluid mechanics but is used in thermodynamics.

1000

990 \

@ 4°C p = 1000 kg/m®

980

970

Density, p kg/m3

960

950

0 20 40 60 80 100
Temperature, °C

B FIGURE 1.2 Density of water as a function of temperature.
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B TABLE 1.4
Approximate Physical Properties of Some Common Liquids (BG Units)

(See inside of front cover.)

B TABLE 1.5
Approximate Physical Properties of Some Common Liquids (SI Units)

(See inside of front cover.)

1.4.2 Specific Weight

The specific weight of a fluid, designated by the Greek symbol y (gamma), is defined
as its weight per unit volume. Thus, specific weight is related to density through the
equation

Y =pg (1.5)

where g is the local acceleration of gravity. Just as density is used to characterize the mass

of a fluid system, the specific weight is used to characterize the weight of the system. In

the BG system, 7y has units of 1b/ft® and in SI the units are N/m?. Under conditions of stan-
] ] dard gravity (g = 32.174 ft/s* = 9.807 m/s?), water at 60 °F has a specific weight of 62.4 Ib/ft’
and 9.80 kN/m’. Tables 1.4 and 1.5 list values of specific weight for several common liquids
(based on standard gravity). More complete tables for water can be found in Appendix B
(Tables B.1 and B.2).

13.55 . .
1.4.3 Specific Gravity

L Water The specific gravity of a fluid, designated as SG, is defined as the ratio of the density of
the fluid to the density of water at some specified temperature. Usually the specified temper-
ature is taken as 4 °C (39.2 °F), and at this temperature the density of water is 1.94 slugs/ft®
or 1000 kg/m>. In equation form specific gravity is expressed as

|

Mercury

=3 | ID sG=—" (1.6)

PH,0@4°C

and since it is the ratio of densities, the value of SG does not depend on the system of units
used. For example, the specific gravity of mercury at 20 °C is 13.55. This is illustrated by
the figure in the margin. Thus, the density of mercury can thus be readily calculated in
either BG or SI units through the use of Eq. 1.6 as

pue = (13.55)(1.94 slugs/ft’) = 26.3 slugs/fc
or

pe = (13.55)(1000 kg/m’) = 13.6 X 10’ kg/m’

It is clear that density, specific weight, and specific gravity are all interrelated, and from
a knowledge of any one of the three the others can be calculated.
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B TABLE 1.6

Approximate Physical Properties of Some Common Gases at Standard
Atmospheric Pressure (BG Units)

(See inside of front cover.)

H TABLE 1.7

Approximate Physical Properties of Some Common Gases at Standard
Atmospheric Pressure (SI Units)

(See inside of front cover.)

1.5 Ideal Gas Law

44.7 + 30

147 +0
0+ -14.7

(abs)  (gage)
p, psi

Gases are highly compressible in comparison to liquids, with changes in gas density directly
related to changes in pressure and temperature through the equation

p

= RT 1.7)

p
where p is the absolute pressure, p the density, 7 the absolute temperature,' and R is a gas
constant. Equation 1.7 is commonly termed the perfect or ideal gas law, or the equation of
state for an ideal gas. It is known to closely approximate the behavior of real gases under
normal conditions when the gases are not approaching liquefaction.

Pressure in a fluid at rest is defined as the normal force per unit area exerted on a
plane surface (real or imaginary) immersed in a fluid and is created by the bombardment
of the surface with the fluid molecules. From the definition, pressure has the dimension of
FL™? and in BG units is expressed as Ib/ft* (psf) or Ib/in.? (psi) and in SI units as N/m?.
In SI, 1 N/m? is defined as a pascal, abbreviated as Pa, and pressures are commonly spec-
ified in pascals. The pressure in the ideal gas law must be expressed as an absolute pres-
sure, which means that it is measured relative to absolute zero pressure (a pressure that
would only occur in a perfect vacuum). Standard sea-level atmospheric pressure (by inter-
national agreement) is 14.696 psi (abs) or 101.33 kPa (abs). For most calculations, these
pressures can be rounded to 14.7 psi and 101 kPa, respectively. In engineering, it is com-
mon practice to measure pressure relative to the local atmospheric pressure; when measured
in this fashion it is called gage pressure. Thus, the absolute pressure can be obtained from
the gage pressure by adding the value of the atmospheric pressure. For example, as shown
by the figure in the margin, a pressure of 30 psi (gage) in a tire is equal to 44.7 psi (abs)
at standard atmospheric pressure. Pressure is a particularly important fluid characteristic,
and it will be discussed more fully in the next chapter.

The gas constant, R, which appears in Eq. 1.7, depends on the particular gas and is
related to the molecular weight of the gas. Values of the gas constant for several common
gases are listed in Tables 1.6 and 1.7. Also in these tables the gas density and specific weight
are given for standard atmospheric pressure and gravity and for the temperature listed. More
complete tables for air at standard atmospheric pressure can be found in Appendix B (Tables
B.3 and B.4).

'We will use T to represent temperature in thermodynamic relationships, although 7 is also used to denote the basic dimension
of time.
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GIVEN The compressed air tank shown in Fig. E1.2a has a
volume of 0.84 ft*. The tank is filled with air at a gage pressure
of 50 psi and a temperature of 70 °F. The atmospheric pressure
is 14.7 psi (abs).

FIND Determine the density of the air and the weight of air
in the tank.

SOLUTION

The air density can be obtained from the ideal gas law (Eq. 1.7)

p

P Rr
so that
(50 Ib/in.2 + 14.7 lb/in.z)(144 in.%/ft?)

(1716 ft-Ib/slug-°R)[ (70 + 460)°R]
= 0.0102 slugs/ft®

p=
(Ans)
COMMENT Note that both the pressure and the tempera-

ture were changed to absolute values.
The weight, W, of the air is equal to

(ExawrLE 1.2

B FIGURE El.2a
courtesy of Jenny Products, Inc.)

(Photograph

pressure does. Thus, a scuba diving tank at a gage pressure of
100 psi does not contain twice the amount of air as when the
gage reads 50 psi.

W = pg X (volume)

o>
[€)]

= (0.0102 slugs/ft*)(32.2 ft/s>)(0.84 f€})
= 0.276 slug /s> 0.4
so that o -
W = 0.276 Ib (Ans) < (50 psi, 0.276 Ib)
o2
since 1 1b = 1 slug-ft/s*. 0
0.1
COMMENT By repeating the calculations for various

values of the pressure, p, the results shown in Fig. E1.2b are
obtained. Note that doubling the gage pressure does not dou-
ble the amount of air in the tank, but doubling the absolute

)
-20 0 20 40 60 80
p, psi (gage)

B FIGURE E1.2b

100

1.6 Viscosity

The properties of density and specific weight are measures of the “heaviness” of a fluid. It
is clear, however, that these properties are not sufficient to uniquely characterize how flu-
ids behave, as two fluids (such as water and oil) can have approximately the same value of
density but behave quite differently when flowing. There is apparently some additional prop-
erty that is needed to describe the “fluidity” of the fluid (i.e., how easily it flows).

To determine this additional property, consider a hypothetical experiment in which a
material is placed between two very wide parallel plates as shown in Fig. 1.3. The bottom
plate is rigidly fixed, but the upper plate is free to move.

When the force P is applied to the upper plate, it will move continuously with a veloc-
ity U (after the initial transient motion has died out) as illustrated in Fig. 1.3. This behavior

AN

V1.3 Viscous fluids




V1.4 No-slip
condition

V1.5 Capillary tube
viscometer
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Al B B FIGURE 1.3 Behavior of a fluid
2 (Fixed plate  placed between two parallel plates.

is consistent with the definition of a fluid—that is, if a shearing stress is applied to a fluid
it will deform continuously. A closer inspection of the fluid motion between the two plates
would reveal that the fluid in contact with the upper plate moves with the plate velocity, U,
and the fluid in contact with the bottom fixed plate has a zero velocity. The fluid between the
two plates moves with velocity u = u(y) that would be found to vary linearly, u = Uy/b, as
illustrated in Fig. 1.3. Thus, a velocity gradient, du/dy, is developed in the fluid between the
plates. In this particular case the velocity gradient is a constant, as du/dy = U/b, but in more
complex flow situations this would not be true. The experimental observation that the fluid
“sticks” to the solid boundaries is a very important one in fluid mechanics and is usually
referred to as the no-slip condition. All fluids, both liquids and gases, satisfy this condition.

In a small time increment 0t, an imaginary vertical line AB in the fluid (see Fig. 1.3)
would rotate through an angle, 68, so that

tan 683 = 688 2%

Since éa = U ¥ét, it follows that
U ot
8B =—
B b

Note that in this case, 63 is a function not only of the force P (which governs U) but also of
time. We consider the rafe at which 88 is changing and define the rate of shearing strain, vy, as

. _ .. OB

iy
which in this instance is equal to

.U du

Y=, dy

A continuation of this experiment would reveal that as the shearing stress, 7, is
increased by increasing P (recall that 7 = P/A), the rate of shearing strain is increased in
direct proportion—that is,

T X Y
or
du

T X —/—

dy

This result indicates that for common fluids, such as water, oil, gasoline, and air, the shearing
stress and rate of shearing strain (velocity gradient) can be related with a relationship of the form

du
T= M(Ty (1.8)
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Crude oil (60 °F)

Water (60 °F)

Shearing stress, ©

Water (100 °F)

Air (60 °F)

B FIGURE 1.4 Linear varia-
tion of shearing stress with rate of shear-
ing strain for common fluids.

du

Rate of shearing strain, ay

where the constant of proportionality is designated by the Greek symbol p (mu) and is
called the absolute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accor-
dance with Eq. 1.8, plots of 7 versus du/dy should be linear with the slope equal to the vis-
cosity as illustrated in Fig. 1.4. The actual value of the viscosity depends on the particular
fluid, and for a particular fluid the viscosity is also highly dependent on temperature as
illustrated in Fig. 1.4 with the two curves for water. Fluids for which the shearing stress is
linearly related to the rate of shearing strain (also referred to as rate of angular deforma-
tion) are designated as Newfonian fluids. Fortunately, most common fluids, both liquids
and gases, are Newtonian. A more general formulation of Eq. 1.8, which applies to more
complex flows of Newtonian fluids, is given in Section 6.8.1.

Fluids for which the shearing stress is not linearly related to the rate of shearing strain
are designated as non-Newtonian fluids. It is beyond the scope of this book to consider the
behavior of such fluids, and we will only be concerned with Newtonian fluids.

/N

V1.6 Non-
Newtonian behavior

F 1 i d s i t h e N e w s

u

n

A vital fluid In addition to air and water, another fluid that is  rate is increased from a low value, the apparent viscosity de-

essential for human life is blood. Blood is an unusual fluid con-
sisting of red blood cells that are disk-shaped, about 8 microns
in diameter, suspended in plasma. As you would suspect, since
blood is a suspension, its mechanical behavior is that of a non-
Newtonian fluid. Its density is only slightly higher than that of
water, but its typical apparent viscosity is significantly higher
than that of water at the same temperature. It is difficult to mea-
sure the viscosity of blood since it is a non-Newtonian fluid
and the viscosity is a function of the shear rate. As the shear

creases and approaches asymptotically a constant value at high
shear rates. The “asymptotic” value of the viscosity of normal
blood is three to four times the viscosity of water. The viscos-
ity of blood is not routinely measured like some biochemical
properties such as cholesterol and triglycerides, but there is
some evidence indicating that the viscosity of blood may play
a role in the development of cardiovascular disease. If this
proves to be true, viscosity could become a standard variable to
be routinely measured. (See Problem 1.38.)

From Eq. 1.8 it can be readily deduced that the dimensions of viscosity are FTL .
Thus, in BG units viscosity is given as Ib-s/ft* and in SI units as N-s/m” Values of viscos-
ity for several common liquids and gases are listed in Tables 1.4 through 1.7. A quick glance
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at these tables reveals the wide variation in viscosity among fluids. Viscosity is only mildly
dependent on pressure, and the effect of pressure is usually neglected. However, as men-
tioned previously, and as illustrated in Appendix B (Figs. B.1 and B.2), viscosity is very
sensitive to temperature.

Quite often viscosity appears in fluid flow problems combined with the density in the
form

This ratio is called the kinematic viscosity and is denoted with the Greek symbol » (nu). The
dimensions of kinematic viscosity are L*/T, and the BG units are ft*/s and SI units are m?/s.
Values of kinematic viscosity for some common liquids and gases are given in Tables 1.4
through 1.7. More extensive tables giving both the dynamic and kinematic viscosities for
water and air can be found in Appendix B (Tables B.1 through B.4), and graphs showing
the variation in both dynamic and kinematic viscosity with temperature for a variety of flu-
ids are also provided in Appendix B (Figs. B.1 and B.2).

Although in this text we are primarily using BG and SI units, dynamic viscosity is often
expressed in the metric CGS (centimeter-gram-second) system with units of dyne-s/cm”. This
combination is called a poise, abbreviated P. In the CGS system, kinematic viscosity has units

of cm?/s, and this combination is called a stoke, abbreviated St.

F | u i d s i n

t h e N e w s

An extremely viscous fluid Pitch is a derivative of tar once
used for waterproofing boats. At elevated temperatures it
flows quite readily. At room temperature it feels like a solid—
it can even be shattered with a blow from a hammer. How-
ever, it is a liquid. In 1927 Professor Parnell heated some
pitch and poured it into a funnel. Since that time it has been
allowed to flow freely (or rather, drip slowly) from the funnel.

The flowrate is quite small. In fact, to date only seven drops
have fallen from the end of the funnel, although the eighth
drop is poised ready to fall “soon.” While nobody has actually
seen a drop fall from the end of the funnel, a beaker below the
funnel holds the previous drops that fell over the years. It is
estimated that the pitch is about 100 billion times more vis-
cous than water.

_EXAMPLE (I8 Viscosity and Dimensionless Quantities

GIVEN A dimensionless combination of variables that
is important in the study of viscous flow through pipes is
called the Reynolds number, Re, defined as pVD/u where,
as indicated in Fig. E1.3, p is the fluid density, V the mean
fluid velocity, D the pipe diameter, and w the fluid viscosity.
A Newtonian fluid having a viscosity of 0.38 N-s/m* and a
specific gravity of 0.91 flows through a 25-mm-diameter
pipe with a velocity of 2.6 m/s.

FIND Determine the value of the Reynolds number using
(a) SI units and
(b) BG units.

BFIGURE E1.3
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SOLUTION

(a) The fluid density is calculated from the specific gravity as
p = SG pu.oesc = 0.91 (1000 kg/m?) = 910 kg/m’

and from the definition of the Reynolds number

_ pVD (910 kg/m’)(2.6 m/s)(25 mm)(10”° m/mm)

w 0.38 N-s/m?
= 156(kgm/s?)/N

Re

However, since 1 N = 1 kg-m/s” it follows that the Reynolds
number is unitless (dimensionless)—that is,

Re = 156 (Ans)

COMMENT The value of any dimensionless quantity does
not depend on the system of units used if all variables that make
up the quantity are expressed in a consistent set of units. To check
this we will calculate the Reynolds number using BG units.

(b) We first convert all the SI values of the variables appear-
ing in the Reynolds number to BG values by using the conver-
sion factors from Table 1.3. Thus,

p = (910 kg/m*)(1.940 X 107%) = 1.77 slugs/ft’

V = (2.6 m/s)(3.281) = 8.53 fus

D = (0.025 m)(3.281) = 8.20 X 10~ ft

= (038 N-s/m?)(2.089 X 1072) = 7.94 X 107 Ib-s/f¢

and the value of the Reynolds number is

(1.77 slugs/f®)(8.53 ft/s)(8.20 X 1072 ft)

7.94 X 1073 1b-s/ft2
= 156(slug-ft/s?)/1b = 156

since 11b = 1 slug-ft/s>.

Re =

(Ans)

COMMENT The values from part (a) and part (b) are the
same, as expected. Dimensionless quantities play an important
role in fluid mechanics, and the significance of the Reynolds
number, as well as other important dimensionless combina-
tions, will be discussed in detail in Chapter 7. It should be
noted that in the Reynolds number it is actually the ratio u/p
that is important, and this is the property that we have defined
as the kinematic viscosity.

GIVEN The velocity distribution for the flow of a Newto-
nian fluid between two fixed wide, parallel plates (see Fig.
El.4a) is given by the equation

3= ()]

u=—1-1|=

2 h

where V is the mean velocity. The fluid has a viscosity of

0.04 Ib-s/ft>. Also, V = 2 ft/s and h = 0.2 in.

SoLuTION

For this type of parallel flow the shearing stress is obtained
from Eq. 1.8.

=y M

Thus, if the velocity distribution, # = u(y), is known, the shearing
stress can be determined at all points by evaluating the velocity
gradient, du/dy. For the distribution given

du _3Vy

& @

_EXAMPLE |IX 8 Newtonian Fluid Shear Stress

FIND Determine
(a) the shearing stress acting on the bottom wall and

(b) the shearing stress acting on a plane parallel to the walls
and passing through the centerline (midplane).

{

|

I :
| | N
 ——
|

)i )
B FIGURE El4a

(a) Along the bottom wall y = —h so that (from Eq. 2)
du _ 3V

dy h




and therefore the shearing stress is

~ (g) _ (0.041b5/62)(3)(2 fus)

Thottom wall —

h (0.2 in.)(1 f/12 in.)
= 14.4 1b/ft> (in direction of flow) (Ans)
COMMENT This stress creates a drag on the wall. Since

the velocity distribution is symmetrical, the shearing stress
along the upper wall would have the same magnitude and
direction.

(b) Along the midplane where y = 0, it follows from Eq. 2 that
w_y
dy
and thus the shearing stress is

(Ans)

7-midplane =0

COMMENT From Eq. 2 we see that the velocity gradi-
ent (and therefore the shearing stress) varies linearly with y
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and in this particular example varies from 0 at the center of the
channel to 14.4 1b/ft> at the walls. This is shown in Fig. E1.4b.
For the more general case the actual variation will, of course,
depend on the nature of the velocity distribution.

15

Thottom wall = 14.4 |b/ft2 = Ttop wall

10

T, Ib/ft?

0

Tmidplane =

O /

-0.1 0 0.1 0.2
y, in.

B FIGURE El1.4b

1.7 Compressibility of Fluids

1.7.1 Bulk Modulus

An important question to answer when considering the behavior of a particular fluid

» is how easily can the volume (and thus the density) of a given mass of the fluid be

v E,, defined as

expressed as

V1.7 Water balloon

and 1.5).

changed when there is a change in pressure? That is, how compressible is the fluid? A
property that is commonly used to characterize compressibility is the bulk modulus,

d
E = P

- 1.9
! avily (19)

where dp is the differential change in pressure needed to create a differential change in vol-
ume, d¥, of a volume ¥, as shown by the figure in the margin. The negative sign is included
since an increase in pressure will cause a decrease in volume. Because a decrease in vol-
ume of a given mass, m = p¥, will result in an increase in density, Eq. 1.9 can also be

_ dp

= 1.10
dolp (1.10)

v

The bulk modulus (also referred to as the bulk modulus of elasticity) has dimensions
of pressure, FL 2. In BG units values for E, are usually given as 1b/in.? (psi) and in
SI units as N/m? (Pa). Large values for the bulk modulus indicate that the fluid is rel-
atively incompressible—that is, it takes a large pressure change to create a small
change in volume. As expected, values of E, for common liquids are large (see Tables 1.4
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Since such large pressures are required to effect a change in volume, we conclude
that liquids can be considered as incompressible for most practical engineering applications.
As liquids are compressed the bulk modulus increases, but the bulk modulus near atmo-
spheric pressure is usually the one of interest. The use of bulk modulus as a property describ-
ing compressibility is most prevalent when dealing with liquids, although the bulk modulus
can also be determined for gases.

F | u i d s i n

t h e N e w s

This water jet is a blast Usually liquids can be treated as in-
compressible fluids. However, in some applications the com-
pressibility of a liquid can play a key role in the operation of a
device. For example, a water pulse generator using compressed
water has been developed for use in mining operations. It can
fracture rock by producing an effect comparable to a conven-
tional explosive such as gunpowder. The device uses the energy
stored in a water-filled accumulator to generate an ultrahigh-
pressure water pulse ejected through a 10- to 25-mm-diameter
discharge valve. At the ultrahigh pressures used (300 to 400 MPa,

or 3000 to 4000 atmospheres), the water is compressed (i.e., the
volume reduced) by about 10 to 15%. When a fast-opening
valve within the pressure vessel is opened, the water expands
and produces a jet of water that upon impact with the target ma-
terial produces an effect similar to the explosive force from con-
ventional explosives. Mining with the water jet can eliminate
various hazards that arise with the use of conventional chemical
explosives such as those associated with the storage and use of
explosives and the generation of toxic gas by-products that
require extensive ventilation. (See Problem 1.63.)

1.7.2 Compression and Expansion of Gases

When gases are compressed (or expanded), the relationship between pressure and density
depends on the nature of the process. If the compression or expansion takes place under
constant temperature conditions (isothermal process), then from Eq. 1.7
p
— = constant (1.11)
p

If the compression or expansion is frictionless and no heat is exchanged with the surround-
ings (isentropic process), then

P_ constant (1.12)

*—|sothermal '
where k is the ratio of the specific heat at constant pressure, c,, to the specific heat at con-
p stant volume, ¢, (i.e., k = ¢,/c,). The two specific heats are related to the gas constant, R,
through the equation R = ¢, — c¢,. The pressure—density variations for isothermal and isen-
tropic conditions are illustrated in the margin figure. As was the case for the ideal gas law,
the pressure in both Eqs. 1.11 and 1.12 must be expressed as an absolute pressure. Values
of k for some common gases are given in Tables 1.6 and 1.7 and for air over a range of
temperatures in Appendix B (Tables B.3 and B.4). It is clear that in dealing with gases
greater attention will need to be given to the effect of compressibility on fluid behavior.
However, as discussed in Section 3.8, gases can often be treated as incompressible fluids if
the changes in pressure are small.

|_EXAMPLE 1.5

Isentropic Compression of a Gas

GIVEN A cubic foot of air at an absolute pressure of 14.7 psi  FIND ~ What is the final pressure?
is compressed isentropically to % ft® by the tire pump shown in

Fig. E1.5a.
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For an isentropic compression
p_P
pi P

where the subscripts i and frefer to initial and final states, re-
spectively. Since we are interested in the final pressure, py, it

follows that
Pr=\—_|Pi
! Pi

As the volume, V¥, is reduced by one-half, the density must
double, since the mass, m = p ¥, of the gas remains constant.
Thus, with k£ = 1.40 for air

pr=(2)"*°(14.7 psi) = 38.8 psi (abs)  (Ans)

COMMENT By repeating the calculations for various
values of the ratio of the final volume to the initial volume,
Vf/Vi, the results shown in Fig. E1.5b are obtained. Note that
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B FIGURE El1.5a

even though air is often considered to be easily compressed (at
least compared to liquids), it takes considerable pressure to sig-
nificantly reduce a given volume of air as is done in an auto-
mobile engine where the compression ratio is on the order of
Ve/Vi= 18 = 0.125.

1.7.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced
at some point in the fluid propagate at a finite velocity. For example, if a fluid is flowing in
a pipe and a valve at the outlet is suddenly closed (thereby creating a localized disturbance),

V1.8 As fast as a
speeding bullet

the effect of the valve closure is not felt instantaneously upstream. It takes a finite time for
the increased pressure created by the valve closure to propagate to an upstream location.
Similarly, a loudspeaker diaphragm causes a localized disturbance as it vibrates, and the small
change in pressure created by the motion of the diaphragm is propagated through the air with
a finite velocity. The velocity at which these small disturbances propagate is called the
acoustic velocity or the speed of sound, c. It can be shown that the speed of sound is related
to changes in pressure and density of the fluid medium through the equation

1.13)

_ [
c= dp
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or in terms of the bulk modulus defined by Eq. 1.10

E,
=5 (1.14)
p
Because the disturbance is small, there is negligible heat transfer and the process is assumed
to be isentropic. Thus, the pressure—density relationship used in Eq. 1.13 is that for an isen-
tropic process.
For gases undergoing an isentropic process, E, = kp, so that

[kp
[N
6000 p

t
= and making use of the ideal gas law, it follows that
L ¢ = VkRT (1.15)
g Thus, for ideal gases the speed of sound is proportional to the square root of the absolute
2000 0 temperature. The speed of sound in air at various temperatures can be found in Appendix
— | B (Tables B.3 and B.4). Equation 1.14 is also valid for liquids, and values of E, can be
used to determine the speed of sound in liquids. As shown by the figure in the margin, the speed

0
0 ;Ofg 200 of sound in water is much higher than in air. If a fluid were truly incompressible (E, = co) the
speed of sound would be infinite. The speed of sound in water for various temperatures can

be found in Appendix B (Tables B.1 and B.2).

_EXA MPLE 1.6 BY:LCRIELUNCREL M ETS I T,
GIVEN A jet aircraft flies at a speed of 550 mph at an alti- FIND  Determine the ratio of the speed of the aircraft, V, to
tude of 35,000 ft, where the temperature is —66 °F and the that of the speed of sound, ¢, at the specified altitude.
specific heat ratio is k = 1.4.
SoLuTiOoN
From Eq. 1.15 the speed of sound can be calculated as By repeating the calculations for different temperatures,
the results shown in Fig. E1.6 are obtained. Because the speed
¢ = VkRT of sound increases with increasing temperature, for a constant
= \/( 1.40)(1716 ft-1b/slug-°R)(—66 + 460)°R airplane speed, the Mach number decreases as the temperature
= 973 ft/s increases.
. . . 0'9
Since the air speed is
v (550 mi/hr)(5280 ft/mi) p—— g |68 7 v
(3600 s/hr) :
the ratio is ©
=
0.7
VvV 807 ft/s ©
— = =0.82 A =
¢ 973fUs ? )
. o 0.6
COMMENT This ratio is called the Mach number, Ma. If
Ma < 1.0 the aircraft is flying at subsonic speeds, whereas for
Ma > 1.0 it is flying at supersonic speeds. The Mach number an
is an important dimensionless parameter used in the study of 2100 50 0 50 100
the flow of gases at high speeds and will be further discussed T,°F
in Chapters 7 and 9. B FIGURE E1.6
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1.8 Vapor Pressure

—

Liquid

Iil

Vapor, p,

Liquid

It is a common observation that liquids such as water and gasoline will evaporate if they
are simply placed in a container open to the atmosphere. Evaporation takes place because
some liquid molecules at the surface have sufficient momentum to overcome the intermo-
lecular cohesive forces and escape into the atmosphere. As shown in the figure in the mar-
gin, if the lid on a completely liquid-filled, closed container is raised (without letting any
air in), a pressure will develop in the space as a result of the vapor that is formed by the
escaping molecules. When an equilibrium condition is reached so that the number of mol-
ecules leaving the surface is equal to the number entering, the vapor is said to be saturated
and the pressure the vapor exerts on the liquid surface is termed the vapor pressure, p,,.

Since the development of a vapor pressure is closely associated with molecular activ-
ity, the value of vapor pressure for a particular liquid depends on temperature. Values of
vapor pressure for water at various temperatures can be found in Appendix B (Tables B.1
and B.2), and the values of vapor pressure for several common liquids at room tempera-
tures are given in Tables 1.4 and 1.5. Boiling, which is the formation of vapor bubbles within
a fluid mass, is initiated when the absolute pressure in the fluid reaches the vapor pressure.

An important reason for our interest in vapor pressure and boiling lies in the com-
mon observation that in flowing fluids it is possible to develop very low pressure due to
the fluid motion, and if the pressure is lowered to the vapor pressure, boiling will occur.
For example, this phenomenon may occur in flow through the irregular, narrowed passages
of a valve or pump. When vapor bubbles are formed in a flowing liquid, they are swept
along into regions of higher pressure where they suddenly collapse with sufficient intensity
to actually cause structural damage. The formation and subsequent collapse of vapor bub-
bles in a flowing liquid, called cavitation, is an important fluid flow phenomenon to be
given further attention in Chapters 3 and 7.

1.9 Surface Tension
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At the interface between a liquid and a gas, or between two immiscible liquids, forces
develop in the liquid surface that cause the surface to behave as if it were a “skin” or “mem-
brane” stretched over the fluid mass. Although such a skin is not actually present, this con-
ceptual analogy allows us to explain several commonly observed phenomena. For example,
a steel needle or razor blade will float on water if placed gently on the surface because the
tension developed in the hypothetical skin supports these objects. Small droplets of mer-
cury will form into spheres when placed on a smooth surface because the cohesive forces
in the surface tend to hold all the molecules together in a compact shape. Similarly, dis-
crete water droplets will form when placed on a newly waxed surface.

These various types of surface phenomena are due to the unbalanced cohesive forces
acting on the liquid molecules at the fluid surface. Molecules in the interior of the fluid
mass are surrounded by molecules that are attracted to each other equally. However, mol-
ecules along the surface are subjected to a net force toward the interior. The apparent
physical consequence of this unbalanced force along the surface is to create the hypothet-
ical skin or membrane. A tensile force may be considered to be acting in the plane of the
surface along any line in the surface. The intensity of the molecular attraction per unit
length along any line in the surface is called the surface tension and is designated by the
Greek symbol o (sigma). Surface tension is a property of the liquid and depends on tem-
perature as well as the other fluid it is in contact with at the interface. The dimensions
of surface tension are FL™' with BG units of 1b/ft and SI units of N/m. Values of surface
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tension for some common liquids (in contact with air) are given in Tables 1.4 and 1.5
and in Appendix B (Tables B.1 and B.2) for water at various temperatures. As indicated
by the figure in the margin of the previous page, the value of the surface tension decreases

as the temperature increases.
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Walking on water Water striders are insects commonly found
on ponds, rivers, and lakes that appear to “walk” on water. A
typical length of a water strider is about 0.4 in., and they can
cover 100 body lengths in one second. It has long been recog-
nized that it is surface tension that keeps the water strider from
sinking below the surface. What has been puzzling is how they
propel themselves at such a high speed. They can’t pierce the
water surface or they would sink. A team of mathematicians and
engineers from the Massachusetts Institute of Technology
(MIT) applied conventional flow visualization techniques and

high-speed video to examine in detail the movement of the wa-
ter striders. They found that each stroke of the insect’s legs cre-
ates dimples on the surface with underwater swirling vortices
sufficient to propel it forward. It is the rearward motion of the
vortices that propels the water strider forward. To further sub-
stantiate their explanation the MIT team built a working model
of a water strider, called Robostrider, which creates surface rip-
ples and underwater vortices as it moves across a water surface.
Waterborne creatures, such as the water strider, provide an inter-
esting world dominated by surface tension. (See Problem 1.71.)
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Among common phenomena associated with surface tension is the rise (or fall) of a
liquid in a capillary tube. If a small open tube is inserted into water, the water level in the
tube will rise above the water level outside the tube as is illustrated in Fig. 1.5a. In this sit-
uation we have a liquid—gas—solid interface. For the case illustrated there is an attraction
(adhesion) between the wall of the tube and liquid molecules, which is strong enough to
overcome the mutual attraction (cohesion) of the molecules and pull them up to the wall.
Hence, the liquid is said to wet the solid surface.

The height, A, is governed by the value of the surface tension, o, the tube radius, R,
the specific weight of the liquid, vy, and the angle of contact, 0, between the fluid and tube.
From the free-body diagram of Fig. 1.5b we see that the vertical force due to the surface
tension is equal to 27Ro cos 6 and the weight is y7R?h and these two forces must balance
for equilibrium. Thus,

ymR*h = 27Ro cos O

so that the height is given by the relationship

_ 20cosf
YR

h (1.16)

—{ 2R —

(a) (b) (c)

B FIGURE 1.5 Effect of capillary action in small tubes. (z) Rise of
column for a liquid that wets the tube. (b) Free-body diagram for calculating
column height. (c¢) Depression of column for a nonwetting liquid.
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The angle of contact is a function of both the liquid and the surface. For water in contact
with clean glass 6 = 0°. It is clear from Eq. 1.16 (and shown by the figure in the margin)

R that the height is inversely proportional to the tube radius. Therefore, the rise of a liquid in a
tube as a result of capillary action becomes increasingly pronounced as the tube radius is
decreased.

LZTUTICMIA Copitiary RiseinaTube

GIVEN Pressures are sometimes determined by measuring FIND  What diameter of clean glass tubing is required so
the height of a column of liquid in a vertical tube. that the rise of water at 20 °C in a tube due to a capillary action
(as opposed to pressure in the tube) is less than 1.0 mm?

SoLuTioN
From Eq. 1.16 COMMENT By repeating the calculations for various
) 0 values of the capillary rise, 4, the results shown in Fig. E1.7
h = L0 cosY are obtained. Note that as the allowable capillary rise is de-
YR creased, the diameter of the tube must be significantly in-
o (et creased. There is always some capillarity effect, but it can be
minimized by using a large enough diameter tube.
20 cos 6
R=——
vh 100
For water at 20 °C (from Table B.2), o = 0.0728 N/m and y = 80
9.789 kN/m”. Since 0 = 0° it follows that for 4 = 1.0 mm, £ 60
£
B 2(0.0728 N/m)(1) S a0
(9.789 X 10 N/m?)(1.0 mm)(10~> m/mm) 2
= 0.01499 m
0
and the minimum required tube diameter, D, is 0 0.5 , rlnm 1.5 2
D = 2R = 0.0298 m = 29.8 mm (Ans) M FIGURE E1.7

If adhesion of molecules to the solid surface is weak compared to the cohesion
between molecules, the liquid will not wet the surface and the level in a tube placed in a
nonwetting liquid will actually be depressed, as shown in Fig. 1.5¢. Mercury is a good
example of a nonwetting liquid when it is in contact with a glass tube. For nonwetting lig-
uids the angle of contact is greater than 90°, and for mercury in contact with clean glass
0 =~ 130°.

Surface tension effects play a role in many mechanics problems, including the move-
ment of liquids through soil and other porous media, flow of thin films, formation of drops
and bubbles, and the breakup of liquid jets. For example, surface tension is a main factor
(Photograph copyright  in the formation of drops from a leaking faucet, as shown in the photograph in the margin.
2007 by Andrew Surface phenomena associated with liquid—gas, liquid-liquid, and liquid—gas—solid inter-
Davidhazy, Rochester faces are exceedingly complex, and a more detailed and rigorous discussion of them is
Institute of Technology.)  peyond the scope of this text. Fortunately, in many fluid mechanics problems, surface phe-
nomena, as characterized by surface tension, are not important, as inertial, gravitational, and
viscous forces are much more dominant.
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Spreading of oil spills. With the large traffic in oil tankers there
is great interest in the prevention of and response to oil spills. As
evidenced by the famous Exxon Valdez oil spill in Prince William
Sound in 1989, oil spills can create disastrous environmental
problems. A more recent example of this type of catastrophe is
the oil spill that occurred in the Gulf of Mexico in 2010. It is not
surprising that much attention is given to the rate at which an oil
spill spreads. When spilled, most oils tend to spread horizon-
tally into a smooth and slippery surface, called a slick. There are

many factors that influence the ability of an oil slick to spread,
including the size of the spill, wind speed and direction, and the
physical properties of the oil. These properties include surface
tension, specific gravity, and viscosity. The higher the surface
tension the more likely a spill will remain in place. Since the
specific gravity of oil is less than one it floats on top of the wa-
ter, but the specific gravity of an oil can increase if the lighter
substances within the oil evaporate. The higher the viscosity of
the oil the greater the tendency to stay in one place.

1.10

A Brief Look Back in History

Before proceeding with our study of fluid mechanics, we should pause for a moment to
consider the history of this important engineering science. As is true of all basic scientific and
engineering disciplines, their actual beginnings are only faintly visible through the haze of
early antiquity. But we know that interest in fluid behavior dates back to the ancient civiliza-
tions. Through necessity there was a practical concern about the manner in which spears and
arrows could be propelled through the air, in the development of water supply and irrigation
systems, and in the design of boats and ships. These developments were, of course, based on
trial-and-error procedures without any knowledge of mathematics or mechanics. However, it
was the accumulation of such empirical knowledge that formed the basis for further develop-
ment during the emergence of the ancient Greek civilization and the subsequent rise of the
Roman Empire. Some of the earliest writings that pertain to modern fluid mechanics are those
of Archimedes (287-212 B.C.), a Greek mathematician and inventor who first expressed the
principles of hydrostatics and flotation. Elaborate water supply systems were built by the
Romans during the period from the fourth century B.C. through the early Christian period, and
Sextus Julius Frontinus (A.D. 40-103), a Roman engineer, described these systems in detail.
However, for the next 1000 years during the Middle Ages (also referred to as the Dark Ages),
there appears to have been little added to further understanding of fluid behavior.

As shown in Fig. 1.6, beginning with the Renaissance period (about the fifteenth century)
a rather continuous series of contributions began that forms the basis of what we consider to be
the science of fluid mechanics. Leonardo da Vinci (1452—-1519) described through sketches

Geoffrey Taylor N
Theodor von Karman
Ludwig Prandt| HEE—
Osborne Reynolds =
Ernst Mach N
George Stokes NN
Jean Poiseuille NN
Louis Navier I
Leonhard Euler NN
Daniel Bernoul!i INE—
Isaac Newton I
Galileo Galilei INEG_——
Leonardo da Vinci N
1300 1400 1500

1200 1600

Year

1700 1800 1900 2000

B FIGURE 1.6 Time line of some contributors to the science of fluid mechanics.
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and writings many different types of flow phenomena. The work of Galileo Galilei
(1564-1642) marked the beginning of experimental mechanics. Following the early Renais-
sance period and during the seventeenth and eighteenth centuries, numerous significant con-
tributions were made. These include theoretical and mathematical advances associated with
the famous names of Newton, Bernoulli, Euler, and d’Alembert. Experimental aspects of
fluid mechanics were also advanced during this period, but unfortunately the two different
approaches, theoretical and experimental, developed along separate paths. Hydrodynamics
was the term associated with the theoretical or mathematical study of idealized, frictionless
fluid behavior, with the term hydraulics being used to describe the applied or experimental
aspects of real fluid behavior, particularly the behavior of water. Further contributions and
refinements were made to both theoretical hydrodynamics and experimental hydraulics dur-
ing the nineteenth century, with the general differential equations describing fluid motions
that are used in modern fluid mechanics being developed in this period. Experimental
hydraulics became more of a science, and many of the results of experiments performed
during the nineteenth century are still used today.

At the beginning of the twentieth century, both the fields of theoretical hydrodynam-
ics and experimental hydraulics were highly developed, and attempts were being made to
unify the two. In 1904 a classic paper was presented by a German professor, Ludwig Prandtl
(1875-1953), who introduced the concept of a “fluid boundary layer,” which laid the foun-
dation for the unification of the theoretical and experimental aspects of fluid mechanics.
Prandtl’s idea was that for flow next to a solid boundary a thin fluid layer (boundary layer)
develops in which friction is very important, but outside this layer the fluid behaves very
much like a frictionless fluid. This relatively simple concept provided the necessary impe-
tus for the resolution of the conflict between the hydrodynamicists and the hydraulicists.
Prandtl is generally accepted as the founder of modern fluid mechanics.

Also, during the first decade of the twentieth century, powered flight was first success-
fully demonstrated with the subsequent vastly increased interest in aerodynamics. Because
the design of aircraft required a degree of understanding of fluid flow and an ability to make
accurate predictions of the effect of airflow on bodies, the field of aerodynamics provided a
great stimulus for the many rapid developments in fluid mechanics that took place during
the twentieth century.

As we proceed with our study of the fundamentals of fluid mechanics, we will con-
tinue to note the contributions of many of the pioneers in the field. Table 1.8 provides a
chronological listing of some of these contributors and reveals the long journey that makes

B TABLE 1.8
Chronological Listing of Some Contributors to the Science of Fluid Mechanics Noted in the Text”

ARCHIMEDES (287-212 B.C.)
Established elementary principles of buoyancy
and flotation.

SEXTUS JULIUS FRONTINUS (A.D. 40-103)
Wrote treatise on Roman methods of water
distribution.

LEONARDO da VINCI (1452-1519)

Expressed elementary principle of continuity;
observed and sketched many basic flow phenomena;
suggested designs for hydraulic machinery.

GALILEO GALILEI (1564—-1642)
Indirectly stimulated experimental hydraulics;
revised Aristotelian concept of vacuum.

EVANGELISTA TORRICELLI (1608—-1647)
Related barometric height to weight of atmosphere,
and form of liquid jet to trajectory of free fall.
BLAISE PASCAL (1623-1662)

Finally clarified principles of barometer,
hydraulic press, and pressure transmissibility.
ISAAC NEWTON (1642-1727)

Explored various aspects of fluid resistance—
inertial, viscous, and wave; discovered jet
contraction.

HENRI de PITOT (1695-1771)

Constructed double-tube device to indicate water
velocity through differential head.

(continued)
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Daniel Bernoulli

Ernst Mach

Osborne Reynolds

Ludwig Prandtl

B TABLE 1.8 (continued)

DANIEL BERNOULLI (1700-1782)
Experimented and wrote on many phases of fluid
motion, coining name “hydrodynamics”; devised
manometry technique and adapted primitive
energy principle to explain velocity-head
indication; proposed jet propulsion.

LEONHARD EULER (1707-1783)

First explained role of pressure in fluid flow;
formulated basic equations of motion and so-
called Bernoulli theorem; introduced concept of
cavitation and principle of centrifugal
machinery.

JEAN le ROND d’ALEMBERT (1717-1783)
Originated notion of velocity and acceleration
components, differential expression of continuity,
and paradox of zero resistance to steady
nonuniform motion.

ANTOINE CHEZY (1718-1798)

Formulated similarity parameter for predicting
flow characteristics of one channel from
measurements on another.

GIOVANNI BATTISTA VENTURI (1746-1822)
Performed tests on various forms of
mouthpieces—in particular, conical contractions
and expansions.

LOUIS MARIE HENRI NAVIER (1785-1836)
Extended equations of motion to include
“molecular” forces.

AUGUSTIN LOUIS de CAUCHY (1789-1857)
Contributed to the general field of theoretical
hydrodynamics and to the study of wave motion.

GOTTHILF HEINRICH LUDWIG HAGEN
(1797-1884)

Conducted original studies of resistance in and
transition between laminar and turbulent flow.

JEAN LOUIS POISEUILLE (1799-1869)
Performed meticulous tests on resistance of flow
through capillary tubes.

HENRI PHILIBERT GASPARD DARCY
(1803-1858)

Performed extensive tests on filtration and pipe
resistance; initiated open-channel studies carried
out by Bazin.

JULIUS WEISBACH (1806—1871)

Incorporated hydraulics in treatise on engineering
mechanics, based on original experiments;
noteworthy for flow patterns, nondimensional
coefficients, weir, and resistance equations.

WILLIAM FROUDE (1810-1879)

Developed many towing-tank techniques, in
particular the conversion of wave and boundary
layer resistance from model to prototype scale.

ROBERT MANNING (1816-1897)
Proposed several formulas for open-channel
resistance.

GEORGE GABRIEL STOKES (1819-1903)
Derived analytically various flow relationships
ranging from wave mechanics to viscous
resistance—particularly that for the settling of
spheres.

ERNST MACH (1838-1916)
One of the pioneers in the field of supersonic
aerodynamics.

OSBORNE REYNOLDS (1842-1912)

Described original experiments in many fields—
cavitation, river model similarity, pipe
resistance—and devised two parameters for
viscous flow; adapted equations of motion of a
viscous fluid to mean conditions of turbulent
flow.

JOHN WILLIAM STRUTT, LORD RAYLEIGH
(1842-1919)

Investigated hydrodynamics of bubble collapse,
wave motion, jet instability, laminar flow
analogies, and dynamic similarity.

VINCENZ STROUHAL (1850—1922)
Investigated the phenomenon of “singing wires.”

EDGAR BUCKINGHAM (1867-1940)
Stimulated interest in the United States in the
use of dimensional analysis.

MORITZ WEBER (1871-1951)

Emphasized the use of the principles of
similitude in fluid flow studies and formulated a
capillarity similarity parameter.

LUDWIG PRANDTL (1875-1953)

Introduced concept of the boundary layer and is
generally considered to be the father of present-
day fluid mechanics.

LEWIS FERRY MOODY (1880-1953)
Provided many innovations in the field of
hydraulic machinery. Proposed a method of
correlating pipe resistance data that is widely
used.

THEODOR VON KARMAN (1881-1963)
One of the recognized leaders of twentieth
century fluid mechanics. Provided major
contributions to our understanding of surface
resistance, turbulence, and wake phenomena.

PAUL RICHARD HEINRICH BLASIUS
(1883-1970)

One of Prandtl’s students who provided an
analytical solution to the boundary layer
equations. Also demonstrated that pipe resistance
was related to the Reynolds number.

“Adapted from Rouse, H. and Ince, S., History of Hydraulics, Towa Institute of Hydraulic Research, Iowa City, 1957, Dover, New
York, 1963. Used by permission of the Iowa Institute of Hydraulic Research, University of Iowa.
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up the history of fluid mechanics. This list is certainly not comprehensive with regard to
all past contributors but includes those who are mentioned in this text. As mention is made
in succeeding chapters of the various individuals listed in Table 1.8, a quick glance at this
table will reveal where they fit into the historical chain.

1.11 Chapter Summary and Study Guide

Sluid
units
basic dimensions
dimensionally
homogeneous
density
specific weight
specific gravity
ideal gas law
absolute pressure
gage pressure
no-slip condition
absolute viscosity
Newtonian fluid
kinematic viscosity
bulk modulus
speed of sound
vapor pressure
surface tension

This introductory chapter discussed several fundamental aspects of fluid mechanics. Meth-
ods for describing fluid characteristics both quantitatively and qualitatively are considered.
For a quantitative description, units are required, and in this text, two systems of units are
used: the British Gravitational (BG) System (pounds, slugs, feet, and seconds) and the Inter-
national (SI) System (newtons, kilograms, meters, and seconds). For the qualitative descrip-
tion the concept of dimensions is introduced in which basic dimensions such as length, L,
time, 7, and mass, M, are used to provide a description of various quantities of interest. The
use of dimensions is helpful in checking the generality of equations, as well as serving as
the basis for the powerful tool of dimensional analysis discussed in detail in Chapter 7.

Various important fluid properties are defined, including fluid density, specific weight,
specific gravity, viscosity, bulk modulus, speed of sound, vapor pressure, and surface ten-
sion. The ideal gas law is introduced to relate pressure, temperature, and density in com-
mon gases, along with a brief discussion of the compression and expansion of gases. The
distinction between absolute and gage pressure is introduced, and this important idea is
explored more fully in Chapter 2.

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed, you should be able to

m write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold type
in the text.

determine the dimensions of common physical quantities.
determine whether an equation is a general or restricted homogeneous equation.
use both BG and SI systems of units.

calculate the density, specific weight, or specific gravity of a fluid from a knowledge
of any two of the three.

m calculate the density, pressure, or temperature of an ideal gas (with a given gas con-
stant) from a knowledge of any two of the three.

m relate the pressure and density of a gas as it is compressed or expanded using Eqgs. 1.11
and 1.12.

m use the concept of viscosity to calculate the shearing stress in simple fluid flows.
m calculate the speed of sound in fluids using Eq. 1.14 for liquids and Eq. 1.15 for gases.

m determine whether boiling or cavitation will occur in a liquid using the concept of
vapor pressure.

m use the concept of surface tension to solve simple problems involving liquid—gas or
liquid—solid—gas interfaces.

Some of the important equations in this chapter are

Specific weight Y = pg (1.5)

Specific gravity SG = P

=— (1.6)
PH,0@4 °C
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Ideal gas law

Newtonian fluid shear stress

Bulk modulus
Speed of sound in an ideal gas

Capillary rise in a tube

p
= — 1.7
P=or 1.7)
du
=u— 1.8
T=u0 0 (1.8)
dp
E = —"— 1.9
v d¥ /¥ (1.9)
¢ = VKRT (1.15)
h— 20 cosf
YR (1.16)

Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual for

Problems

a Brief Introduction to Fluid Mechanics, by Young et al. (© 2011
John Wiley and Sons, Inc.).

Note: Unless specific values of required fluid properties are
given in the statement of the problem, use the values found
in the tables on the inside of the front cover. Problems desig-
nated with an (*) are intended to be solved with the aid of a
programmable calculator or a computer. Problems desig-
nated with a (}) are “open-ended” problems and require
critical thinking in that to work them one must make vari-
ous assumptions and provide the necessary data. There is
not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 1.2 Dimensions, Dimensional Homogeneity,
and Units

1.2 Determine the dimensions, in both the FLT system and
MLT system, for (a) the product of force times volume, (b) the
product of pressure times mass divided by area, and (¢) moment
of a force divided by velocity.

1.4 The force, F, of the wind blowing against a building is given
by F = CppV? A/2, where V is the wind speed, p the density of
the air, A the cross-sectional area of the building, and Cpis a con-
stant termed the drag coefficient. Determine the dimensions of the
drag coefficient.

1.6 Dimensionless combinations of quantities (commonly
called dimensionless parameters) play an important role in fluid
mechanics. Make up five possible dimensionless parameters by
using combinations of some of the quantities listed in Table 1.1.

1.8 The pressure difference, Ap, across a partial blockage in an
artery (called a stenosis) is approximated by the equation

I“LV AO . 2
Ap=K, "~ +K,(-2~1)pv
p=r k(5= 1)

where V is the blood velocity, u the blood viscosity (FL™>T),
p the blood density (ML ?), D the artery diameter, A, the area of
the unobstructed artery, and A, the area of the stenosis. Determine
the dimensions of the constants K, and K,,. Would this equation be
valid in any system of units?

1.10 Assume that the speed of sound, ¢, in a fluid depends on
an elastic modulus, E,, with dimensions FL72, and the fluid
density, p, in the form ¢ = (E,)(p)". If this is to be a dimen-
sionally homogeneous equation, what are the values for a and
b? Is your result consistent with the standard formula for the
speed of sound? (See Eq. 1.14.)

71.12 Cite an example of a restricted homogeneous equation
contained in a technical article found in an engineering journal
in your field of interest. Define all terms in the equation, explain
why it is a restricted equation, and provide a complete journal
citation (title, date, etc.).

1.14 Make use of Table 1.3 to express the following quantities
in BG units: (a) 14.2 km, (b) 8.14 N/m?, (c) 1.61 kg/m’
(d) 0.0320 N-m/s, (e) 5.67 mm/hr.

1.16 An important dimensionless parameter in certain types of
fluid flow problems is the Froude number defined as V/ Vg€,
where V is a velocity, g the acceleration of gravity, and € a
length. Determine the value of the Froude number for V = 10 ft/s,
g = 32.2 ft/s?, and € = 2 ft. Recalculate the Froude number us-
ing SI units for V, g, and €. Explain the significance of the
results of these calculations.


www.wiley.com/college/young
www.wiley.com/college/young

Section 1.4 Measures of Fluid Mass and Weight

1.18 Clouds can weigh thousands of pounds due to their liquid
water content. Often this content is measured in grams per cubic
meter (g/m?). Assume that a cumulus cloud occupies a volume
of one cubic kilometer, and its liquid water content is 0.2 g/m®.
(a) What is the volume of this cloud in cubic miles? (b) How
much does the water in the cloud weigh in pounds?

1.20 A hydrometer is used to measure the specific gravity of
liquids. (See Video V2.8.) For a certain liquid a hydrometer
reading indicates a specific gravity of 1.15. What is the liquid’s
density and specific weight? Express your answer in SI units.

1.22 The information on a can of pop indicates that the can
contains 355 mL. The mass of a full can of pop is 0.369 kg while
an empty can weighs 0.153 N. Determine the specific weight,
density, and specific gravity of the pop and compare your results
with the corresponding values for water at 20 °C. Express your
results in SI units.

1.24 When poured into a graduated cylinder, a liquid is found
to weigh 6 N when occupying a volume of 500 ml (milliliters).
Determine its specific weight, density, and specific gravity.

71.26 Estimate the number of kilograms of water consumed
per day for household purposes in your city. List all assump-
tions and show all calculations.

1.28 If I cup of cream having a density of 1005 kg/m? is turned
into 3 cups of whipped cream, determine the specific gravity
and specific weight of the whipped cream.

Section 1.5 Ideal Gas Law

1.30 A closed tank having a volume of 2 ft* is filled with 0.30 1b
of a gas. A pressure gage attached to the tank reads 12 psi when
the gas temperature is 80 °F. There is some question as to
whether the gas in the tank is oxygen or helium. Which do you
think it is? Explain how you arrived at your answer.

71.32 Estimate the volume of car exhaust produced per day by
automobiles in the United States. List all assumptions and show
calculations.

1.34 The helium-filled blimp shown in Fig. P1.34 is used at
various athletic events. Determine the number of pounds of he-
lium within it if its volume is 68,000 ft’ and the temperature and
pressure are 80 °F and 14.2 psia, respectively.

B FIGURE P1.34

Section 1.6 Viscosity (also see Lab Problems 1.74
and 1.75)

1.36 For flowing water, what is the magnitude of the velocity
gradient needed to produce a shear stress of 1.0 N/m??

29

Problems

1.38 (See Fluids in the News article titled “A vital fluid,” Section
1.6.) Some measurements on a blood sample at 37 °C (98.6 °F)
indicate a shearing stress of 0.52 N/m? for a corresponding rate of
shearing strain of 200 s~ !. Determine the apparent viscosity of
the blood and compare it with the viscosity of water at the same
temperature.

1.40 SAE 30 oil at 60 °F flows through a 2-in.-diameter pipe with
a mean velocity of 5 ft/s. Determine the value of the Reynolds
number (see Example 1.3).

1.42 Make use of the data in Appendix B to determine the dy-
namic viscosity of glycerin at 85 °F. Express your answer in
both SI and BG units.

1.44 A Newtonian fluid having a specific gravity of 0.92 and
a kinematic viscosity of 4 X 10™* m%/s flows past a fixed sur-
face. Due to the no-slip condition, the velocity at the fixed
surface is zero (as shown in Video V1.4), and the velocity
profile near the surface is shown in Fig. P1.44. Determine the
magnitude and direction of the shearing stress developed on
the plate. Express your answer in terms of U and 8, with U
and 6 expressed in units of meters per second and meters,
respectively.
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B FIGURE P1.44

1.46 When a viscous fluid flows past a thin sharp-edged plate,
a thin layer adjacent to the plate surface develops in which the
velocity, u, changes rapidly from zero to the approach velocity,
U, in a small distance, 6. This layer is called a boundary layer.
The thickness of this layer increases with the distance x along
the plate as shown in Fig. P1.46. Assume that u = Uy/6 and
6 = 3.5Vvx/U where v is the kinematic viscosity of the fluid.
Determine an expression for the force (drag) that would be de-
veloped on one side of the plate of length € and width b. Ex-
press your answer in terms of €, b, v and p, where p is the fluid
density.

U
Boundary layer
- U=
oo | _____ _
,/”’/’ g ‘\u:U%

- ¥ .

Plate | |

width=b | ¢ \

B FIGURE Pi1.46
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1.48 A 40-1b, 0.8-ft-diameter, 1-ft-tall cylindrical tank slides
slowly down a ramp with a constant speed of 0.1 ft/s as shown
in Fig. P1.48. The uniform-thickness oil layer on the ramp has a
viscosity of 0.2 1b-s/ft>. Determine the angle, 6, of the ramp.

Tank

0.002 ft

0.1 ft/s
Oil

o=~

B FIGURE P148

1.50 Water flows near a flat surface, and some measurements of
the water velocity, u, parallel to the surface, at different heights,
v, above the surface are obtained. At the surface y= 0. After an
analysis of data, the lab technician reports that the velocity distri-
bution in the range 0 <y < 0.1 ft is given by the equation

u=081+ 92y + 4.1 X 10%*

with u in ft/s when y is in ft. (a) Do you think that this equation
would be valid in any system of units? Explain. (b) Do you
think this equation is correct? Explain. You may want to look at
Video 1.4 to help you arrive at your answer.

1.52 The viscosity of liquids can be measured through the
use of a rotating cylinder viscometer of the type illustrated in
Fig. P1.52. In this device the outer cylinder is fixed and the in-
ner cylinder is rotated with an angular velocity, w. The torque J
required to develop w is measured, and the viscosity is calculated
from these two measurements. Develop an equation relating
n,w, T, €, R, and R, Neglect end effects and assume the velocity
distribution in the gap is linear.

Fixed
outer
cylinder

«Q

Liquid

— w 4

Rotating
inner ¢

cylinder

R, —]
R, —~
BFIGURE P1.52

1.54 One type of rotating cylinder viscometer, called a
Stormer viscometer, uses a falling weight, W', to cause the cylin-
der to rotate with an angular velocity, w, as illustrated in
Fig. P1.54. For this device the viscosity, w, of the liquid is related
to W' and w through the equation W' = Kuw, where K is a constant

that depends only on the geometry (including the liquid depth) of
the viscometer. The value of K is usually determined by using a
calibration liquid (a liquid of known viscosity).

(a) Some data for a particular Stormer viscometer, obtained us-
ing glycerin at 20 °C as a calibration liquid, are given below.
Plot values of the weight as ordinates and values of the angular
velocity as abscissae. Draw the best curve through the plotted
points and determine K for the viscometer.

W (lb) | 022 | 066 | 110 | 154 | 220
w@evis) | 053 | 159 [ 279 [ 383 [ 549
— Fixed outer
cylinder

B FIGURE P1.54

(b) A liquid of unknown viscosity is placed in the same vis-
cometer used in part (a), and the following data are obtained.
Determine the viscosity of this liquid.

W(1b) |
w (rev/s) |

0.04 |
072 |

0.11 |
1.89 |

022 |
373 |

033 |
5.44 |

0.44
7.42

1.56 A pivot bearing used on the shaft of an electrical instru-
ment is shown in Fig. P1.56. An oil with a viscosity of
w = 0.010 Ib-s/ft? fills the 0.001-in. gap between the rotating

<_|_> 5000 rpm

~— 0.2in.

0.001 in. u=0.010 Ib-s/ft?

I
BEFIGURE P1.56



shaft and the stationary base. Determine the frictional torque on
the shaft when it rotates at 5000 rpm.

Section 1.7 Compressibility of Fluids

1.58 Obtain a photograph/image of a situation in which the
compressibility of a fluid is important. Print this photo and write
a brief paragraph that describes the situation involved.

1.60 An important dimensionless parameter concerned with
very high speed flow is the Mach number, defined as V/c, where
V is the speed of the object, such as an airplane or projectile,
and c is the speed of sound in the fluid surrounding the object.
For a projectile traveling at 800 mph through air at 50 °F and
standard atmospheric pressure, what is the value of the Mach
number?

1.62 Oxygen at 30 °C and 300 kPa absolute pressure expands
isothermally to an absolute pressure of 140 kPa. Determine the
final density of the gas.

1.64 Determine the speed of sound at 20 °C in (a) air, (b) helium,
and (c) natural gas. Express your answer in m/s.

Section 1.8 Vapor Pressure

1.66 When a fluid flows through a sharp bend, low pressures
may develop in localized regions of the bend. Estimate the min-
imum absolute pressure (in psi) that can develop without caus-
ing cavitation if the fluid is water at 160 °F.

1.68 At what atmospheric pressure will water boil at 35 °C?
Express your answer in both SI and BG units.

Section 1.9 Surface Tension

1.70 Anopen, clean glass tube (6 = 0°) s inserted vertically into
a pan of water. What tube diameter is needed if the water level in
the tube is to rise one tube diameter (due to surface tension)?

1.72 As shown in Video V1.9, surface tension forces can be
strong enough to allow a double-edge steel razor blade to
“float” on water, but a single-edge blade will sink. Assume that
the surface tension forces act at an angle 6 relative to the water
surface as shown in Fig. P1.72. (a) The mass of the double-edge
blade is 0.64 X 107 kg, and the total length of its sides is 206 mm.

Problems 31

Determine the value of 6 required to maintain equilibrium be-
tween the blade weight and the resultant surface tension force.
(b) The mass of the single-edge blade is 2.61 X 107> kg, and the
total length of its sides is 154 mm. Explain why this blade sinks.
Support your answer with the necessary calculations.

Surface tension

B FIGURE P1.72

B Lab Problems

1.74 This problem involves the use of a Stormer viscometer to
determine whether a fluid is a Newtonian or a non-Newtonian
fluid. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/young, or WileyPLUS.

B Lifelong Learning Problems

1.76 Although there are numerous non-Newtonian fluids that
occur naturally (quicksand and blood among them), with the ad-
vent of modern chemistry and chemical processing, many new
manufactured non-Newtonian fluids are now available for a
variety of novel applications. Obtain information about the
discovery and use of newly developed non-Newtonian fluids.
Summarize your findings in a brief report.

1.78 It is predicted that nanotechnology and the use of nano-
sized objects will allow many processes, procedures, and prod-
ucts that, as of now, are difficult for us to comprehend. Among
new nanotechnology areas is that of nanoscale fluid mechanics.
Fluid behavior at the nanoscale can be entirely different than
that for the usual everyday flows with which we are familiar.
Obtain information about various aspects of nanofluid mechan-
ics. Summarize your findings in a brief report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions
for fluid mechanics are provided on the book’s web site,
www.wiley.com/college/young, or WileyPLUS.


www.wiley.com/college/young
www.wiley.com/college/young

CHAPTER OPENING PHOTO: Floating iceberg: An iceberg is a large piece of freshwater ice that origi-
nated as snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh-
water ice is lighter than the salt water in the ocean, the difference in densities is relatively small.
Hence, only about one-ninth of the volume of an iceberg protrudes above the ocean’s surface, so that
what we see floating is literally “just the tip of the iceberg.” (Photograph courtesy of Corbis Digital
Stock/Corbis Images.)

Learning Objectives

After completing this chapter, you should be able to:
m determine the pressure at various locations in a fluid at rest.

m explain the concept of manometers and apply appropriate equations to
determine pressures.

m calculate the hydrostatic pressure force on a plane or curved submerged
surface.

m calculate the buoyant force and discuss the stability of floating or
submerged objects.

In this chapter we will consider an important class of problems in which the fluid is either at
rest or moving in such a manner that there is no relative motion between adjacent particles.
In both instances there will be no shearing stresses in the fluid, and the only forces that
develop on the surfaces of the particles will be due to the pressure. Thus, our principal con-
cern is to investigate pressure and its variation throughout a fluid and the effect of pressure
on submerged surfaces.
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Pressure at a Point

As discussed briefly in Chapter 1, the term pressure is used to indicate the normal force
per unit area at a given point acting on a given plane within the fluid mass of interest. A
question that immediately arises is how the pressure at a point varies with the orientation
of the plane passing through the point. To answer this question, consider the free-body dia-
gram, illustrated in Fig. 2.1, that was obtained by removing a small triangular wedge of
fluid from some arbitrary location within a fluid mass. Since we are considering the situa-
tion in which there are no shearing stresses, the only external forces acting on the wedge
are due to the pressure and the weight. For simplicity the forces in the x direction are not
shown, and the z axis is taken as the vertical axis so the weight acts in the negative z direc-
tion. Although we are primarily interested in fluids at rest, to make the analysis as general
as possible, we will allow the fluid element to have accelerated motion. The assumption of
zero shearing stresses will still be valid so long as the fluid element moves as a rigid body;
that is, there is no relative motion between adjacent elements.

The equations of motion (Newton’s second law, F = ma) in the y and z directions
are, respectively,

. Ox 8y 6z
EFy:PyB)C(SZ—pSSx'O‘ssmO:pTay
5x 0y & Sx8v o
2F, = p,0xdy — p;6xdscos O — vy xzy Z:p xzy Zaz

where p,, p,, and p, are the average pressures on the faces, y and p are the fluid specific
weight and density, respectively, and a,, a, the accelerations. It follows from the geometry that

8y = 8scos 6 8z = s sin 0

so that the equations of motion can be rewritten as

oy

Py — Ps = pay?
6z
p. — ps = (pa; + 7)3

Since we are really interested in what is happening at a point, we take the limit as dx, dy,
and 6z approach zero (while maintaining the angle ), and it follows that

Py = Ds Pz = Ps

Py 6x Os N /

ds

ox

p. 0x 8y

1
1
1
/ {5y
ox0yé
X y_xzyz

B FIGURE 2.1 Forces on an arbitrary wedged-shaped element of fluid.
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— . orpg=p, = p. The angle 6 was arbitrarily chosen so we can conclude that the pressure
"y : = at a point in a fluid at rest, or in motion, is independent of direction as long as there are
no shearing stresses present. This important result is known as Pascal’s law. Thus, as shown
by the photograph in the margin, at the junction of the side and bottom of the beaker, the
pressure is the same on the side as it is on the bottom.

In Chapter 6 it will be shown that for moving fluids in which there is relative motion
between particles (so that shearing stresses develop) the normal stress at a point, which cor-
responds to pressure in fluids at rest, is not necessarily the same in all directions. In such
cases the pressure is defined as the average of any three mutually perpendicular normal
stresses at the point.

2.2 Basic Equation for Pressure Field

Although we have answered the question of how the pressure at a point varies with direc-
tion, we are now faced with an equally important question—how does the pressure in a
fluid in which there are no shearing stresses vary from point to point? To answer this ques-
tion, consider a small rectangular element of fluid removed from some arbitrary position
within the mass of fluid of interest as illustrated in Fig. 2.2. There are two types of forces
acting on this element: surface forces due to the pressure and a body force equal to the
weight of the element.

If we let the pressure at the center of the element be designated as p, then the aver-
age pressure on the various faces can be expressed in terms of p and its derivatives as shown
in Fig. 2.2 and the figure in the margin. For simplicity the surface forces in the x direction
are not shown. The resultant surface force in the y direction is

ap & ap &
OF, = <p - py)(SxSZ - (p + py>6x6z

dy 2 ay 2
dp 6z i
(p + 32 Ox Oy
z
I 5
Z
f dp &
dp 8y —_— 1 e ap oy
(P—ﬁ?) 6x0z > : _’ - (p+(9y 2 oxdz
Vol 7= iy
|
V4 A Sx xSy oz
Sy
e
( dz 2 8xdy

X

B FIGURE 2.2 Surface and body forces acting on small fluid element.
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or
ap
oF, = _$6x8y3z
Similarly, for the x and z directions the resultant surface forces are
ap ap
OF, = ——0xdydz OF, = ——6x0ydz
ox ' 0z

The resultant surface force acting on the element can be expressed in vector form as
SF, = 8F,i + 8F,j + 8F.k
or
p,  Op,

oF, = (1 +—j+ k) 0x 0y 0z 2.1
0x dy

where i, j, and Kk are the unit vectors along the coordinate axes shown in Fig. 2.2. The group
of terms in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can
be written as

op. Ipa A
ll £j+£k=Vp
0x ay d
where
o ). o). ).
vy = 204,905 0,
0x dy 0z

and the symbol V is the gradient or “del” vector operator. Thus, the resultant surface force
per unit volume can be expressed as

o, _
oxoyoz 1

Because the z axis is vertical, the weight of the element is
—8Wk = — ydx8ydzk

where the negative sign indicates that the force due to the weight is downward (in the neg-
ative z direction). Newton’s second law, applied to the fluid element, can be expressed as

206F =6ma

where 2 6F represents the resultant force acting on the element, a is the acceleration of
the element, and &m is the element mass, which can be written as p éx 8y 6z. It follows
that

S 6F = 6F, — 6Wk = dma
or
—Vpbx8ydz — yoxdydzk = poxdydza
and, therefore,
—Vp — vk = pa (2.2)

Equation 2.2 is the general equation of motion for a fluid in which there are no shearing
stresses. Although Eq. 2.2 applies to both fluids at rest and moving fluids, we will primar-
ily restrict our attention to fluids at rest.
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2.3 Pressure Variation in a Fluid at Rest

dz

/N

V2.1 Pressure on a
car

For a fluid at rest a = 0 and Eq. 2.2 reduces to

Vp+ vk =0
or in component form
) ) )
Py Py P__, 2.3)
x ady 0z

These equations show that the pressure does not depend on x or y. Thus, as we move from
point to point in a horizontal plane (any plane parallel to the x — y plane), the pressure
does not change. Since p depends only on z, the last of Egs. 2.3 can be written as the ordi-
nary differential equation

dap _

w7 24

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine
how pressure changes with elevation. This equation and the figure in the margin indicate that
the pressure gradient in the vertical direction is negative; that is, the pressure decreases as we
move upward in a fluid at rest. There is no requirement that -y be a constant. Thus, it is valid
for fluids with constant specific weight, such as liquids, as well as fluids whose specific weight
may vary with elevation, such as air or other gases. However, to proceed with the integration
of Eq. 2.4 it is necessary to stipulate how the specific weight varies with z.

2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration of grav-
ity (y = pg), changes in +y are caused by a change in either p or g. For most engineering
applications the variation in g is negligible, so our main concern is with the possible vari-
ation in the fluid density. In general, a fluid with constant density is called an incompress-
ible fluid. For liquids the variation in density is usually negligible, even over large vertical
distances, so that the assumption of constant specific weight when dealing with liquids is
a good one. For this instance, Eq. 2.4 can be directly integrated

P2 2
J dp = —yJ dz

P 21
to yield
pr— P2 =Yz — 71) (2.5)

where p, and p, are pressures at the vertical elevations z; and z,, as is illustrated in Fig. 2.3.
Equation 2.5 can be written in the compact form

p1—p2=Yh (2.6)
or
p1=Yh + ps 2.7)

where £ is the distance, z, — z;, which is the depth of fluid measured downward from the
location of p,. This type of pressure distribution is commonly called a hydrostatic pres-
sure distribution, and Eq. 2.7 shows that in an incompressible fluid at rest the pressure
varies linearly with depth. The pressure must increase with depth to “hold up” the fluid
above it.
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2.3 Pressure Variation in a Fluid at Rest

Free surface
(pressure = py)

Y B FIGURE 2.3 Notation for
pressure variation in a fluid at rest with a
x free surface.

It can also be observed from Eq. 2.6 that the pressure difference between two points
can be specified by the distance & since

0
\__.A=1in?

23.1ft Y

In this case A is called the pressure head and is interpreted as the height of a column
of fluid of specific weight y required to give a pressure difference p, — p,. For exam-
ple, a pressure difference of 10 psi can be specified in terms of pressure head as 23.1 ft
of water (y = 62.4 1b/ft’), or 518 mm of Hg (y = 133 kN/m®). As illustrated by the fig-
ure in the margin, a 23.1-ft-tall column of water with a coss-sectional area of 1 in.?
weighs 10 Ib.

When one works with liquids there is often a free surface, as is illustrated in Fig. 2.3,
and it is convenient to use this surface as a reference plane. The reference pressure p, would
correspond to the pressure acting on the free surface (which would frequently be atmo-
spheric pressure), and thus, if we let p, = p, in Eq. 2.7, it follows that the pressure p at
any depth & below the free surface is given by the equation:

W=101b

pA=101Ib

p = vh+ po (2.8)

As is demonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible
fluid at rest depends on the depth of the fluid relative to some reference plane, and it is not
influenced by the size or shape of the tank or container in which the fluid is held. Thus,
for the containers shown in the figure in the margin, the pressure is the same at all points
along the line AB even though the containers have very irregular shapes. The actual value
of the pressure along AB depends only on the depth, &, the surface pressure, p,, and the
specific weight, v, of the liquid in the container.

F I u i d s i n t h e N e w s

Giraffe’s blood pressure A giraffe’s long neck allows it to graze
up to 6 m above the ground. It can also lower its head to drink at
ground level. Thus, in the circulatory system there is a significant
hydrostatic pressure effect due to this elevation change. To main-
tain blood to its head throughout this change in elevation, the gi-
raffe must maintain a relatively high blood pressure at heart
level—approximately two and a half times that in humans. To
prevent rupture of blood vessels in the high-pressure lower leg

regions, giraffes have a tight sheath of thick skin over their lower
limbs that acts like an elastic bandage in exactly the same way as
do the g-suits of fighter pilots. In addition, valves in the upper
neck prevent backflow into the head when the giraffe lowers its
head to ground level. It is also thought that blood vessels in the
giraffe’s kidney have a special mechanism to prevent large
changes in filtration rate when blood pressure increases or
decreases with its head movement. (See Problem 2.11.)
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GIVEN Because of a leak in a buried gasoline storage tank,
water has seeped in to the depth shown in Fig. E2.1. The spe-
cific gravity of the gasoline is SG = 0.68.

FIND Determine the pressure at the gasoline—water inter-

face and at the bottom of the tank. Express the pressure in
units of 1b/ft, Ib/in.?, and as a pressure head in feet of water.

SOLUTION

Since we are dealing with liquids at rest, the pressure distribu-
tion will be hydrostatic and, therefore, the pressure variation
can be found from the equation

p=7vh+po

With p, corresponding to the pressure at the free surface of the
gasoline, then the pressure at the interface is

P1 = SGyu,oh + po
= (0.68)(62.4 Ib/ft*)(17 ft) + py
= 721 + p, (Ib/ft?)

If we measure the pressure relative to atmospheric pressure
(gage pressure), it follows that p, = 0, and therefore

721 1b/f2 (Ans)
721 b/t
=———— =5011b/in> A

P adin e )
pi 121 1b/fC

Yo 624 1b/ft
It is noted that a rectangular column of water 11.6 ft tall and 1 ft*

in cross section weighs 721 1b. A similar column with a 1-in.?
cross section weighs 5.01 Ib.

P1

= 11.6 ft (Ans)

EXAMPLE 2.1

Open
17 ft
Gasoline i
(1) — R T e
- - ~ Water - 3ft

(2) —

_|

B FIGURE E21

We can now apply the same relationship to determine the
pressure at the tank bottom; that is,

P2 = Yu.ohmo t P
(62.4 Ib/ft%)(3 ft) + 721 1b/ft?

= 908 Ib/ft (Ans)
908 Ib/ft>
= ———— =631 1b/in> A
P2 = Ladin e (Ans)

908 Ib/ft>
2 ———— = 1461t (Ans)
Yu,o  62.41b/ft

COMMENT Observe that if we wish to express these
pressures in terms of absolute pressure, we would have to add
the local atmospheric pressure (in appropriate units) to the
previous results. A further discussion of gage and absolute
pressure is given in Section 2.5.

2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids
because the density of the gas can change significantly with changes in pressure and tem-
perature. Thus, although Eq. 2.4 applies at a point in a gas, it is necessary to consider the pos-
sible variation in vy before the equation can be integrated. However, as discussed in Chapter 1,
the specific weights of common gases are small when compared with those of liquids. For
example, the specific weight of air at sea level and 60 °F is 0.0763 Ib/ft’, whereas the spe-
cific weight of water under the same conditions is 62.4 1b/ft’. Since the specific weights of
gases are comparatively small, it follows from Eq. 2.4 that the pressure gradient in the ver-
tical direction is correspondingly small, and even over distances of several hundred feet the
pressure will remain essentially constant for a gas. This means we can neglect the effect of
elevation changes on the pressure in stationary gases in tanks, pipes, and so forth in which
the distances involved are small.
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For those situations in which the variations in heights are large, on the order of thou-
sands of feet, attention must be given to the variation in the specific weight. As is described
in Chapter 1, the equation of state for an ideal (or perfect) gas is

p = pRT

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature.
This relationship can be combined with Eq. 2.4 to give

dp _ _sp
dz RT
and by separating variables
P2 d (ol d
J lenl’zz_gj dz 2.9)
P P R), T

Py

where g and R are assumed to be constant over the elevation change from z; to 2.

Before completing the integration, one must specify the nature of the variation of tem-
perature with elevation. For example, if we assume that the temperature has a constant value
T, over the range z; to z, (isothermal conditions), it then follows from Eq. 2.9 that

Incompressible P2 = D1 eXp|: _g(Z2Z1):| (2.10)
RT,
5000 10,000

-2, ft This equation provides the desired pressure—elevation relationship for an isothermal layer.
As shown in the margin figure, even for a 10,000-ft altitude change, the difference between
the constant temperature (isothermal) and the constant density (incompressible) results is
relatively minor. For nonisothermal conditions a similar procedure can be followed if the

temperature—elevation relationship is known.

Standard Atmosphere

2.5

An important application of Eq. 2.9 relates to the variation in pressure in the Earth’s atmo-
sphere. Ideally, we would like to have measurements of pressure versus altitude over the spe-
cific range for the specific conditions (temperature, reference pressure) for which the pressure
is to be determined. However, this type of information is usually not available. Thus, a “stan-
dard atmosphere” has been determined that can be used in the design of aircraft, missiles,
and spacecraft and in comparing their performance under standard conditions.

The currently accepted standard atmosphere is based on a report published in 1962
and updated in 1976 (see Refs. 1 and 2), defining the so-called U.S. standard atmosphere,
which is an idealized representation of middle-latitude, year-round mean conditions of the
earth’s atmosphere. Several important properties for standard atmospheric conditions at sea
level are listed in Table 2.1.

Tabulated values for temperature, acceleration of gravity, pressure, density, and vis-
cosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in Appendix C.

Measurement of Pressure

Since pressure is a very important characteristic of a fluid field, it is not surprising that
numerous devices and techniques are used in its measurement. As noted briefly in Chapter 1,
the pressure at a point within a fluid mass will be designated as either an absolute pressure
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H TABLE 2.1

Properties of U.S. Standard Atmosphere at Sea Level®

Property

SI Units

BG Units

Temperature, T’
Pressure, p

Density, p
Specific weight, y

288.15 K (15 °C)
101.33 kPa (abs)

1.225 kg/m®
12.014 N/m?
1.789 X 107° N-s/m>

518.67 °R (59.00 °F)

2116.2 Ib/ft> (abs)
[14.696 1b/in.? (abs)]

0.002377 slugs/ft*

0.07647 1b/ft?

3.737 X 1077 Ib-s/ft?

Viscosity, w

“Acceleration of gravity at sea level = 9.807 m/s> = 32.174 ft/s’.

or a gage pressure. Absolute pressure is measured relative to a perfect vacuum (absolute
zero pressure), whereas gage pressure is measured relative to the local atmospheric pressure.
Thus, a gage pressure of zero corresponds to a pressure that is equal to the local atmospheric
pressure. Absolute pressures are always positive, but gage pressure can be either positive or
negative depending on whether the pressure is above atmospheric pressure (a positive value)
or below atmospheric pressure (a negative value). A negative gage pressure is also referred
to as a suction or vacuum pressure. For example, 10 psi (abs) could be expressed as —4.7 psi
(gage), if the local atmospheric pressure is 14.7 psi, or alternatively 4.7 psi suction or 4.7 psi
vacuum. The concept of gage and absolute pressure is illustrated graphically in Fig. 2.4 for
two typical pressures located at points 1 and 2.

In addition to the reference used for the pressure measurement, the units used to
express the value are obviously of importance. As described in Section 1.5, pressure is a
force per unit area, and the units in the BG system are 1b/ft* or 1b/in.?, commonly abbre-
viated psf or psi, respectively. In the SI system the units are N/m? this combination is
called the pascal and is written as Pa (I N/m®> = 1 Pa). As noted earlier, pressure can also
be expressed as the height of a column of liquid. Then the units will refer to the height
of the column (in., ft, mm, m, etc.), and in addition, the liquid in the column must be speci-
fied (H,O, Hg, etc.). For example, standard atmospheric pressure can be expressed as 760 mm
Hg (abs). In this text, pressures will be assumed to be gage pressures unless specifically
designated absolute. For example, 10 psi or 100 kPa would be gage pressures, whereas
10 psia or 100 kPa (abs) would refer to absolute pressures. It is to be noted that because
pressure differences are independent of the reference, no special notation is required in
this case.

1
e
Gage pressure @ 1
° Local atmospheric
5 pressure reference
w
g 2
o o 8 Gage pressure @ 2
Ab5°|Ut@e qressure (suction or vacuum)
Absolute pressure
@2

Absolute zero reference

B FIGURE 2.4 Graphical representation of
gage and absolute pressure.
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B FIGURE 2.5 Mercury barometer.

The measurement of atmospheric pressure is usually accomplished with a mercury
barometer, which in its simplest form consists of a glass tube closed at one end with the
open end immersed in a container of mercury as shown in Fig. 2.5. The tube is initially
filled with mercury (inverted with its open end up) and then turned upside down (open end
down) with the open end in the container of mercury. The column of mercury will come
to an equilibrium position where its weight plus the force due to the vapor pressure (which
develops in the space above the column) balances the force due to the atmospheric pres-
sure. Thus,

Patm = yh + pvapor (2'11)

where 7 is the specific weight of mercury. For most practical purposes the contribution of
the vapor pressure can be neglected since it is very small [for mercury, the fluid most com-
monly used in barometers, py,p, = 0.000023 Ib/in.% (abs) at a temperature of 68 °F] so that
Pam = Yh. It is convenient to specify atmospheric pressure in terms of the height, A, in
millimeters or inches of mercury. Note that if water were used instead of mercury, the
height of the column would have to be approximately 34 ft rather than 29.9 in. of mer-
cury for an atmospheric pressure of 14.7 psia! This is shown to scale in the figure in the
margin.

i d s i n t h e N e w s

Weather, barometers, and bars One of the most important
indicators of weather conditions is atmospheric pressure. In
general, a falling or low pressure indicates bad weather; ris-
ing or high pressure, good weather. During the evening TV
weather report in the United States, atmospheric pressure is
given as so many inches (commonly around 30 in.). This
value is actually the height of the mercury column in a mer-
cury barometer adjusted to sea level. To determine the true
atmospheric pressure at a particular location, the elevation
relative to sea level must be known. Another unit used by me-
teorologists to indicate atmospheric pressure is the bar, first

used in weather reporting in 1914, and defined as 10° N/m?.
The definition of a bar is probably related to the fact that stan-
dard sea-level pressure is 1.0133 X 10° N/m?, that is, only
slightly larger than one bar. For typical weather patterns “sea-
level equivalent” atmospheric pressure remains close to one
bar. However, for extreme weather conditions associated with
tornadoes, hurricanes, or typhoons, dramatic changes can
occur. The lowest atmospheric pressure ever recorded was
associated with a typhoon, Typhoon Tip, in the Pacific Ocean
on October 12, 1979. The value was 0.870 bar (25.8 in. Hg).
(See Problem 2.15.)
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2.6 Manometry
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A standard technique for measuring pressure involves the use of liquid columns in vertical or
inclined tubes. Pressure-measuring devices based on this technique are called manometers.
The mercury barometer is an example of one type of manometer, but there are many other
configurations possible depending on the particular application. Three common types of
manometers include the piezometer tube, the U-tube manometer, and the inclined-tube
manometer.

2.6.1 Piezometer Tube

The simplest type of manometer, called a piezometer tube, consists of a vertical tube, open
at the top, and attached to the container in which the pressure is desired, as illustrated in
Fig. 2.6. The figure in the margin shows an important device whose operation is based on
this principle. It is a sphygmomanometer, the traditional instrument used to measure blood
pressure. Because manometers involve columns of fluids at rest, the fundamental equation
describing their use is Eq. 2.8

P =vh+ po

which gives the pressure at any elevation within a homogeneous fluid in terms of a refer-
ence pressure p, and the vertical distance & between p and p,. Remember that in a fluid at
rest pressure will increase as we move downward and will decrease as we move upward.
Application of this equation to the piezometer tube of Fig. 2.6 indicates that the pressure
pa can be determined by a measurement of 4, through the relationship

Pa = vl
where vy, is the specific weight of the liquid in the container. Note that since the tube is
open at the top, the pressure p, can be set equal to zero (we are now using gage pressure),

with the height &, measured from the meniscus at the upper surface to point (1). Because
point (1) and point A within the container are at the same elevation, p, = p,.

Open

n

A# o) — (1)
B FIGURE 2.6 Piezometer tube.
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B FIGURE 2.7 Simple U-tube manometer.

Although the piezometer tube is a very simple and accurate pressure-measuring
device, it has several disadvantages. It is only suitable if the pressure in the container is
greater than atmospheric pressure (otherwise air would be sucked into the system), and the
pressure to be measured must be relatively small so the required height of the column is
reasonable. Also the fluid in the container in which the pressure is to be measured must be
a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer that is widely used
consists of a tube formed into the shape of a U as is shown in Fig. 2.7. The fluid in the
manometer is called the gage fluid. To find the pressure p, in terms of the various column
heights, we start at one end of the system and work our way around to the other end, simply
utilizing Eq. 2.8. Thus, for the U-tube manometer shown in Fig. 2.7, we will start at point A
and work around to the open end. The pressure at points A and (1) are the same, and as we
move from point (1) to (2) the pressure will increase by 7y;h;. The pressure at point (2) is
equal to the pressure at point (3), since the pressures at equal elevations in a continuous mass
of fluid at rest must be the same. Note that we could not simply “jump across” from point
(1) to a point at the same elevation in the right-hand tube since these would not be points
within the same continuous mass of fluid. With the pressure at point (3) specified we now
move to the open end where the pressure is zero. As we move vertically upward the pressure
decreases by an amount y,h,. In equation form these various steps can be expressed as

Pa + vihy — y2h =0

and, therefore, the pressure p, can be written in terms of the column heights as

Pa = Yaho — yily (2.12)

A major advantage of the U-tube manometer lies in the fact that the gage fluid can be dif-
ferent from the fluid in the container in which the pressure is to be determined. For exam-
ple, the fluid in A in Fig. 2.7 can be either a liquid or a gas. If A does contain a gas, the
contribution of the gas column, vy,h,, is almost always negligible so that p, = p, and, in this
instance, Eq. 2.12 becomes

Pa = Va2hy
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ExawmPLE 2.2

GIVEN A closed tank contains compressed air and oil Pressure
(8G.;; = 0.90) as is shown in Fig. E2.2. A U-tube manometer gage
using mercury (SGy, = 13.6) is connected to the tank as shown.

The column heights are 4, = 36 in., h, = 6 in., and &3 = 9 in. Air

FIND Determine the pressure reading (in psi) of the gage.

SOLUTION oil — T

Following the general procedure of starting at one end of the
manometer system and working around to the other, we will
start at the air—oil interface in the tank and proceed to the open
end where the pressure is zero. The pressure at level (1) is

P1 = Pair T Youlln + hy)
B FIGURE E22
This pressure is equal to the pressure at level (2), as these two

points are at the same elevation in a homogeneous fluid at rest.
As we move from level (2) to the open end, the pressure must
decrease by ypghs, and at the open end the pressure is zero.
Thus, the manometer equation can be expressed as

Because the specific weight of the air above the oil is much
smaller than the specific weight of the oil, the gage should
read the pressure we have calculated; that is,

Dair T Yoil(h1 + h2) — yuohs =0 440 1b/fe

or Pese = g inzyge OO0 P (Ans)

ar + (SGon)(yiv0)(y + hy) — (SG Oz =0
P (SGou)(ri0)lfs 2) ~ (SGug)(.0)hs COMMENT Assume that the gage pressure remains at

For the values given 3.06 psi, but the manometer is altered so that it contains only
36 + 6 oil. That is, the mercury is replaced by oil. A simple calcula-
Pair = —(0.9)(62.4 1b/ft") (T ft) tion shows that in this case the vertical oil-filled tube would

need to be 7; = 11.3 ft tall, rather than the original /#; = 9 in.
There is an obvious advantage of using a heavy fluid such as

9
SNV
+ (13'6)(62'4 1B ) <12 ft) mercury in manometers.

so that

Pair = 440 1b/ft>

The U-tube manometer is also widely used to measure the difference in pressure between
two containers or two points in a given system. Consider a manometer connected between
containers A and B as is shown in Fig. 2.8. The difference in pressure between A and B can
be found by again starting at one end of the system and working around to the other end. For
example, at A the pressure is p,, which is equal to p;, and as we move to point (2) the pres-
sure increases by 7y;h;. The pressure at p, is equal to ps;, and as we move upward to point (4)
the pressure decreases by y,h,. Similarly, as we continue to move upward from point (4) to
(5) the pressure decreases by <yshs. Finally, ps = pg, as they are at equal elevations. Thus,

Pa + vihy — v2ho — v3hs = pp

Or, as indicated in the figure in the margin on the previous page, we could start at B and work
our way around to A to obtain the same result. In either case, the pressure difference is

Pa — Pp = Yoho + y3hs — vily



—EXAMPLE 2.3

GIVEN Asis discussed in Chapter 3, the volume rate of flow,
Q, through a pipe can be determined by a means of a flow noz-
zle located in the pipe as illustrated in Fig. E2.3a. The nozzle
creates a pressure drop, p, — pp, along the pipe, which is
related to the flow through the equation, Q = K'Vp, — pp,
where K is a constant depending on the pipe and nozzle size.
The pressure drop is frequently measured with a differential
U-tube manometer of the type illustrated.

FIND

(a) Determine an equation for p, — pp in terms of the spe-
cific weight of the flowing fluid, vy, the specific weight of the
gage fluid, vy,, and the various heights indicated.

SoLUTION

(a) Although the fluid in the pipe is moving, fluids in the
columns of the manometer are at rest so that the pressure vari-
ation in the manometer tubes is hydrostatic. If we start at point
A and move vertically upward to level (1), the pressure will
decrease by vy, and will be equal to the pressure at (2) and at
(3). We can now move from (3) to (4) where the pressure has
been further reduced by +,h,. The pressures at levels (4) and
(5) are equal, and as we move from (5) to B the pressure will
increase by y,(h; + h,). Thus, in equation form

Pa — vihi — vaho + yi(hy + hy) = pg

or

pa — P = ha(v2 — 71) (Ans)

COMMENT It is to be noted that the only column height
of importance is the differential reading, /,. The differential
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73

B FIGURE 2.8 Differential U-tube
manometer.

U-Tube Manometer

(b) Fory, = 9.80 kN/m?, y, = 15.6 kN/m?>, h; = 1.0 m, and
h, = 0.5 m, what is the value of the pressure drop, p, — ps?

A>T
Flow nozzle

B FIGURE E2.3a
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(15.6 kN/m3, 2.90 kPa)
2
(©
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BEFIGURE E2.3b




46 Chapter 2 W Fluid Statics

manometer could be placed 0.5 or 5.0 m above the pipe (b, =
0.5 m or #; = 5.0 m), and the value of &, would remain the
same.

(b) The specific value of the pressure drop for the data given is

pa — pp = (0.5m)(15.6 kN/m> — 9.80 kN/m?)

= 2.90 kPa (Ans)

COMMENT By repeating the calculations for manometer
fluids with different specific weights, 7,, the results shown in
Fig. E2.3b are obtained. Note that relatively small pressure
differences can be measured if the manometer fluid has nearly
the same specific weight as the flowing fluid. It is the differ-
ence in the specific weights, y,—1v;, that is important.

2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.9 is fre-
quently used. One leg of the manometer is inclined at an angle 6, and the differential read-
ing ¢, is measured along the inclined tube. The difference in pressure p, — pg can be

expressed as

Pat yily — vty sin 0 — y3hy = py

or

Pa — P = Yotasin @ + yshy — yihy

(2.13)

where it is to be noted the pressure difference between points (1) and (2) is due to the ver-
tical distance between the points, which can be expressed as €, sin 6. Thus, for relatively
small angles the differential reading along the inclined tube can be made large even for
small pressure differences. The inclined-tube manometer is often used to measure small dif-
ferences in gas pressures so that if pipes A and B contain a gas, then

or

0, deg

Pa — Pp = Y2ty sin 6

¢ Pa — P

= 2.14
Y, sin 6 2.14)

where the contributions of the gas columns /; and /5 have been neglected. As shown by Eq. 2.14
and the figure in the margin, the differential reading ¢, (for a given pressure difference) of the
inclined-tube manometer can be increased over that obtained with a conventional U-tube
manometer by the factor 1/sin 6. Recall that sin § — 0 as § — 0.

BFIGURE 2.9

Inclined-tube manometer.
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2.7 Mechanical and Electronic Pressure-Measuring Devices

V2.3 Bourdon gage
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Although manometers are widely used, they are not well suited for measuring very high
pressures or pressures that are changing rapidly with time. In addition, they require the mea-
surement of one or more column heights, which, although not particularly difficult, can be
time consuming. To overcome some of these problems, numerous other types of pressure-
measuring instruments have been developed. Most of these make use of the idea that when
a pressure acts on an elastic structure, the structure will deform, and this deformation can
be related to the magnitude of the pressure. Probably the most familiar device of this kind
is the Bourdon pressure gage, which is shown in Fig. 2.10a. The essential mechanical ele-
ment in this gage is the hollow, elastic curved tube (Bourdon tube), which is connected to
the pressure source as shown in Fig. 2.10b. As the pressure within the tube increases, the
tube tends to straighten, and although the deformation is small, it can be translated into the
motion of a pointer on a dial as illustrated. Since it is the difference in pressure between
the outside of the tube (atmospheric pressure) and the inside of the tube that causes the
movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be
calibrated so that the dial reading can directly indicate the pressure in suitable units such
as psi, psf, or pascals. A zero reading on the gage indicates that the measured pressure is
equal to the local atmospheric pressure. This type of gage can be used to measure a nega-
tive gage pressure (vacuum) as well as positive pressures.

For many applications in which pressure measurements are required, the pressure must
be measured with a device that converts the pressure into an electrical output. For example,
it may be desirable to continuously monitor a pressure that is changing with time. This type
of pressure-measuring device is called a pressure transducer, and many different designs are
used. A diaphragm-type electrical pressure transducer is shown in the figure in the margin.

2.8 Hydrostatic Force on a Plane Surface

When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The
determination of these forces is important in the design of storage tanks, ships, dams, and
other hydraulic structures. For fluids at rest we know that the force must be perpendicular
to the surface since there are no shearing stresses present. We also know that the pressure
will vary linearly with depth if the fluid is incompressible. For a horizontal surface, such
as the bottom of a liquid-filled tank (Fig. 2.11a), the magnitude of the resultant force is

(a) ()

B FIGURE 2.10 (a) Liquid-filled Bourdon pressure gages for various pressure ranges.
(b) Internal elements of Bourdon gages. The “C-shaped” Bourdon tube is shown on the left, and the
“coiled spring” Bourdon tube for high pressures of 1000 psi and above is shown on the right.
(Photographs courtesy of Weiss Instruments, Inc.)
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V2.4 Hoover Dam
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(a) Pressure on tank bottom (b) Pressure on tank ends

B FIGURE 2.11 (a) Pressure distribution and resultant hydrostatic force on the
bottom of an open tank. (b) Pressure distribution on the ends of an open tank.

simply Fr = pA, where p is the uniform pressure on the bottom and A is the area of the
bottom. For the open tank shown, p = yh. Note that if atmospheric pressure acts on both
sides of the bottom, as is illustrated, the resultant force on the bottom is simply due to the
liquid in the tank. Because the pressure is constant and uniformly distributed over the bot-
tom, the resultant force acts through the centroid of the area as shown in Fig. 2.11a. As
shown in Fig. 2.11b, the pressure on the ends of the tank is not uniformly distributed. Deter-
mination of the resultant force for situations such as this is presented below.

For the more general case in which a submerged plane surface is inclined, as is illus-
trated in Fig. 2.12, the determination of the resultant force acting on the surface is more

Free surface
A\V4 . 0

Location of
, resultant force
. (center of pressure, CP)

B FIGURE 2.12 Notation for hydrostatic force on an inclined plane
surface of arbitrary shape.
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involved. For the present we will assume that the fluid surface is open to the atmosphere.
Let the plane in which the surface lies intersect the free surface at 0 and make an angle
0 with this surface as in Fig. 2.12. The x—y coordinate system is defined so that O is the
origin and y = 0 (i.e., the x axis) is directed along the surface as shown. The area can
have an arbitrary shape as shown. We wish to determine the direction, location, and mag-
nitude of the resultant force acting on one side of this area due to the liquid in contact
with the area. At any given depth, A, the force acting on dA (the differential area of Fig. 2.12)
is dF = yh dA and is perpendicular to the surface. Thus, the magnitude of the resultant
force can be found by summing these differential forces over the entire surface. In equa-
tion form

Fr = JyhdA: JyysinOdA
A

A

where 4 = y sin 6. For constant y and 0

Fr=ysin6 J ydA (2.15)

A

Because the integral appearing in Eq. 2.15 is the first moment of the area with respect to
the x axis, we can write

JydA =yA
A

where y. is the y coordinate of the centroid of the area A measured from the x axis, which
passes through 0. Equation 2.15 can thus be written as

Fr = yAy,sin 6

or more simply as

Fr = vh.A (2.16)

where, as shown by the figure in the margin, 4. is the vertical distance from the fluid
surface to the centroid of the area. Note that the magnitude of the force is independent
of the angle 6 and depends only on the specific weight of the fluid, the total area, and
the depth of the centroid of the area below the surface. In effect, Eq. 2.16 indicates that
the magnitude of the resultant force is equal to the pressure at the centroid of the area
multiplied by the total area. Since all the differential forces that were summed to obtain
F are perpendicular to the surface, the resultant F; must also be perpendicular to the
surface.

Although our intuition might suggest that the resultant force should pass through the
centroid of the area, this is not actually the case. The y coordinate, yg, of the resultant force
can be determined by the summation of moments around the x axis. That is, the moment
of the resultant force must equal the moment of the distributed pressure force, or

Fryr = J ydF = J v sin 6 y* dA
A A
and, therefore, since F = yAy, sin 6

Jysz
R

YR =
YA
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The integral in the numerator is the second moment of the area (moment of inertia), 1., with
respect to an axis formed by the intersection of the plane containing the surface and the
free surface (x axis). Thus, we can write

I

X

YR = YA

Use can now be made of the parallel axis theorem to express I, as

I, = L.+ Ay?

where I, is the second moment of the area with respect to an axis passing through its cen-
troid and parallel to the x axis. Thus,

I

XC

YA

+ v, 2.17)

YR =

As shown by Eq. 2.17 and the figure in the margin, the resultant force does not
pass through the centroid but rather for nonhorizontal surfaces is always below it,
since I, ./y.A > 0.

The x coordinate, xg, for the resultant force can be determined in a similar manner
by summing moments about the y axis. It follows that

I

xyc n
Xp — X.
R V. A c

(2.18)

where 1,,. is the product of inertia with respect to an orthogonal coordinate system passing
through the centroid of the area and formed by a translation of the x—y coordinate system.
If the submerged area is symmetrical with respect to an axis passing through the centroid
and parallel to either the x or y axis, the resultant force must lie along the line x = x,, since
I, is identically zero in this case. The point through which the resultant force acts is called
the center of pressure. It is to be noted from Egs. 2.17 and 2.18 that, as y, increases, the
center of pressure moves closer to the centroid of the area. Because y. = h/sin 6, the dis-
tance y, will increase if the depth of submergence, 4, increases, or, for a given depth, the
area is rotated so that the angle, 6, decreases. Thus, the hydrostatic force on the right-hand
side of the gate shown in the margin figure acts closer to the centroid of the gate than the
force on the left-hand side. Centroidal coordinates and moments of inertia for some common
areas are given in Fig. 2.13.

F | u

i d s i n t h e N e w s

The Three Gorges Dam The Three Gorges Dam being con-
structed on China’s Yangtze River will contain the world’s

gates. The maximum discharge capacity is 102,500 cubic meters
per second. After more than 10 years of construction, the dam

largest hydroelectric power plant when in full operation. The
dam is of the concrete gravity type having a length of 2309 me-
ters with a height of 185 meters. The main elements of the pro-
ject include the dam, two power plants, and navigation facilities
consisting of a ship lock and lift. The power plants will contain
26 Francis-type turbines, each with a capacity of 700 megawatts.
The spillway section, which is the center section of the dam, is
483 meters long with 23 bottom outlets and 22 surface sluice

gates were finally closed, and on June 10, 2003, the reservoir had
been filled to its interim level of 135 meters. Due to the large
depth of water at the dam and the huge extent of the storage pool,
hydrostatic pressure forces have been a major factor considered
by engineers. When filled to its normal pool level of 175 meters,
the total reservoir storage capacity is 39.3 billion cubic meters.
All of the originally planned components of the project (except
for the ship lift) were completed in 2008. (See Problem 2.39.)




A =ba
a
2
‘@—x I.= %baa
| a
2 1 .3
y ch Eab
- b e b -
2 2 I,,=0
(a) Rectangle (b) Circle
2
2
I, =0.1098R* Lye=25b-20)
a
@ 1, =0.3927R* c
®—x 4R Y ©®—x “
b 3n L —o )l 1?
PR bid ] ‘
3
b |
(c) Semicircle (d) Triangle
_ nR?
A= 4
4R I, =1, =0.05488R"*
37

2.8 Hydrostatic Force on a Plane Surface

(e) Quarter-circle

I,,.=-0.01647R"

B FIGURE 2.13 Geometric properties of some common shapes.

GIVEN The 4-m-diameter circular gate of Fig. E2.4a is
located in the inclined wall of a large reservoir containing wa-
ter (y = 9.80 kN/m?). The gate is mounted on a shaft along its
horizontal diameter, and the water depth is 10 m above the
shaft.

FIND Determine

(a) the magnitude and location of the resultant force exerted
on the gate by the water and

(b) the moment that would have to be applied to the shaft to
open the gate.

_EXAMPLE pJW-W Hydrostatic Force on a Plane Circular Surface

(a)

Center of
pressure

B FIGURE E2.4a-c
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SOLUTION

(a) To find the magnitude of the force of the water we can
apply Eq. 2.16,

FR = 'thA
and because the vertical distance from the fluid surface to the
centroid of the area is 10 m it follows that
Fr = (9.80 X 10°> N/m*)(10 m)(47 m?)

= 1230 X 10°N = 1.23 MN (Ans)

To locate the point (center of pressure) through which Fj
acts, we use Eqs. 2.17 and 2.18,
IX}'C Ixc

= + x. =
Ry y.A

+ ¥y

For the coordinate system shown, xz = 0 since the area is sym-
metrical, and the center of pressure must lie along the diame-
ter A—A. To obtain yg, we have from Fig. 2.13
aR*

4

Ixc =

and y, is shown in Fig. E2.4b. Thus,

(m/4)(2 m)* 10 m
(10 m/sin 60°)(47 m?)  sin 60°
= 0.0866m + 11.55m = 11.6 m

R =

and the distance (along the gate) below the shaft to the center
of pressure is

Yr — Ye = 0.0866 m (Ans)
COMMENT We can conclude from this analysis that the
force on the gate due to the water has a magnitude of 1.23 MN
and acts through a point along its diameter A-A at a distance

of 0.0866 m (along the gate) below the shaft. The force is per-
pendicular to the gate surface as shown.

By repeating the calculations for various values of the
depth to the centroid, 4., the results shown in Fig. E2.4d are
obtained. Note that as the depth increases the distance be-
tween the center of pressure and the centroid decreases.

0.5

0.4

§ 0.3
=
|

& 0.2

(10 m, 0.0886 m)
0.1
0
0 5 10 15 20 25 30
h,m

B FIGURE E2.4d

(b) The moment required to open the gate can be obtained
with the aid of the free-body diagram of Fig. E2.4c. In this di-
agram, W is the weight of the gate and O, and O, are the hor-
izontal and vertical reactions of the shaft on the gate. We can
now sum moments about the shaft

SM, =0
and, therefore,
M = Fr(yg = Ye)
(1230 X 10° N)(0.0866 m)
1.07 X 10° N-m

(Ans)

2.9 Pressure Prism

An informative and useful graphical interpretation can be made for the force developed
by a fluid acting on a plane rectangular area. Consider the pressure distribution along a
vertical wall of a tank of constant width b, which contains a liquid having a specific
weight . Since the pressure must vary linearly with depth, we can represent the varia-
tion as is shown in Fig. 2.14a, where the pressure is equal to zero at the upper surface
and equal to yh at the bottom. It is apparent from this diagram that the average pressure
occurs at the depth //2 and, therefore, the resultant force acting on the rectangular area

A = bhis

h
Fr :pavA = Y(2>A
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wIs

—

(a) (b)
B FIGURE 2.14 Pressure prism for vertical rectangular area.

which is the same result as obtained from Eq. 2.16. The pressure distribution shown in
Fig. 2.14a applies across the vertical surface so we can draw the three-dimensional repre-
sentation of the pressure distribution as shown in Fig. 2.14b. The base of this “volume” in
pressure—area space is the plane surface of interest, and its altitude at each point is the pres-
sure. This volume is called the pressure prism, and it is clear that the magnitude of the
resultant force acting on the rectangular surface is equal to the volume of the pressure prism.
Thus, for the prism of Fig. 2.14b the fluid force is

1 h
Fr = volume = E(yh)(bh) =73 A

where bh is the area of the rectangular surface, A.

The resultant force must pass through the centroid of the pressure prism. For the vol-
ume under consideration the centroid is located along the vertical axis of symmetry of the
surface, and at a distance of /#/3 above the base (since the centroid of a triangle is located
at h/3 above its base). This result can readily be shown to be consistent with that obtained
from Eqs. 2.17 and 2.18.

If the surface pressure of the liquid is different from atmospheric pressure (such as
might occur in a closed tank), the resultant force acting on a submerged area, A, will be
changed in magnitude from that caused simply by hydrostatic pressure by an amount p, A,
where p, is the gage pressure at the liquid surface (the outside surface is assumed to be
exposed to atmospheric pressure).

GIVEN A pressurized tank contains oil (SG = 0.90) and has
a square, 0.6-m by 0.6-m plate bolted to its side, as is illustrated
in Fig. E2.5a. The pressure gage on the top of the tank reads
50 kPa, and the outside of the tank is at atmospheric pressure.

SoLuTION

L STXTIGIPIER Use of the Pressure Prism Concopt

FIND What is the magnitude and location of the resultant
force on the attached plate?

The pressure distribution acting on the inside surface of the
plate is shown in Fig. E2.5b. The pressure at a given point on
the plate is due to the air pressure, p,, at the oil surface and the

pressure due to the oil, which varies linearly with depth as is
shown in the figure. The resultant force on the plate (having an
area A) is due to the components, F; and F,, where F,and F,
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are due to the rectangular and triangular portions of the pres-
sure distribution, respectively. Thus,

Fy = (ps + vh))A
=[50 X 10°> N/m?
+ (0.90)(9.81 X 10° N/m*)(2 m)](0.36 m?)
=244 X 10°N

hy, — h
FZ:«/(Z2 ‘)A

= (0.90)(9.81 X 10° N/m3)(%Tm) (0.36 m?)

and

= 0954 X 10° N
The magnitude of the resultant force, Fy, is therefore
Fr=F, +F, =254 X 10°N =254kN (Ans)

The vertical location of Fy can be obtained by summing
moments around an axis through point O so that

Fryo = F1(0.3m) + F5(0.2 m)
or
(24.4 X 10°N)(0.3m) + (0.954 X 10°N)(0.2m)

25.4 X 10°N
= 0.296 m (Ans)

Yo =

Thus, the force acts at a distance of 0.296 m above the bottom
of the plate along the vertical axis of symmetry.

COMMENT Note that the air pressure used in the calcu-
lation of the force was gage pressure. Atmospheric pressure

Yh
k—lﬁepxﬂ /Oil surface
/ = Bz
/
o hy=2m
// hy,=2.6m
FZ * 0.6 m
0.2m Iyo 055
— = o,
Yy - hy) ate

(b)
B FIGURE E25

does not affect the resultant force (magnitude or location), as
it acts on both sides of the plate, thereby canceling its effect.

2.10

Hydrostatic Force on a Curved Surface

The equations developed in Section 2.8 for the magnitude and location of the resultant
force acting on a submerged surface only apply to plane surfaces. However, many sur-
faces of interest (such as those associated with dams, pipes, and tanks or the bottom of
the beverage bottle shown in the figure in the margin) are nonplanar. Although the resul-
tant fluid force can be determined by integration, as was done for the plane surfaces,
this is generally a rather tedious process and no simple, general formulas can be devel-
oped. As an alternative approach we will consider the equilibrium of the fluid volume
enclosed by the curved surface of interest and the horizontal and vertical projections of
this surface.

For example, consider the swimming pool shown in Fig. 2.15a. We wish to find the
resultant fluid force acting on section BC shown in Fig. 2.15b. This section has a unit length
perpendicular to the plane of the paper. We first isolate a volume of fluid that is bounded
by the surface of interest, in this instance section BC, and the horizontal plane surface
AB and the vertical plane surface AC. The free-body diagram for this volume is shown
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(a)

VF2+ (F)2 B

0

(d)
B FIGURE 2.15 Hydrostatic force on a curved surface.

in Fig. 2.15¢. The magnitude and location of forces F, and F, can be determined from the
relationships for planar surfaces. The weight, W', is simply the specific weight of the fluid
times the enclosed volume and acts through the center of gravity (CG) of the mass of fluid
contained within the volume. Forces Fj; and Fy, represent the components of the force that
the tank exerts on the fluid.
In order for this force system to be in equilibrium, the horizontal component F; must
] : be equal in magnitude and collinear with F),, and the vertical component F, equal in mag-
—x nitude and collinear with the resultant of the vertical forces F; and W. This follows since
the three forces acting on the fluid mass (F,, the resultant of F;, and W, and the resultant
force that the tank exerts on the mass) must form a concurrent force system. That is, from
the principles of statics, it is known that when a body is held in equilibrium by three non-
parallel forces they must be concurrent (their lines of action intersect at a common point)
and coplanar. Thus,

V2.5 Pop bottle

R < I

FH=F2
Fy=F, +W

and the magnitude of the resultant force is obtained from the equation
Fr="V (FH)2 + (Fv)2

The resultant Fj passes through the point O, which can be located by summing moments
about an appropriate axis. The resultant force of the fluid acting on the curved surface BC
is equal and opposite in direction to that obtained from the free-body diagram of Fig. 2.15c¢.
The desired fluid force is shown in Fig. 2.15d.

|_EXAMPLE pJN M Hydrostatic Pressure Force on a Curved Surface

GIVEN The 6-ft-diameter drainage conduit of the type FIND Determine the magnitude and line of action of the re-
shown in Fig. E2.6a is half full of water at rest, as shown in sultant force that the water exerts on the curved portion BC for
Fig. E2.6b. a section of the conduit that is 1 ft long.
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SOLUTION

We first isolate a volume of fluid bounded by the curved section
BC, the horizontal surface AB, and the vertical surface AC, as
shown in Fig. E2.6¢. The volume has a length of 1 ft. Forces act-
ing on the volume are the horizontal force, F;, which acts on the
vertical surface AC, the weight, W', of the fluid contained within
the volume, and the horizontal and vertical components of the
force of the conduit wall on the fluid, ' and Fy, respectively.
The magnitude of F| is found from the equation

Fy = yh.A = (62.4 Ib/fe*)(3 ft)(3 ft*) = 281 1b
and this force acts 1 ft above C as shown. The weight, W', is
W = yvol = (62.4 lb/ft3)(977/4 ftz)(l ft) = 441 1b

and acts through the center of gravity of the mass of fluid,
which according to Fig. 2.13 is located 1.27 ft to the right of
AC as shown. Therefore, to satisfy equilibrium
Fy=F =281l
Fy,=W =4411b
and the magnitude of the resultant force is
Fr = V(Fu) + (Fv)

= V(281 1b)> + (441 1b)> = 523 b

(Ans)

The force the water exerts on the conduit wall is equal, but op-
posite in direction, to the forces F and Fy, shown in Fig. E2.6¢.
Thus, the resultant force on the conduit wall is shown in Fig.
E2.6d. This force acts through the point O at the angle shown.

COMMENT An inspection of this result will show that
the line of action of the resultant force passes through the cen-
ter of the conduit. In retrospect, this is not a surprising result,
as at each point on the curved surface of the conduit, the ele-
mental force due to the pressure is normal to the surface, and
each line of action must pass through the center of the conduit.
It therefore follows that the resultant of this concurrent force
system must also pass through the center of concurrence of the
elemental forces that make up the system.

(b)
A B
tCG
Fy W Fy
1ft
@
£y
() (d)

B FIGURE E2.6 (Photograph courtesy
of CONTECH Construction Products, Inc.)

F I u i d s i n

t h e N e w s

Miniature, exploding pressure vessels Our daily lives are
safer because of the effort put forth by engineers to design
safe, lightweight pressure vessels such as boilers, propane
tanks, and pop bottles. Without proper design, the large
hydrostatic pressure forces on the curved surfaces of such
containers could cause the vessel to explode with disastrous
consequences. On the other hand, the world is a more friendly
place because of miniature pressure vessels that are designed
to explode under the proper conditions—popcorn kernels.
Each grain of popcorn contains a small amount of water

within the special, impervious hull (pressure vessel) which,
when heated to a proper temperature, turns to steam, causing
the kernel to explode and turn itself inside out. Not all pop-
corn kernels have the proper properties to make them pop
well. First, the kernel must be quite close to 13.5% water.
With too little moisture, not enough steam will build up to
pop the kernel; too much moisture causes the kernel to pop
into a dense sphere rather than the light fluffy delicacy ex-
pected. Second, to allow the pressure to build up, the kernels
must not be cracked or damaged.
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The same general approach can also be used for determining the force on curved sur-
faces of pressurized, closed tanks. If these tanks contain a gas, the weight of the gas is usu-
ally negligible in comparison with the forces developed by the pressure. Thus, the forces
(such as F| and F, in Fig. 2.15¢) on horizontal and vertical projections of the curved sur-
face of interest can simply be expressed as the internal pressure times the appropriate pro-
jected area.

2.11 Buoyancy, Flotation, and Stability

2.11.1 Archimedes’ Principle

K When a body is completely submerged in a fluid, or floating so that it is only partially sub-
merged, the resultant fluid force acting on the body is called the buoyant force. A net
upward vertical force results because pressure increases with depth and the pressure forces
acting from below are larger than the pressure forces acting from above.
It is well known from elementary physics that the buoyant force, Fp, is given by the
equation

V2.6 Atmospheric
buoyancy

Fg=1vy¥ (2.19)

where 7 is the specific weight of the fluid and ¥ is the volume of the body. Thus, the buoy-

ant force has a magnitude equal to the weight of the fluid displaced by the body and is
K directed vertically upward. This result is commonly referred to as Archimedes’ principle.
It is easily derived by using the principles discussed in Section 2.10. The buoyant force
passes through the centroid of the displaced volume, and the point through which the buoy-
ant force acts is called the center of buoyancy.

These same results apply to floating bodies that are only partially submerged, if the
specific weight of the fluid above the liquid surface is very small compared with the liquid
in which the body floats. Because the fluid above the surface is usually air, for practical
purposes this condition is satisfied.

V2.7 Cartesian
diver

F | u i d s i n t h e N e w s

Concrete canoes A solid block of concrete thrown into a pond  jointly sponsored by the American Society of Civil Engineers
or lake will obviously sink. But if the concrete is formed into  and Master Builders Inc. The canoes must be 90% concrete
the shape of a canoe it can be made to float. Of course, the rea-  and are typically designed with the aid of a computer by civil
son the canoe floats is the development of the buoyant force  engineering students. Final scoring depends on four compo-
due to the displaced volume of water. With the proper design, nents: racing, a design paper, a business presentation, and a
this vertical force can be made to balance the weight of the ca-  canoe that passes the floatation test. In 2009, the University of
noe plus passengers—the canoe floats. Each year since 1988 a  California, Berkeley, won the national championship with its
National Concrete Canoe Competition for university teams is ~ 230-pound, 20-foot-long canoe. (See Problem 2.75.)

—EXAMPLE pAyd Buoyant Force on a Submerged Object

GIVEN A Type I offshore life jacket (personal flotation de- ~ water. According to U.S. Coast Guard regulations, the life
vice) of the type worn by commercial fishermen is shown in  jacket must provide a minimum 22-1b net upward force on the
Fig. E2.7a. It is designed for extended survival in rough, open  user. Consider such a life jacket that uses a foam material with
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a specific weight of 2.0 Ib/ft® for the main flotation material.
The remaining material (cloth, straps, fasteners, etc.) weighs
1.3 Ib and is of negligible volume.

FIND Determine the minimum volume of foam needed for
this life jacket.

SoLuTION

A free-body diagram of the life jacket is shown in Fig. E2.7b,
where Fj is the buoyant force acting on the life jacket, W} is
the weight of the foam, W = 1.3 Ib is the weight of the re-
maining material, and F; = 22 Ib is the required force on the
user. For equilibrium it follows that

Fg=Wp + W+ Fy
where from Eq. 2.19
FB = ywaterV

Here yy.er = 64.0 Ib/ft? is the specific weight of seawater and
¥ is the volume of the foam. Also Wiyum = Yioam V> Where
Yioam = 2.0 Ib/ft is the specific weight of the foam. Thus,
from Eq. 1

Ywater Y= Yoam v+ OW‘S + FU

B FIGURE E2.7b

B FIGURE E2.7a

or

V= (WS + FU)/(YWater - 'quam)
(131b + 22 Ib)/(64.0 b/ — 2.0 I/fE)
= 0.376 ft*

(Ans)

COMMENTS In this example, rather than using difficult-
to-calculate hydrostatic pressure force on the irregularly
shaped life jacket, we have used the buoyant force. The net
effect of the pressure forces on the surface of the life jacket
is equal to the upward buoyant force. Do not include both the
buoyant force and the hydrostatic pressure effects in your
calculations—use one or the other.

There is more to the proper design of a life jacket than
just the volume needed for the required buoyancy. According
to regulations, a Type I life jacket must also be designed so
that it provides proper protection to the user by turning an
unconscious person in the water to a face-up position as
shown in Fig. E2.7a. This involves the concept of the stabil-
ity of a floating object (see Section 2.11.2). The life jacket
should also provide minimum interference under ordinary
working conditions so as to encourage its use by commercial
fishermen.

F | u i d s i n

t h e N e w s

Explosive lake In 1986 a tremendous explosion of carbon
dioxide (CO,) from Lake Nyos, west of Cameroon, killed
more than 1700 people and livestock. The explosion resulted
from a build-up of CO, that seeped into the high-pressure wa-
ter at the bottom of the lake from warm springs of CO,-bearing
water. The CO,-rich water is heavier than pure water and can

hold a volume of CO, more than five times the water volume.
As long as the gas remains dissolved in the water, the strati-
fied lake (i.e., pure water on top, CO, water on the bottom) is
stable. But if some mechanism causes the gas bubbles to nu-
cleate, they rise, grow, and cause other bubbles to form, feed-
ing a chain reaction. A related phenomenon often occurs
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when a pop bottle is shaken and then opened. The pop The heavier-than-air CO, then flowed through the long, deep
shoots from the container rather violently. When this set of  valleys surrounding the lake and asphyxiated human and animal
events occurred in Lake Nyos, the entire lake overturned life caught in the gas cloud. One victim was 27 km downstream
through a column of rising and expanding buoyant bubbles.  from the lake.

/N

V2.8 Hydrometer

Marginally stable

Very stable

/N

V2.9 Stability of a
floating cube

2.11.2 Stability

Another interesting and important problem associated with submerged or floating bodies is
concerned with the stability of the bodies. A body is said to be in a stable equilibrium posi-
tion if, when displaced, it returns to its equilibrium position. Conversely, it is in an unsta-
ble equilibrium position if, when displaced (even slightly), it moves to a new equilibrium
position. Stability considerations are particularly important for submerged or floating bod-
ies since the centers of buoyancy and gravity do not necessarily coincide. A small rotation
can result in either a restoring or overturning couple.

For example, for a completely submerged body with a center of gravity below the
center of buoyancy, a rotation from its equilibrium position will create a restoring cou-
ple formed by the weight, W', and the buoyant force, Fg, which causes the body to rotate
back to its original position. Thus, for this configuration the body is stable. It is to be
noted that as long as the center of gravity falls below the center of buoyancy, this will
always be true; that is, the body is in a stable equilibrium position with respect to small
rotations. However, if the center of gravity of a completely submerged object is above
the center of buoyancy, the resulting couple formed by the weight and the buoyant force
will cause the body to overturn and move to a new equilibrium position. Thus, a com-
pletely submerged body with its center of gravity above its center of buoyancy is in an
unstable equilibrium position.

For floating bodies the stability problem is more complicated, because as the body
rotates the location of the center of buoyancy (which passes through the centroid of the dis-
placed volume) may change. As is shown in Fig. 2.16, a floating body such as a barge that
rides low in the water can be stable even though the center of gravity lies above the center
of buoyancy. This is true since as the body rotates the buoyant force, F'p, shifts to pass through
the centroid of the newly formed displaced volume and, as illustrated, combines with the
weight, W', to form a couple, which will cause the body to return to its original equilibrium
position. However, for the relatively tall, slender body shown in Fig. 2.17, a small rotational
displacement can cause the buoyant force and the weight to form an overturning couple as
illustrated.

It is clear from these simple examples that determination of the stability of submerged
or floating bodies can be difficult since the analysis depends in a complicated fashion on the
particular geometry and weight distribution of the body. Thus, although both the relatively

¢ = centroid of original ¢' = centroid of new Restoring
displaced volume displaced volume couple

Stable
B FIGURE 2.16 Stability of a floating body—stable configuration.
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low lw
CG CG

c

wf

¢ = centroid of original ¢’ = centroid of new  Overturning
displaced volume displaced volume couple

Unstable
B FIGURE 2.17 Stability of a floating

x body—unstable configuration.

V2.10 Stability of a
model barge

narrow kayak and the wide houseboat shown in the figures in the margin of the previous
page are stable, the kayak will overturn much more easily than the houseboat. The prob-
lem can be further complicated by the necessary inclusion of other types of external forces,
such as those induced by wind gusts or currents. Stability considerations are obviously of
great importance in the design of ships, submarines, bathyscaphes, and so forth, and such
considerations play a significant role in the work of naval architects.

2.12 Pressure Variation in a Fluid with Rigid-Body Motion

Although in this chapter we have been primarily concerned with fluids at rest,
the general equation of motion (Eq. 2.2)

-Vp — yﬁ=pa

was developed for both fluids at rest and fluids in motion, with the only stip-
ulation being that there were no shearing stresses present.

A general class of problems involving fluid motion in which there are
no shearing stresses occurs when a mass of fluid undergoes rigid-body motion.
For example, if a container of fluid accelerates along a straight path, the fluid
will move as a rigid mass (after the initial sloshing motion has died out) with
each particle having the same acceleration. Since there is no deformation, there
will be no shearing stresses and, therefore, Eq. 2.2 applies. Similarly, if a fluid
is contained in a tank that rotates about a fixed axis as shown by the figure
(Photograph courtesy of Geno Pawlak.) in the margin, the fluid will simply rotate with the tank as a rigid body, and
again Eq. 2.2 can be applied to obtain the pressure distribution throughout the
moving fluid and the free surface shape.

2.13 Chapter Summary and Study Guide

In this chapter the pressure variation in a fluid at rest is considered, along with some impor-
tant consequences of this type of pressure variation. It is shown that for incompressible flu-
ids at rest the pressure varies linearly with depth. This type of variation is commonly referred
to as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution
will not generally be hydrostatic, but Eq. 2.4 remains valid and can be used to determine the
pressure distribution if additional information about the variation of the specific weight is spec-
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ified. The distinction between absolute and gage pressure is discussed along with a consid-
eration of barometers for the measurement of atmospheric pressure.

Pressure-measuring devices called manometers, which utilize static liquid columns,
are analyzed in detail. A brief discussion of mechanical and electronic pressure gages is
also included. Equations for determining the magnitude and location of the resultant fluid
force acting on a plane surface in contact with a static fluid are developed. A general
approach for determining the magnitude and location of the resultant fluid force acting
on a curved surface in contact with a static fluid is described. For submerged or float-
ing bodies the concept of the buoyant force and the use of Archimedes’ principle are
reviewed.

The following checklist provides a study guide for this chapter. When your study
of the entire chapter and end-of-chapter exercises has been completed, you should be
able to

m write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

m calculate the pressure at various locations within an incompressible fluid at rest.

m calculate the pressure at various locations within a compressible fluid at rest using
Eq. 2.4 if the variation in the specific weight is specified.

m use the concept of a hydrostatic pressure distribution to determine pressures from
measurements using various types of manometers.

m determine the magnitude, direction, and location of the resultant hydrostatic force act-
ing on a plane surface.

m determine the magnitude, direction, and location of the resultant hydrostatic force act-
ing on a curved surface.

m use Archimedes’ principle to calculate the resultant hydrostatic force acting on float-
ing or submerged bodies.

Some of the important equations in this chapter are

d
Pressure gradient in a stationary fluid jp = -y 24
z
Pressure variation in a stationary incompressible fluid pr=vh+ p, 2.7
Hydrostatic force on a plane surface Fp = vh A (2.16)
IXC
Location of hydrostatic force on a plane surface Vg = A + v, 2.17)
Ve
IX_}'L‘
= + 2.18
XR ¥, A Xe ( )
Buoyant force Fg = vy¥ (2.19)
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Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual

Problems

for a Brief Introduction to Fluid Mechanics, by Young et al.
(© 2011 John Wiley and Sons, Inc.).

Note: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a
computer. Problems designated with a () are “open-
ended” problems and require critical thinking in that to
work them one must make various assumptions and pro-
vide the necessary data. There is not a unique answer to
these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 2.3 Pressure Variation in a Fluid at Rest

2.2 What pressure, expressed in pascals, will a skin diver be
subjected to at a depth of 50 m in seawater?

2.4 Sometimes when riding an elevator or driving up or down a
hilly road a person’s ears “pop” as the pressure difference be-
tween the inside and outside of the ear is equalized. Determine
the pressure difference (in psi) associated with this phenomenon
if it occurs during a 150-ft elevation change.

2.6 An unknown immiscible liquid seeps into the bottom of an
open oil tank. Some measurements indicate that the depth of the
unknown liquid is 1.5 m and the depth of the oil (specific
weight = 8.5 kN/m®) floating on top is 5.0 m. A pressure gage
connected to the bottom of the tank reads 65 kPa. What is the
specific gravity of the unknown liquid?

2.8 Blood pressure is commonly measured with a cuff placed
around the arm, with the cuff pressure (which is a measure of
the arterial blood pressure) indicated with a mercury manome-
ter (see Video 2.2). A typical value for the maximum value of
blood pressure (systolic pressure) is 120 mm Hg. Why wouldn’t
it be simpler and less expensive to use water in the manometer
rather than mercury? Explain and support your answer with the
necessary calculations.

#2.10 Under normal conditions the temperature of the atmos-
phere decreases with increasing elevation. In some situa-
tions, however, a temperature inversion may exist so that the
air temperature increases with elevation. A series of temper-
ature probes on a mountain give the elevation—-temperature
data shown in Table P2.10. If the barometric pressure at the
base of the mountain is 12.1 psia, determine (by means of
numerical integration of Eq. 2.4) the pressure at the top of
the mountain.

Elevation (ft) Temperature (°F)

5000 50.1 (base)
5500 552

6000 60.3

6400 62.6

7100 67.0

7400 68.4

8200 70.0

8600 69.5

9200 68.0

9900 67.1 (top)

H TABLE P2.10

Section 2.5 Measurement of Pressure

2.12 Obtain a photograph/image of a situation in which the use
of a manometer is important. Print this photo and write a brief
paragraph that describes the situation involved.

2.14 For an atmospheric pressure of 101 kPa (abs) determine
the heights of the fluid columns in barometers containing one of
the following liquids: (a) mercury, (b) water, and (c) ethyl alco-
hol. Calculate the heights, including the effect of vapor pressure,
and compare the results with those obtained neglecting vapor
pressure. Do these results support the widespread use of mercury
for barometers? Why?

2.16 An absolute pressure of 7 psia corresponds to which gage
pressure for standard atmospheric pressure of 14.7 psia?

2.18 A mercury manometer is connected to a large reservoir of
water as shown in Fig. P2.18. Determine the ratio, h,,/h,,, of the
distances 4, and £, indicated in the figure.

Water

BFIGURE

P2.18
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2.20 A closed cylindrical tank filled with water has a hemispher-
ical dome and is connected to an inverted piping system as shown
in Fig. P2.20. The liquid in the top part of the piping system has a
specific gravity of 0.8, and the remaining parts of the system are
filled with water. If the pressure gage reading at A is 60 kPa, de-
termine (a) the pressure in pipe B and (b) the pressure head, in
millimeters of mercury, at the top of the dome (point C).

Hemispherical dome

| sG=08

Water
HFIGURE P2.20

2.22 A U-tube manometer contains oil, mercury, and water as
shown in Fig. P2.22. For the column heights indicated, what is
the pressure differential between pipes A and B?

A4 +
4 in.
i
3in.

ot

il

=1— Water

Mercury —>

N —

-
B FIGURE P222

2.24 For the configuration shown in Fig. P2.24 what must be
the value of the specific weight of the unknown fluid? Express
your answer in Ib/ft>.

2.26 For the inclined-tube manometer of Fig. P2.26 the pres-
sure in pipe A is 0.8 psi. The fluid in both pipes A and B is
water, and the gage fluid in the manometer has a specific
gravity of 2.6. What is the pressure in pipe B corresponding to
the differential reading shown?

2.28 Aninverted U-tube manometer containing oil (SG = 0.8)
is located between two reservoirs as shown in Fig. P2.28.
The reservoir on the left, which contains carbon tetrachlo-

Problems 63
Open Open
‘/Water/’
5.5in.
4.9in.
< 1 Unknown 3.3 in.
T fluid
1.4 in.
l X

B FIGURE P224

B FIGURE P2.26

Carbon tetrachloride

|
|

B FIGURE P2.28

ride, is closed and pressurized to 9 psi. The reservoir on the
right contains water and is open to the atmosphere. With the
given data, determine the depth of water, A, in the right
Ieservoir.

2.30 A suction cup is used to support a plate of weight W as
shown in Fig. P2.30. For the conditions shown, determine W'

2.32 The cyclindrical tank with hemispherical ends shown in
Fig. P2.32 contains a volatile liquid and its vapor. The liquid
density is 800 kg/m®, and its vapor density is negligible. The
pressure in the vapor is 120 kPa (abs), and the atmospheric pres-
sure is 101 kPa (abs). Determine (a) the gage pressure reading
on the pressure gage and (b) the height, A, of the mercury
manometer.

2.34 A piston having a cross-sectional area of 0.09 m? is lo-
cated in a cylinder containing water as shown in Fig. P2.34. An
open U-tube manometer is connected to the cylinder as shown.
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0.5-ft radius

[
j«—— 2-ft diameter ———

B FIGURE P2.30

Open
Vapor
P 1m
1m ?
h

% Liquid $
1m

Mercury

B FIGURE P2.32

For h; = 60 mm and 2 = 100 mm, what is the value of the ap-
plied force, P, acting on the piston? The weight of the piston is
negligible.

P ()

L= 1)
gl

h
Water I,

Ul

B FIGURE P2.34

#2.36 An inverted hollow cylinder is pushed into the water as is
shown in Fig. P2.36. Determine the distance, ¢, that the water
rises in the cylinder as a function of the depth, d, of the lower
edge of the cylinder. Plot the results for 0 = d = H, when H is
equal to 1 m. Assume the temperature of the air within the cylin-
der remains constant.

Open end /

B FIGURE P2.36

Section 2.8 Hydrostatic Force on a Plane Surface
(also see Lab Problems 2.85, 2.86, 2.87, and 2.88)

2.38 A rectangular gate having a width of 4 ft is located in the
sloping side of a tank as shown in Fig. P2.38. The gate is hinged
along its top edge and is held in position by the force P. Friction
at the hinge and the weight of the gate can be neglected. Deter-
mine the required value of P.

B FIGURE P2.38

2.40 A large, open tank contains water and is connected to a
6-ft-diameter conduit as shown in Fig. P2.40. A circular plug is
used to seal the conduit. Determine the magnitude, direction,
and location of the force of the water on the plug.

'

9 ft

Water JPIug Open
)
6¢ft
x

B FIGURE P2.40

2.42 A circular 2-m-diameter gate is located on the sloping side
of a swimming pool. The side of the pool is oriented 60° relative
to the horizontal bottom, and the center of the gate is located 3 m
below the water surface. Determine the magnitude of the water
force acting on the gate and the point through which it acts.

72.44 A rubber stopper covers the drain in your bathtub. Esti-
mate the force that the water exerts on the stopper. List all
assumptions and show all calculations. Is this the force that is
actually needed to lift the stopper? Explain.



2.46 Solve Problem 2.45 if the isosceles triangle is replaced
with a right triangle having the same base width and altitude as
the isosceles triangle.

72.48 Sometimes it is difficult to open an exterior door of a
building because the air distribution system maintains a pres-
sure difference between the inside and outside of the building.
Estimate how big this pressure difference can be if it is “not too
difficult” for an average person to open the door.

2.50 Forms used to make a concrete basement wall are shown
in Fig. P2.50. Each 4-ft-long form is held together by four ties—
two at the top and two at the bottom as indicated. Determine the
tension in the upper and lower ties. Assume concrete acts as a
fluid with a weight of 150 1b/ft’.

—{10in. |-

|
11t
T

Tie

Concrete

Form —| |- 101t

1ty
t
EFIGURE P2.50

2.52 A gate having the cross section shown in Fig. P2.52 closes
an opening 5 ft wide and 4 ft high in a water reservoir. The gate
weighs 400 Ib, and its center of gravity is 1 ft to the left of AC
and 2 ft above BC. Determine the horizontal reaction that is de-
veloped on the gate at C.

B FIGURE P2.52

2.54 A rectangular gate that is 2 m wide is located in the ver-
tical wall of a tank containing water as shown in Fig. P2.54. It
is desired to have the gate open automatically when the depth
of water above the top of the gate reaches 10 m. (a) At what
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distance, d, should the frictionless horizontal shaft be located?
(b) What is the magnitude of the force on the gate when it
opens?

B FIGURE P2.54

2.56 A thin 4-ft-wide, right-angle gate with negligible mass
is free to pivot about a frictionless hinge at point O, as shown
in Fig. P2.56. The horizontal portion of the gate covers a
1-ft-diameter drain pipe, which contains air at atmospheric
pressure. Determine the minimum water depth, /4, at which the
gate will pivot to allow water to flow into the pipe.

Width = 4 ft~_|

Right-angle gate =
\

Hinge l

o

l~—1-ft-diameter pipe

:

<—3ftf»|

B FIGURE P2.56

*2.58 An open rectangular settling tank contains a liquid sus-
pension that at a given time has a specific weight that varies
approximately with depth according to the following data:

h (m) v (kN/m?)

0 10.0
0.4 10.1
0.8 10.2
1.2 10.6
1.6 11.3
2.0 12.3
2.4 12.7
2.8 12.9
3.2 13.0
3.6 13.1
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The depth & = 0 corresponds to the free surface. By means of nu-
merical integration, determine the magnitude and location of the
resultant force that the liquid suspension exerts on a vertical wall
of the tank that is 6 m wide. The depth of fluid in the tank is 3.6 m.

#2.60 Water backs up behind a concrete dam as shown in Fig.
P2.60. Leakage under the foundation gives a pressure distribu-
tion under the dam as indicated. If the water depth, A, is too
great, the dam will topple over about its toe (point A). For the di-
mensions given, determine the maximum water depth for the
following widths of the dam: € = 20, 30, 40, 50, and 60 ft. Base
your analysis on a unit length of the dam. The specific weight of
the concrete is 150 Ib/ft’.

pp=7rh
ot

B FIGURE P2.60

Section 2.10 Hydrostatic Force on a Curved Surface

2.62 A 3-m-long curved gate is located in the side of a reservoir
containing water as shown in Fig. P2.62. Determine the magni-
tude of the horizontal and vertical components of the force of the
water on the gate. Will this force pass through point A? Explain.

1 Gate
HFIGURE P2.62

2.64 The 20-ft-long light weight gate of Fig. P2.64 is a quarter
circle and is hinged at H. Determine the horizontal force, P.

B FIGURE P2.64

2.66 An open tank containing water has a bulge in its vertical
side that is semicircular in shape as shown in Fig. P2.66. Deter-
mine the horizontal and vertical components of the force that
the water exerts on the bulge. Base your analysis on a 1-ft length
of the bulge.

B FIGURE P2.66

2.68 The homogeneous gate shown in Fig. P2.68 consists of
one-quarter of a circular cylinder and is used to maintain a wa-
ter depth of 4 m. That is, when the water depth exceeds 4 m, the
gate opens slightly and lets the water flow under it. Determine
the weight of the gate per meter of length.

B FIGURE P2.68

2.70 If the bottom of a pop bottle similar to that shown in
Video V2.5 were changed so that it was hemispherical, as in
Fig. P2.70, what would be the magnitude, line of action, and
direction of the resultant force acting on the hemispherical bot-
tom? The air pressure in the top of the bottle is 40 psi, and the
pop has approximately the same specific gravity as that of
water. Assume that the volume of pop remains at 2 liters.

Pair = 40 psi

l«— 4.3-in. diameter

B FIGURE P2.70



Section 2.11 Buoyancy, Flotation, and Stability

2.72 A freshly cut log floats with one-fourth of its volume pro-
truding above the water surface. Determine the specific weight
of the log.

2.74 A tank of cross-sectional area A is filled with a liquid of
specific weight 7, as shown in Fig. P2.74a. Show that when a
cylinder of specific weight vy, and volume ¥ is floated in the
liquid (see Fig. P2.74b), the liquid level rises by an amount
Ah = (y/y))¥/A.

¥
RENIE I e
Ah :
Y2
7
(a) (b)

B FIGURE P2.74

2.76 When the Tucurui Dam was constructed in northern
Brazil, the lake that was created covered a large forest of valu-
able hardwood trees. It was found that even after 15 years un-
derwater the trees were perfectly preserved and underwater log-
ging was started. During the logging process, a tree is selected,
trimmed, and anchored with ropes to prevent it from shooting to
the surface like a missile when cut. Assume that a typical large
tree can be approximated as a truncated cone with a base diam-
eter of 8 ft, a top diameter of 2 ft, and a height of 100 ft. Deter-
mine the resultant vertical force that the ropes must resist when
the completely submerged tree is cut. The specific gravity of the
wood is approximately 0.6.

2.78 An inverted test tube partially filled with air floats in a
plastic water-filled soft-drink bottle as shown in Video V2.7 and
Fig. P2.78. The amount of air in the tube has been adjusted so
that it just floats. The bottle cap is securely fastened. A slight
squeezing of the plastic bottle will cause the test tube to sink to
the bottom of the bottle. Explain this phenomenon.

Air

Test tube —_|

Water —

~—Plastic bottle

-
B FIGURE P2.78

2.80 A 1-m-diameter cylindrical mass, M, is connected to a
2-m-wide rectangular gate as shown in Fig. P2.80. The gate is to
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open when the water level, A, drops below 2.5 m. Determine the
required value for M. Neglect friction at the gate hinge and the
pulley.

- )C‘
h diameter

[ lkm
N ¥

B FIGURE P2.80

Section 2.12 Pressure Variation in a Fluid with
Rigid-Body Motion

2.82 A 5-gal, cylindrical open container with a bottom area of
120 in.? is filled with glycerin and rests on the floor of an eleva-
tor. (a) Determine the fluid pressure at the bottom of the con-
tainer when the elevator has an upward acceleration of 3 ft/s.
(b) What resultant force does the container exert on the floor of
the elevator during this acceleration? The weight of the con-
tainer is negligible. (Note: 1 gal = 231 in.?)

2.84 A child riding in a car holds a string attached to a floating,
helium-filled balloon. As the car decelerates to a stop, the bal-
loon tilts backward. As the car makes a right-hand turn, the bal-
loon tilts to the right. On the other hand, the child tends to be
forced forward as the car decelerates and to the left as the car
makes a right-hand turn. Explain these observed effects on the
balloon and child.

Il Lab Problems

2.86 This problem involves the use of a cleverly designed ap-
paratus to investigate the hydrostatic pressure force on a sub-
merged rectangle. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

2.88 This problem involves the use of a pressurized air pad to
provide the vertical force to support a given load. To proceed
with this problem, go to the book’s web site, www.wiley.com/
college/young, or WileyPLUS.

M Lifelong Learning Problems

2.90 Over the years the demand for high-quality, first-growth
timber has increased dramatically. Unfortunately, most of the
trees that supply such lumber have already been harvested. Re-
cently, however, several companies have started to reclaim the
numerous high-quality logs that sank in lakes and oceans during
the logging boom times many years ago. Many of these logs are
still in excellent condition. Obtain information about the use of
fluid mechanics concepts in harvesting sunken logs. Summarize
your findings in a brief report.

B FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.
wiley.com/college/young, or WileyPLUS.


www.wiley.com/college/young
www.wiley.com/college/young
www.wiley.com/college/young
www.wiley.com/college/young
www.wiley.com/college/young
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Flemeniary Fluid
Dyndrnics—Tne
Barnoulll Egugtior

CHAPTER OPENING PHOTO: Flow past a blunt body: On any object placed in a moving fluid there is a
stagnation point on the front of the object where the velocity is zero. This location has a relatively

large pressure and divides the flow field into two portions—one flowing to the left of the body and
one flowing to the right of the body. (Dye in water) (Photograph by B. R. Munson.)

Learning Objectives

After completing this chapter, you should be able to:
m discuss the application of Newton’s second law to fluid flows.
m explain the development, uses, and limitations of the Bernoulli equation.

m use the Bernoulli equation (stand-alone or in combination with the
continuity equation) to solve simple flow problems.

m apply the concepts of static, stagnation, dynamic, and total pressures.
m calculate various flow properties using the energy and hydraulic grade lines.

In this chapter we investigate some typical fluid motions (fluid dynamics) in an elementary
way. We will discuss in some detail the use of Newton’s second law (F = ma) as it is
applied to fluid particle motion that is “ideal” in some sense. We will obtain the celebrated
Bernoulli equation and apply it to various flows. Although this equation is one of the oldest
in fluid mechanics and the assumptions involved in its derivation are numerous, it can be
used effectively to predict and analyze a variety of flow situations.
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Newton’s Second Law

o

oo
<
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>3
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V3.1 Streamlines
past an airfoil

According to Newton’s second law of motion, the net force acting on the fluid particle under
consideration must equal its mass times its acceleration,

F = ma

In this chapter we consider the motion of inviscid fluids. That is, the fluid is assumed to
have zero viscosity.

We assume that the fluid motion is governed by pressure and gravity forces only and
examine Newton’s second law as it applies to a fluid particle in the form:

(Net pressure force on particle) + (net gravity force on particle) =
(particle mass) X (particle acceleration)

The results of the interaction among the pressure, gravity, and acceleration provide numer-
ous applications in fluid mechanics.

We consider two-dimensional motion like that confined to the x—z plane as is shown
in Fig. 3.1a. The motion of each fluid particle is described in terms of its velocity vector,
V, which is defined as the time rate of change of the position of the particle. The particle’s
velocity is a vector quantity with a magnitude (the speed, V = |V|) and direction. As the
particle moves about, it follows a particular path, the shape of which is governed by the
velocity of the particle.

If the flow is steady (i.e., nothing changes with time at a given location in the flow
field), each particle slides along its path, and its velocity vector is everywhere tangent to
the path. The lines that are tangent to the velocity vectors throughout the flow field are
called streamlines. The particle motion is described in terms of its distance, s = s(f), along
the streamline from some convenient origin and the local radius of curvature of the stream-
line, & = R(s). The distance along the streamline is related to the particle’s speed by V =
ds/dt, and the radius of curvature is related to the shape of the streamline. In addition to
the coordinate along the streamline, s, the coordinate normal to the streamline, n, as is
shown in Fig. 3.1b, will be of use.

By definition, acceleration is the time rate of change of the velocity of the particle,
a = dV/dt. The acceleration has two components—one along the streamline, a,, streamwise
acceleration, and one normal to the streamline, a,, normal acceleration.

By use of the chain rule of differentiation, the s component of the acceleration is
given by a, = dV/dt = (0VIds)(ds/dt) = (dV/ds)V, as shown in the figure in the margin.
We have used the fact that the speed is the time rate of change of distance along the
streamline, V = ds/dt. The normal component of acceleration, centrifugal acceleration, is
given in terms of the particle speed and the radius of curvature of its path as a, = V.

Streamlines

X X

(a) (b)

B FIGURE 3.1 (a)Flow in the x—z plane. (b) Flow in terms of streamline and normal
coordinates.
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Thus, the components of acceleration in the s and n directions, a, and a,, for steady flow are
given by

a,=V=, aq = — @3.1)

3.2 F = ma Along a Streamline

We consider the free-body diagram of a small fluid particle as is shown in Fig. 3.2. The
small fluid particle is of size ds by 6n in the plane of the figure and &y normal to the figure
as shown in the free-body diagram of Fig. 3.3. Unit vectors along and normal to the stream-
line are denoted by § and n, respectively. For steady flow, the component of Newton’s second
law along the streamline direction, s, can be written as

v v
> 8F,=8ma,=dmV—=pdV¥V— (3.2)
as as

where 2, 8F, represents the sum of the s components of all the forces acting on the parti-
cle, which has mass ém = pd¥, and VaV/ds is the acceleration in the s direction. Here,
o0V = 8s6ndy is the particle volume.

The gravity force (weight) on the particle can be written as 6W' = y ¥, where y = pg
is the specific weight of the fluid (Ib/ft> or N/m®). Hence, the component of the weight force
in the direction of the streamline is

OW, = —06W sinf = —y &V sin b

If the streamline is horizontal at the point of interest, then § = 0, and there is no component
of the particle weight along the streamline to contribute to its acceleration in that direction.
If the pressure at the center of the particle shown in Fig. 3.3 is denoted as p, then its
average value on the two end faces that are perpendicular to the streamline are p + §p, and
p — 6p,. Because the particle is “small,” we can use a one-term Taylor series expansion for
the pressure field to obtain
ap s
ops = ——
Ps =~ 58 o
Thus, if 6F »s 18 the net pressure force on the particle in the streamline direction, it follows that

8F,, = (p — 8p,)6ndy — (p + 8p,)6ndy = —28p,6ndy

J J
= —£8s8n8y = —£5V
as as

~ —

H FIGURE 3.2 Isolation of a small fluid particle in a flow field. (Photo courtesy
of Diana Sailplanes.)
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X&
v
(p + 0p,) 0s Oy
Particle thickness = SX

Ss

] (p+ op,) 6n 6y

(p - 6p,) on oy

s - 52 (p— dp,)0s oy
Normal to streamline

Along streamline

B FIGURE 3.3 Freebody diagram of a fluid particle for
which the important forces are those due to pressure and gravity.

Thus, the net force acting in the streamline direction on the particle shown in Fig. 3.3
is given by

” 9
S\6F, = 8W, + 6F,, = (—y sin 6 — p)av 3.3)
V3.2 Balancing ds

ball

By combining Egs. 3.2 and 3.3 we obtain the following equation of motion along the stream-
line direction:

) av
—7ysin g — £ = pV(TS (3.4)

The physical interpretation of Eq. 3.4 is that a change in fluid particle speed is
accomplished by the appropriate combination of pressure and particle weight along the
streamline.

EXAMPLE 3.1

GIVEN Consider the inviscid, incompressible, steady flow ~ FIND  Determine the pressure variation along the stream-
along the horizontal streamline A-B in front of the sphere of line from point A far in front of the sphere (x, = —0c0 and
radius a as shown in Fig. E3.1a. From a more advanced theory ~ V, = V;) to point B on the sphere (xz = —a and Vz = 0).

of flow past a sphere, the fluid velocity along this streamline is

(13
V= V0<1 + *3>
X

as shown in Fig. E3.15.
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(a)
HFIGURES E3.1aand b

SoLUTION
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0.75 V,

v 05V,

0.25 V,

-la 0

Since the flow is steady and inviscid, Eq. 3.4 is valid. In addi-
tion, because the streamline is horizontal, sin 8 = sin 0° = 0
and the equation of motion along the streamline reduces to

ap 2%

= = _pvi

as as D

With the given velocity variation along the streamline, the ac-
celeration term is

v av

% v =y, (1 + “—3)( 3V°a3)
as ox -0 X x*
3 3
= —3v3(1 + %)“7
X X

where we have replaced s by x since the two coordinates are
identical (within an additive constant) along streamline A—B. It
follows that VaV/ds < 0 along the streamline. The fluid slows
down from Vj, far ahead of the sphere to zero velocity on the
“nose” of the sphere (x = —a).

Thus, according to Eq. 1, to produce the given motion the
pressure gradient along the streamline is

p 3pa’ V(1 + a1x?)

ox x4

()

Pp
ax

0.610pV,%/a

|
-2a

-3a -a 0 X

(c)
B FIGURES E3.1icand d

This variation is indicated in Fig. E3.1c. It is seen that the pres-
sure increases in the direction of flow (dp/dx > 0) from point A
to point B. The maximum pressure gradient (0.610pV?3/a) oc-
curs just slightly ahead of the sphere (x = —1.205q). It is the
pressure gradient that slows the fluid down from V, =V to
Vs =0.

The pressure distribution along the streamline can be ob-
tained by integrating Eq. 2 from p = 0 (gage) at x = —00 to
pressure p at location x. The result, plotted in Fig. E3.1d, is

R

COMMENT The pressure at B, a stagnation point since
Vz =10, is the highest pressure along the streamline
(pg = pV3/2). As shown in Chapter 9, this excess pressure on
the front of the sphere (i.e., pz > 0) contributes to the net drag
force on the sphere. Note that the pressure gradient and pres-
sure are directly proportional to the density of the fluid, a rep-
resentation of the fact that the fluid inertia is proportional to
its mass.

(Ans)

4
o
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t h e N e w s

Incorrect raindrop shape The incorrect representation that
raindrops are teardrop shaped is found nearly everywhere—
from children’s books to weather maps on the Weather Chan-
nel. About the only time raindrops possess the typical teardrop
shape is when they run down a windowpane. The actual shape
of a falling raindrop is a function of the size of the drop and re-
sults from a balance between surface tension forces and the air
pressure exerted on the falling drop. Small drops with a radius
less than about 0.5 mm have a spherical shape because the sur-
face tension effect (which is inversely proportional to drop

size) wins over the increased pressure, pV(z)/Z, caused by the
motion of the drop and exerted on its bottom. With increasing
size, the drops fall faster and the increased pressure causes the
drops to flatten. A 2-mm drop, for example, is flattened into a
hamburger bun shape. Slightly larger drops are actually con-
cave on the bottom. When the radius is greater than about 4 mm,
the depression of the bottom increases and the drop takes on
the form of an inverted bag with an annular ring of water
around its base. This ring finally breaks up into smaller drops.
(See Problem 3.22.)

Equation 3.4 can be rearranged and integrated as follows. First, we note from Fig. 3.3
that along the streamline sin 6 = dz/ds. Also we can write VdV/ds = 5d(V?)/ds. Finally,
along the streamline dp/ds = dplds. These ideas combined with Eq. 3.4 give the following

result valid along a streamline

/N

V3.3 Flow past a
biker

This simplifies to

d(v?)
ds

dz dp _l
ds 2p

yds

1
dp + 5 pd(V?) + ydz =0 (along a streamline) (3.5)
which, for constant density and specific weight, can be integrated to give
p + 3 pV? + yz = constant along streamline (3.6)

This is the celebrated Bernoulli equation—a very powerful tool in fluid mechanics.

GIVEN Consider the flow of air around a bicyclist moving
through still air with velocity Vj, as is shown in Fig. E3.2.

FIND Determine the difference in the pressure between
points (1) and (2).

SoLuTION

In a coordinate system fixed to the bike, it appears as
though the air is flowing steadily toward the bicyclist with
speed V,. If the assumptions of Bernoulli’s equation are
valid (steady, incompressible, inviscid flow), Eq. 3.6 can be
applied as follows along the streamline that passes through
(1) and (2).

pi+3pVi+ vz =pa+3pVi+ vz

ExawmpLE 3.2

B FIGURE E3.2

We consider (1) to be in the free stream so that V;, = V and (2)
to be at the tip of the bicyclist’s nose and assume that z; = z,
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and V, = 0 (both of which, as is discussed in Section 3.5, are
reasonable assumptions). It follows that the pressure of (2) is
greater than that at (1) by an amount

p2—p1=3pVi=1%pV (Ans)

COMMENTS A similar result was obtained in Example
3.1 by integrating the pressure gradient, which was known
because the velocity distribution along the streamline, V(s),
was known. The Bernoulli equation is a general integration
of F = ma. To determine p, — p;, knowledge of the detailed

velocity distribution is not needed—only the “boundary con-
ditions” at (1) and (2) are required. Of course, knowledge of
the value of V along the streamline is needed to determine
the pressure at points between (1) and (2). Note that if we
measure p, — p; we can determine the speed, V. As dis-
cussed in Section 3.5, this is the principle upon which many
velocity-measuring devices are based.

If the bicyclist were accelerating or decelerating, the flow
would be unsteady (i.e., V,, # constant) and the aforemen-
tioned analysis would be incorrect, as Eq. 3.6 is restricted to
steady flow.

33 F = ma Normal to a Streamline

V3.4 Hydrocyclone
separator

V3.5 Aircraft wing
tip vortex

V3.6 Free vortex

We again consider the force balance on the fluid particle shown in Fig. 3.3. This time, how-
ever, we consider components in the normal direction, fi, and write Newton’s second law
in this direction as

Sk, == 3.7)

where 2, 8F, represents the sum of the normal components of all the forces acting on the
particle. We assume the flow is steady with a normal acceleration a, = V*/®, where R is
the local radius of curvature of the streamlines.

We again assume that the only forces of importance are pressure and gravity. Using
the method of Section 3.2 for determining forces along the streamline, the net force acting
in the normal direction on the particle shown in Fig. 3.3 is determined to be

3
S\ 6F, = 6W, + OF,, = <—y cos 6 — a”) 5¥ 3.8)
n

where dp/on is the pressure gradient normal to the streamline. By combining Eqgs. 3.7 and
3.8 and using the fact that along a line normal to the streamline cos 6 = dz/dn (see Fig. 3.3),
we obtain the following equation of motion along the normal direction:

(3.9)

The physical interpretation of Eq. 3.9 is that a change in the direction of flow of a
fluid particle (i.e., a curved path, ? < c0) is accomplished by the appropriate combination
of pressure gradient and particle weight normal to the streamline. By integration of Eq. 3.9,
the final form of Newton’s second law applied across the streamlines for steady, inviscid,
incompressible flow is obtained as

2
p+ pJ dn + vyz = constant across the streamline 3.10)

R




GIVEN Shown in Figs. E3.3a,b are two flow fields with

circular streamlines. The velocity distributions are
V(r) = (Volro)r for case (a)

and

V(r)

for case (b)
where V, is the velocity at r = ry,.

FIND Determine the pressure distributions, p = p(r), for
each, given that p = pyatr = r,,.

SoLuTION

We assume the flows are steady, inviscid, and incompressible
with streamlines in the horizontal plane (dz/dn = 0). Because
the streamlines are circles, the coordinate n points in a
direction opposite that of the radial coordinate, d/dn = —a/dr,
and the radius of curvature is given by & = r. Hence, Eq. 3.9
becomes

6p_pV2
o r

For case (a) this gives

dp

= p(Vo/ro)?
or P(o"o)"

whereas for case (b) it gives

% _ p(Vo ro)?
Jar r3

For either case the pressure increases as r increases since
ap/dr > 0. Integration of these equations with respect to
starting with a known pressure p = p, at r = r, gives

p = po = (pV3/2)[(rlre)* — 1]

for case (a) and

P — po = (pV3/2)[1 — (ro/r)*]

(Ans)

(Ans)
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EXAWPLE 3.3

(@) (b)

1.5 2
rlrg

(c)

2.5

B FIGURE E3.3

for case (b). These pressure distributions are shown in Fig.
E3.3c.

COMMENT The pressure distributions needed to balance
the centrifugal accelerations in cases (a) and (b) are not the
same because the velocity distributions are different. In fact, for
case (a) the pressure increases without bound as r — oo,
whereas for case (b) the pressure approaches a finite value as
r — oo. The streamline patterns are the same for each case,
however.

Physically, case (a) represents rigid-body rotation (as ob-
tained in a can of water on a turntable after it has been “spun
up”) and case (b) represents a free vortex (an approximation to
a tornado or the swirl of water in a drain, the “bathtub vortex”).

34 Physical Interpretation

An alternate but equivalent form of the Bernoulli equation is obtained by dividing each term
of Eq. 3.6 by the specific weight, vy, to obtain

P
Y

2

+ 7 + z = constant on a streamline
g

(3.11)
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Each of the terms in this equation has the units of length and represents a certain type of
head.

The elevation term, z, is related to the potential energy of the particle and is called the
elevation head. The pressure term, p/vy, is called the pressure head and represents the height
of a column of the fluid that is needed to produce the pressure, p. The velocity term, V2/2g, is
the velocity head and represents the vertical distance needed for the fluid to fall freely (neglect-
ing friction) if it is to reach velocity V from rest. The Bernoulli equation states that the sum
of the pressure head, the velocity head, and the elevation head is constant along a streamline.

GIVEN Consider the flow of water from the syringe shown
in Fig. E3.4a. As indicated in Fig. E3.4b, force applied to the
plunger will produce a pressure greater than atmospheric at
point (1) within the syringe. The water flows from the nee-
dle, point (2), with relatively high velocity and coasts up to
point (3) at the top of its trajectory.

FIND Discuss the energy of the fluid at points (1), (2), and
(3) using the Bernoulli equation.

SOLUTION

—EXAMPLE 3.4 B LICHELR

If the assumptions (steady, inviscid, incompressible flow) of
the Bernoulli equation are approximately valid, it then fol-
lows that the flow can be explained in terms of the partition of
the total energy of the water. According to Eq. 3.11, the sum
of the three types of energy (kinetic, potential, and pressure)
or heads (velocity, elevation, and pressure) must remain con-
stant. The following table indicates the relative magnitude of
each of these energies at the three points shown in Fig. E3.4b.

Energy Type
Kinetic Potential Pressure
Point pV?/2 vz P
1 Small Zero Large
2 Large Small Zero
3 Zero Large Zero

(Ans)

The motion results in (or is due to) a change in the mag-
nitude of each type of energy as the fluid flows from one

and Pressure Energy

(a) (b)
B FIGURE E34

location to another. An alternate way to consider this flow is
as follows. The pressure gradient between (1) and (2) pro-
duces an acceleration to eject the water from the needle.
Gravity acting on the particle between (2) and (3) produces a
deceleration to cause the water to come to a momentary stop
at the top of its flight.

COMMENTS If friction (viscous) effects were important,
there would be an energy loss between (1) and (3) and for the
given p; the water would not be able to reach the height indi-
cated in Fig. E3.4. Such friction may arise in the needle (see
Chapter 8, pipe flow) or between the water stream and the sur-
rounding air (see Chapter 9, external flow).

F I u i d s i n

t h e N e w s

Armed with a water jet for hunting Archerfish, known for
their ability to shoot down insects resting on foliage, are like
submarine water pistols. With their snout sticking out of the

water, they eject a high-speed water jet at their prey, knock-
ing it onto the water surface where they snare it for their
meal. The barrel of their water pistol is formed by placing




their tongue against a groove in the roof of their mouth to
form a tube. By snapping shut their gills, water is forced
through the tube and directed with the tip of their tongue.
The archerfish can produce a pressure head within their gills
large enough so that the jet can reach 2 to 3 m. However, it is
accurate to only about 1 m. Recent research has shown that
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archerfish are very adept at calculating where their prey will
fall. Within 100 milliseconds (a reaction time twice as fast as
a human’s), the fish has extracted all the information needed
to predict the point where the prey will hit the water. Without
further visual cues it charges directly to that point. (See
Problem 3.28.)

When a fluid particle travels along a curved path, a net force directed toward the cen-
ter of curvature is required. Under the assumptions valid for Eq. 3.10, this force may be grav-
ity, pressure, or a combination of both. In many instances the streamlines are nearly straight
(R = ) so that centrifugal effects are negligible and the pressure variation across the stream-
lines is merely hydrostatic (because of gravity alone), even though the fluid is in motion.

GIVEN Water flows in a curved, undulating waterslide as
shown in Fig. E3.5a. As an approximation to this flow, con-
sider the inviscid, incompressible, steady flow shown in Fig.
E3.5b. From section A to B the streamlines are straight,
whereas from C to D they follow circular paths.

FIND Describe the pressure variation between
(a) points (1) and (2)
(b) and points (3) and (4).

SoLuTION

(a) With the assumptions given in the problem statement and the
fact that R = 0o for the portion from A to B, Eq. 3.10 becomes

p + yz = constant

The constant can be determined by evaluating the known vari-
ables at the two locations using p, = 0 (gage), z; = 0, and
7z, = h,_; to give

pr=p2+Wea—2)=p2t+ yhaoy  (Ans)
COMMENT Note that since the radius of curvature of the
streamline is infinite, the pressure variation in the vertical di-
rection is the same as if the fluid were stationary.

(b) If we apply Eq. 3.10 between points (3) and (4), we obtain
(using dn = —dz)

2 V2
pst pJ o (7D + vz =ps + vz
3
With p, = 0 and z, — z3 = hy_5 this becomes

2

24
P3 = Yhy—s — PJ —dz

7 (Ans)

3

EXAMPLE 3.5

2

B FIGURE E3.5a
Schlitterbahn® Waterparks.)

‘g

Y

Y

A
B FIGURE E3.5b

COMMENT To evaluate the integral we must know the
variation of V and %R with z. Even without this detailed infor-
mation we note that the integral has a positive value. Thus, the
pressure at (3) is less than the hydrostatic value, yh,_;, by an
amount equal to p | ZZ:( V*/%R) dz. This lower pressure, caused
by the curved streamline, is necessary in order to accelerate
(centrifugal acceleration) the fluid around the curved path.
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3.5 Static, Stagnation, Dynamic, and Total Pressure

V3.7 Stagnation
point flow

Each term of the Bernoulli equation, Eq. 3.6, has the dimensions of force per unit
area—psi, 1b/ft?, N/m2. The first term, p, is the actual thermodynamic pressure of the
fluid as it flows. To measure its value, one could move along with the fluid, thus
being “static” relative to the moving fluid. Hence, it is normally termed the static
pressure. Another way to measure the static pressure would be to drill a hole in a
flat surface and fasten a piezometer tube as indicated by the location of point (3) in
Fig. 3.4.

The third term in Eq. 3.5, vz, is termed the hydrostatic pressure, in obvious regard to
the hydrostatic pressure variation discussed in Chapter 2. It is not actually a pressure but
does represent the change in pressure possible due to potential energy variations of the fluid
as a result of elevation changes.

The second term in the Bernoulli equation, pV2/2, is termed the dynamic pressure.
Its interpretation can be seen in Fig. 3.4 by considering the pressure at the end of a small
tube inserted into the flow and pointing upstream. After the initial transient motion has
died out, the liquid will fill the tube to a height of H as shown. The fluid in the tube,
including that at its tip, (2), will be stationary. That is, V, = 0, or point (2) is a stagnation
point.

If we apply the Bernoulli equation between points (1) and (2), using V, = 0 and
assuming that z; = z,, we find that

pr=pi T 5pVi

Hence, the pressure at the stagnation point, termed the stagnation pressure, is greater
than the static pressure, p;, by an amount pV3/2, the dynamic pressure. It can be shown
that there is a stagnation point on any stationary body that is placed into a flowing
fluid. Some of the fluid flows “over” and some “under” the object. The dividing line
(or surface for three-dimensional flows) is termed the stagnation streamline and ter-
minates at the stagnation point on the body. (See the photograph at the beginning of
the chapter.) For symmetrical objects (such as a baseball) the stagnation point is
clearly at the tip or front of the object as shown in Fig. 3.5a. For other flows, such
as a water jet against a car as shown in Fig. 3.5b, there is also a stagnation point on
the car.

(4) H
no has
14 —e |4
3)
h3»1 P
Y . o |t
(1) (2)
V=V V,=0

B FIGURE 3.4 Measurement of
static and stagnation pressures.
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Stagnation point

(a)
BEFIGURE 3.5
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Stagnation streamline

Stagnation point

(b)

Stagnation points.
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